PARTITION FUNCTIONS AND SPIRALLING IN PLANE RANDOM WALK

Z.A. Melzak

(received September 12, 1962)

- 1. Consider the plane symmetric random walk on a square lattice: a particle is initially at the origin in the xy-plane, it makes n consecutive steps of unit length, and each step is made with the probability 1/4 in each one of the four directions parallel to the axes. We call the path of the particle a spiral if the following conditions are met: a) the particle never occupies the same position twice, b) the path of the particle, whenever it turns, either turns always clockwise or always counter-clockwise throughout the path, and c) for every m > n the given n-step path can be continued in at least one way to give an m-step path meeting the conditions. Conditions a) and b) are natural for spirals; c) is necessary to eliminate such paths as (0,0)-(1,0)-(1,1)-(1,2)-(0,2)-(0,1) or (0,0)-(1,0)-(2,0)-(2,1)-(1,1)-(0,1)-(-1,1)-(-1,0)-(-1,-1)-(-1,-2)-(0,-2)-(1,-2)-(1,-1). We shall calculate the probability p that the path of the particle is a spiral; it will turn out that the answer is given in terms of the partition function p(n) for unrestricted partitions, and that other partition functions also enter into the problem.
- 2. The total number of paths is 4^n and each one of them occurs with the probability 4^{-n} . Let us consider only the paths starting along the positive x-axis. Observing that a spiral is then either the straight segment [0,n] or it has k turns, $k \ge 1$, either clockwise or counter-clockwise, and that any clockwise spiral is mirrored into a counter-clockwise one by reflexion in the x-axis, we have

Canad. Math. Bull. vol. 6, no. 2, May 1963.

(1)
$$p_{n} = 4^{1-n} \left[1 + 2 \sum_{k=1}^{\infty} N(n, k) \right]$$

where N(n,k) is the number of different n-step spirals with k counter-clockwise turns, along which the first step takes the particle from (0,0) to (1,0). We use here the natural convention that N(n,k)=0 if k is so large, relative to n, that there are no required spirals at all. For instance, N(1,k)=0 if $k\geq 1$, N(2,k)=0 if $k\geq 2$, N(3,k)=N(4,k)=0 if $k\geq 3$, and so on. Under these conditions we have to count only the spirals for which the successive rectilinear displacements are due east, north, west, south, east, etc. For a spiral with k turns there must be k+1 such displacements; let their lengths be $a_1, a_2, \ldots, a_k, a_{k+1}$. These numbers determine the spiral uniquely, and we have

Lemma 1. A sequence $(a_1, a_2, \dots, a_k, a_{k+1})$ of k+1 positive integers determines a spiral if and only if

(2)
$$\sum_{i=1}^{k+1} a_i = n, \quad a_{k+1} \ge 1,$$

and the first k integers satisfy

(3)
$$a_1 < a_3 < a_5 < \dots, a_2 < a_4 < a_6 < \dots$$

N(n, k) is therefore the number of distinct solutions of (2) and (3).

To prove the lemma we observe that (2) must obviously hold since the length of a spiral is the sum of the lengths of successive displacements, and the length of the tail (= the last displacement) can be any positive integer. (3) must hold since by the conditions a), b) and c), except for the tail, each displacement parallel to the x-axis must be longer than the previous one, and the same is true for the displacements parallel to the y-axis.

3. To calculate N(n,k) we introduce two combinatorial functions: Q(m,j) - the number of distinct representations of m as a sum of j increasing positive integers, and Q(m,j,s),

which is defined in the same way, subject to the condition that the smallest integer is s. We have

Q(m,j,s) = 0 if
$$m < sj + j(j-1)/2$$

(4)
Q(m,j) = 0 if $m < j(j+1)/2$

(5)
$$Q(m,j) = \sum_{s=1}^{\infty} Q(m,j,s).$$

We obtain next a recursion formula for Q(m,j). Consider any representation

(6)
$$m = s + m_1 + m_2 + ... + m_{j-1}$$

of m as a sum of j positive integers which are increasing and start with s. Subtracting sj from each side we have

(7)
$$m - sj = (m_1 - s) + (m_2 - s) + ... + (m_{j-1} - s)$$
,

which is a representation of m - sj as a sum of j - 1 increasing integers. Conversely, from any representation of the type (7) we get a representation of the type (6). Therefore

(8)
$$Q(m-js, j-1) = Q(m, j, s)$$
.

Elimination of Q(m, j, s) from (5) and (8) gives

$$Q(m,j) = \sum_{s=1}^{\infty} Q(m-js, j-1)$$

or

(9)
$$Q(m,j+1) = \sum_{s=1}^{\infty} Q(m-(j+1)s, j)$$
.

By a simple calculation we have

(10) Q(m,1) = 1 for $m \ge 1$, Q(m,2) = -1 + m/2 for even m > 4. Q(m,2) = (m-1)/2 for odd $m \ge 3$.

Introduce the generating function

$$f_j(x) = \sum_{m=1}^{\infty} Q(m, j) x^m,$$

then from (10)

$$f_1(x) = x/(1-x)$$
, $f_2(x) = x^3/(1-x)(1-x^2)$.

The recurrence relation (9) is equivalent to

$$f_{j+1}(x) = f_j(x) x^{j+1}/(1 - x^{j+1})$$
;

this allows us to determine $f_{j}(x)$:

(11)
$$f_j(x) = x^{j(j+1)/2} / \prod_{i=1}^{j} (1 - x^i)$$
.

The above formula shows that Q(m,j), as could be expected, is related to some partition functions, and we remark further that by a theorem of Euler, [1] p. 275, we have

$$1 + \sum_{j=1}^{\infty} \sum_{m=1}^{\infty} Q(m,j) x^{m} z^{j} = \prod_{m=1}^{\infty} (1 + z x^{n}).$$

4. We proceed now to the evaluation of N(n, k). Suppose first that k = 2p is even, that the length of the tail is t, and that

(12)
$$a_1 + a_3 + \dots + a_{2p-1} = A$$

so that

(13)
$$a_2 + a_4 + \dots + a_{2p} = n - t - A$$
.

By Lemma 1 N(n,k) is the number of distinct solutions of (2) and (3). In the terminology of the previous section the

numbers of distinct solutions of (12) and (13) are Q(A,p) and Q(n-t-A,p) respectively. Therefore the number of distinct solutions of (12) and (13) together is Q(A,p) Q(n-t-A,p). Since t>1 is arbitrary, we get

(14)
$$N(n, k) = \sum_{t=1}^{\infty} \sum_{A=1}^{\infty} Q(A, k/2) Q(n-t-A, k/2)$$
.

When k is odd an entirely similar procedure gives

(15)
$$N(n, k) = \sum_{t=1}^{\infty} \sum_{A=1}^{\infty} Q(A, (k+1)/2) Q(n-t-A, (k-1)/2) .$$

We obtain now the generating function of $\,N(n,k)\,$. Consider the convolution

$$C(u,j) = \sum_{q=1}^{\infty} Q(q,j) Q(u-q,j).$$

Its generating function is obtained by squaring $f_i(x)$ in (11):

(16)
$$f_j^2(\mathbf{x}) = \sum_{u=1}^{\infty} C(u,j) \mathbf{x}^u = \mathbf{x}^{j(j+1)} / \prod_{i=1}^{j} (1-\mathbf{x}^i)^2$$
.

The inner sum in (14) is C(n-t, k/2) and

$$N(n,k) = \sum_{t=1}^{\infty} C(n-t, k/2);$$

multiplying (16) by x/(1-x) and putting j = k/2 we get the generating function of N(n, k) for k even:

(17)
$$\sum_{n=1}^{\infty} N(n,2k) x^{n} = x^{k(k+1)+1}/(1-x) \prod_{i=1}^{k} (1-x^{i})^{2}.$$

To get the generating function of N(n,k) for k odd we consider first the convolution

$$D(u, k) = \sum_{q=1}^{\infty} Q(q, (k+1)/2) Q(u-q, (k-1)/2).$$

Its generating function is obtained by multiplying f(k+1)/2 and f(k+1)/2: $f(k+1)/2(x) f(k+1)/2(x) = \sum_{u=1}^{\infty} D(u,k) x^{u} = x^{(k+1)^{2}/4}/(1 - x^{(k+1)/2}) \prod_{i=1}^{(k+1)/2} (1-x^{i})^{2}$.

Since the inner sum in (15) is D(n-t,k), multiplying the above formula by x/(1-x) we get the generating function of N(n,k) for k odd:

(18)
$$\sum_{n=1}^{\infty} N(n, 2k-1) x^{n} = x^{k+1}/(1-x)(1-x^{k}) \prod_{i=1}^{k-1} (1-x^{i})^{2}.$$

To obtain the generating function for $\sum_{k=1}^{\infty} N(n,k)$ we simply add the generating functions in (17) and (18):

(19)
$$\sum_{n=1}^{\infty} \left[\sum_{k=1}^{\infty} N(n,k) \right] x^{n} = x/(1-x) \sum_{k=1}^{\infty} x^{k}/\pi (1-x^{i})^{2}.$$

5. Recalling (1) we get from (19) the generating function of $p_{\rm n}$

(20)
$$\sum_{n=1}^{\infty} p_n x^n = 4x \left[1 + 2 \sum_{k=1}^{\infty} 4^k x^k / \prod_{i=1}^{2} (4^i - x^i)^2\right] / (4 - x).$$

We develop now the connection between p and the unrestricted partition function p(n). The generating function of p(n) is

$$F(x) = 1 + \sum_{n=1}^{\infty} p(n) x^n = \prod_{i=1}^{\infty} (1 - x^i)^{-1};$$

by a theorem of Euler, [1] p. 278,

$$F(x) = 1 + \sum_{k=1}^{\infty} x^{k} / \prod_{i=1}^{\infty} (1 - x^{i})^{2}.$$

Comparing this with (19) we have

$$\sum_{n=1}^{\infty} p_n x^n = 8x [F(x/4) - 1/2]/(4 - x)$$

and therefore

(21)
$$p_n = 4^{1-n} [1 + 2 \sum_{i=1}^{n-1} p(i)],$$

(22)
$$p(n) = 2^{2n-3} (4 p_{n+1} - p_n)$$
.

Formula (22) suggests a theoretical possibility of calculating p(n) by a Monte-Carlo type of a method. We imagine that our plane random walk is simulated on an automatic computer and run off N times for n steps, and also N times for n + 1 steps. Let f and f be the frequencies of the occurence of spirals in these two runs. Then as N $\rightarrow \infty$, we have

$$2^{2n-3} (4 f_{n+1} - f_n) \rightarrow p(n)$$

with probability 1. However, the required number N of runs for a close approximation is by far too large for any practical application, even for only moderately large n.

REFERENCE

1. G.H. Hardy and E.M. Wright, The Theory of Numbers, 2nd edition, Oxford 1945.

McGill University