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1. Consider the plane symmetric random walk on a
square lattice: a particle is initially at the origin in the
xy-plane, it makes n consecutive steps of unit length, and
each step is made with the probability 1/4 in each one of the
four directions parallel to the axes. We call the path of the
particle a spiral if the following conditions are met: a) the
particle never occupies the same position twice, b) the path
of the particle, whenever it turns, either turns always clock-
wise or always counter-clockwise throughout the path, and
c) for every m > n the given n-step path can be continued in at
least one way to give an m-step path meeting the conditions.
Conditions a) and b) are natural for spirals; c) is necessary to
eliminate such paths as (0, 0)-(1,0)-(1,1)-(1,2)-(0,2)-(0,1) or
(0,0)-(1,0)-(2,0)-(2,1)-(1,1)-(0,1)-(-1,1)-(-1,0)-(-1, - 1)-
(-1,-2)-(0,-2)-(1,-2)-(1,-1). We shall calculate the probability
P that the path of the particle is a spiral; it will turn out that

the answer is given in terms of the partition function p(n) for
unrestricted partitions, and that other partition functions also
enter into the problem.

2. The total number of paths is 4" and each one of

them occurs with the probability 4 ™. Let us consider only
the paths starting along the positive x-axis. Observing that

a spiral is then either the straight segment [0,n] or it has

k turns, k> 1, either clockwise or counter-clockwise, and
that any clockwise spiral is mirrored into a counter-clockwise
one by reflexion in the x-axis, we have
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o0
(1) p = 41'“[1-+2 £ N(n, k)]
o k=1

where N(n, k) is the number of different n-step spirals with

k counter-clockwise turns, along which the first step takes

the particle from (0,0) to (1,0). We use here the natural
convention that N(n,k) =0 if k is so large, relative to n,

that there are no required spirals at all. For instance,

N(1,k) =0 if k>1, N(2,k)=0 if k>2, N(3,k)=N(4,k) =0

if k>3, and so on. Under these conditions we have to count
only the spirals for which the successive rectilinear displacements
are due east, north, west, south, east, etc. For a spiral with

k turns there must be k+ 1 such displacements; let their

lengths be VR PTREE ,ak,ak+1 .

the spiral uniquely, and we have

These numbers determine

Lemma 1. A sequence (ai,a ) of k+ 1

s e a
2 K Tkt
positive integers determines a spiral if and only if

k+1
2 = = >
(2) . a =n, a2 1,
i=1
and the first k integers satisfy
3 < < < .ol < < <....
(3) %% 22584 %

N(n, k) is therefore the number of distinct solutions of (2) and

(3).

To prove the lemma we observe that (2) must obviously
hold since the length of a spiral is the sum of the lengths of
successive displacements, and the length of the tail (= the last
displacement) can be any positive integer. (3) must hold since
by the conditions a), b) and c), except for the tail, each displace-
ment parallel to the x-axis must be longer than the previous one,
and the same is true for the displacements parallel to the y-axis.

3. To calculate N(n, k) we introduce two combinatorial

functions: Q(m,j) - the number of distinct representations of
m as a sum of j increasing positive integers, and Q(m,j, s),
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which is defined in the same way, subject to the condition that
the smallest integer is s . We have

Q(m,j,s) =0 if m<sj+ j(j-1)/2

(4)
Q(m,j) =0 if m<j(+1)/2
0
(5) Q(m,j) = Z Q(m,j,s) .
s=1

We obtain next a recursion formula for Q(m,j). Consider any
representation

(6) m:s+m1+m2+...+mj_1

of m as a sum of j positive integers which are increasing
and start with s . Subtracting sj from each side we have

(7) m-sj=(mi-s)+(m2-s)+...+(mj_1-s),

which is a representation of m - sj as a sum of j - 1
increasing integers. Conversely, from any representation of
the type (7) we get a representation of the type (6). Therefore

(8) Q(m-js, j-1) = Q(m,j,s) .

Elimination of Q(m,j, s) from (5) and (8) gives

[o.0]
Q(m,j) = T Q{m-js, j-1)
s=1
or
0
(9) Q(m,j+1) = Z Q(m-(j+1)s, j) .
s=1

By a simple calculation we have
(10) Q(m,1) =1 for m>1, Q(m,2)=-1+ m/2 for even
m>4. Q(m,2) =(m-1)/2 for odd m > 3.
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Introduce the generating function

)

m
f(x) = 2 Qm,j)x ;
J m=1

then from (10)
3 2
fi(x) = x/(1 - x), fz(x) =x /(1-x(1-x).

The recurrence relation (9) is equivalent to

B j+1 j+1 .
£, = fJ.(x)xJ J(1-x70)

this allows us to determine f (x):
J

(11) £(x) = LSIE Ty
J i=1

The above formula shows that Q(m,j) , as could be expected,
is related to some partition functions, and we remark further
that by a theorem of Euler, [1] p. 275, we have

o0 o0

0
1+ Z = Q(m,j)xsz= I (1-:—zxn).

j=1 m=1 n=1

4. We proceed now to the evaluation of N{(n, k).

Suppose first that k =2p is even, that the length of the tail
is t, and that

12 + ...+ = A

(12) a, +a;g aZp-i

so that

13 = -t - .
(13) a,ta,+ +aZp n-t-A

By Lemma 1 N(n, k) is the number of distinct solutions of
(2) and (3). In the terminology of the previous section the
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numbers of distinct solutions of (12) and (13) are Q(A,p) and
Q(n-t-A, p) respectively. Therefore the number of distinct
solutions of (12) and (13) together is Q(A, p) Q(n-t-A, p).
Since t> 1 is arbitrary, we get

0 0
(14) N(n,k) = £ = Q(A,k/2) Q(n-t-A,k/2) .
t=1 A=1

When k is odd an entirely similar procedure gives
) 0
{(15) N(n,k) = Z Z QA (k+1)/2) Q(n-t-A,(k-1)/2) .
t=1 A=t

We obtain now the generating function of N(n, k) .
Consider the convolution

[e e}
Clu,j) = Z Q(q,j) Qu-q,j) .
q=1

Its generating function is obtained by squaring fj(x) in (11):

(1-x)°

nu,

w g
(16) £(x) = = Cluj) x* =29
J u=1 i

1}

1

The inner sum in (14) is C(n-t,k/2) and

0
N(n,k) = Z C(n-t,k/2);
t=1

multiplying (16) by x/(1-x) and putting j =k/2 we get the
generating function of N(n,k) for k even:

® k i2
(17) = N(n,2k) x = A-x) T (1-x)
n=1 i=1

k(k+1)+1
X

To get the generating function of N(n,k) for k odd we
consider first the convolution
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(o]
D(u,k) = Z Qq,(k+1)/2) Qu-q, (k-1)/2) .
q=1

Its generating function is obtained b')gomultiplying f(k+1)/2 and

(x

P

u
fetyr2’ faernys2 (x) = uZ D(u, k) x =

2 (k-1)/2 :
X(k+1) /4 x(k+1)/2) 0 1)2.

/-
i=1

Since the inner sum in (15) is D(n-t, k), multiplying the
above formula by x/(1-x) we get the generating function of
N(n, k) for k odd:

2 K 41 k K1 i 2
(18) = N(m,2k-1) x = x| Jt-x)(1-x) T (1-x)" .

n=1 i=1

n

0

To obtain the generating function for Z N(n, k) we simply
k=1

add the generating functions in (17) and (18):

) 0 o0 k P2
(19) 2 [ T N@,K]x =x/(1-x T x /I (1-x) .
n=1 k=1 k=1 i=

5. Recalling (1) we get from (19) the generating function
of p

® ° Kl
(20) = pnxn:4x[1+2 4 x|/

n=1 k=1 i

@ - -
1

o

We develop now the connection between p and the unrestricted
n

partition function p(n) . The generating function of p(n) is
) ) -
F(x) =1+ Z pn)x = I (1-x) ;
n=1 i=1
236

https://doi.org/10.4153/CMB-1963-021-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1963-021-3

by a theorem of Euler, [1] p. 278,
®© 2 ©
K .
Fx) =1+ = x /1 (1-x)°.
k=1 i=1

Comparing this with (19) we have

M g

P_ X = 8x [F(x/4) - 1/2]/(4 - x)

and therefore

f-n n-1
(21) p = 4 [1+2 2= p{i)] .
n .
i=1
2n-3
(22) p(n) = 2 (4p ., -P)-

Formula (22) suggests a theoretical possibility of
calculating p(n) by a Monte-Carlo type of a method. We
imagine that our plane random walk is simulated on an
automatic computer and run off N times for n steps,

and also N times for n+ 1 steps. Let f and £ be
n n+1

the frequencies of the occurence of spirals in these two runs.
Then as N — o, we have

2n-3

2 (4 f - fn) - p(n)

n+1
with probability 1. However, the required number N of runs
for a close approximation is by far too large for any practical
application, even for only moderately large n.
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