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We study long surface and internal ring waves propagating in a stratified fluid over a
parallel shear current. The far-field modal and amplitude equations for the ring waves are
presented in dimensional form. We re-derive the modal equations from the formulation
for plane waves tangent to the ring wave, which opens a way to obtaining important
characteristics of the ring waves (group speed, wave action conservation law) and to
constructing more general ‘hybrid solutions’ consisting of a part of a ring wave and
two tangent plane waves. The modal equations constitute a new spectral problem,
and are analysed for a number of examples of surface ring waves in a homogeneous
fluid and internal ring waves in a stratified fluid. Detailed analysis is developed for
the case of a two-layered fluid with a linear shear current where we study their
wavefronts and two-dimensional modal structure. Comparisons are made between the
modal functions (i.e. eigenfunctions of the relevant spectral problems) for the surface
waves in homogeneous and two-layered fluids, as well as the interfacial waves described
exactly and in the rigid-lid approximation. We also analyse the wavefronts of surface and
interfacial waves for a large family of power-law upper-layer currents, which can be used
to model wind generated currents, river inflows and exchange flows in straits. Global and
local measures of the deformation of wavefronts are introduced and evaluated.
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1. Introduction

The Korteweg—de Vries (KdV) equation and its generalisations such as the Gardner,
Ostrovsky and Kadomtsev—Petviashvili (KP) equations are well known as good weakly
nonlinear models describing long surface and internal waves that are commonly observed
in the oceans, see, for example, Grimshaw et al. (1998), Helfrich & Melville (2006),
Grimshaw et al. (2010), Ablowitz & Baldwin (2012) and Grimshaw, Helfrich & Johnson
(2013). Solitary wave solutions of a more general extended KdV model, including
embedded solitons and their interactions with the regular solitons, have been recently
reviewed and studied by Khusnutdinova, Stepanyants & Tranter (2018) (see also the
references therein). These models apply to the waves with plane or nearly plane fronts.

Waves generated in straits, river—sea interaction areas and by tidal interaction with
localised topographic features often look like a part of a ring, e.g. Apel (2003), Nash
& Moum (2005), Vlasenko et al. (2009), Vlasenko et al. (2013) and Stashchuk &
Vlasenko (2009). Asymptotic theory describing long surface ring waves in a homogeneous
fluid has been developed from the Boussinesq equations and without a shear flow by
Miles (1978), and from the Euler equations, including the waves propagating over a
parallel depth-dependent shear flow by Johnson (1980, 1990). The generalisation for the
long surface and internal ring waves in a stratified fluid has been developed, without
a shear flow by Lipovskii (1985), Weidman & Velarde (1992) and with a shear flow
by Khusnutdinova & Zhang (2016a). The respective models capture the basic balance
between nonlinearity and dispersion, describing waves with cylindrical divergence in the
KdV regime. Alternative analytical and numerical approaches to such problems, and
important experimental work, have been developed, in particular, for surface waves, by
Rabaud & Moisy (2013), Darmon, Benzaquen & Raphaél (2014), Ellingsen (2014a,b),
Svirkunov & Kalashnik (2014), Arkhipov, Khabakhpashev & Zakharov (2015), Akselsen
& Ellingsen (2019), Li & Ellingsen (2019) and Smeltzer, Esoy & Ellingsen (2019), and
for internal waves, by Vlasenko et al. (2009), Stashchuk & Vlasenko (2009), Arkhipov,
Safarova & Khabakhpashev (2014), Grue (2015), Bulatov & Vladimirov (2015) and
Bulatov & Vladimirov (2020) (see also the references therein). General approaches to
the solution of initial-value problems with the help of cylindrical KdV-type models have
been discussed by Weidman & Zakhem (1988), Ramirez, Renouard & Stepanyants (2002),
McMilan & Sutherland (2010), Khusnutdinova & Zhang (20165) and Grimshaw (2019).

The generalisation developed by Khusnutdinova & Zhang (2016a) was based on
the existence of a suitable far-field linear modal decomposition, which had more
complicated structure than the known modal decomposition for the plane waves. The
developed linear formulation provided, in particular, a description of the distortion
of the shape of the wavefronts of surface and internal ring waves in a two-layered
fluid by the piecewise-constant current. The wavefronts of surface and interfacial
ring waves were described in terms of two branches of the envelope of the general
solution of the derived nonlinear first-order differential equation, constituting further
generalisation of the well-known Burns (Burns 1953) and generalised Burns (Johnson
1990) conditions. The two branches of this solution have been described in parametric
form. An explicit analytical solution was developed for the wavefront of the interfacial
mode in the rigid-lid approximation for a sufficiently weak current, when a part of the
ring wave can propagate in the upstream direction (elliptic regime), while solutions for
stronger currents were developed in Khusnutdinova (2020) (parabolic and hyperbolic
regimes).

The constructed solutions have revealed the qualitatively different behaviour of the
wavefronts of surface and interfacial waves propagating over the same piecewise-constant
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current. Indeed, while the wavefront of the surface ring wave was elongated in the direction
of the flow, the wavefront of the interfacial wave was strongly squeezed in this direction.
This phenomenon was linked to the presence of long-wave instability of plane waves
tangent to the ring wave and propagating in the downstream and upstream directions for a
sufficiently strong current (see Ovsyannikov 1979; Boonkasame & Milewski 2011; Barros
& Choi 2014; Lannes & Ming 2015; Khusnutdinova & Zhang 2016a; Khusnutdinova
2020).

The aims of the present paper are twofold. Firstly, we briefly present the dimensional
form of the modal and amplitude equations for the ring waves in a fluid with arbitrary
stratification and depth-dependent parallel shear flow. The equations are derived from the
Euler equations written in the cylindrical coordinate system (§ 2). We do that in order to
facilitate their use in oceanographic and laboratory studies, similarly to the widely used
formulation for the plane waves, and to provide the necessary equations for the derivation
of the cylindrical Benjamin—-Ono and intermediate-depth type models, which can be
obtained using the same modal decomposition. Next, we re-derive the modal equations
from the formulation for plane waves tangent to a ring wave (§ 3), working within the
framework of the local wave vector and local wave frequency. Thus, we establish a useful
link between the descriptions of obliquely propagating plane waves tangent to a ring wave,
and the ring wave, which allows us to obtain useful characteristics of the ring waves and to
outline a construction of more general hybrid solutions formed by a part of a ring wave and
two tangent plane waves. Similarly looking hybrid solutions can be seen, for example, on
satellite images of internal waves. Secondly, we aim to analyse the modal equations — a new
spectral problem which is at the heart of the theory. We consider several configurations
motivated by the modelling of geophysical fluid flows, and introduce new global and
local quantitative tools for the description of the deformations of the wavefronts of ring
waves propagating over various shear currents. The detailed analytical study is developed
for the geometry of the wavefronts and vertical structure of the three-dimensional ring
waves in a two-layered fluid with a linear shear current (§4). We compare the exact
solutions for surface and interfacial modes with the results obtained in the approximations
of the homogeneous fluid for the surface mode, and in the rigid-lid approximation for
the interfacial mode. We also discuss surface and interfacial modes for a large family of
power-law upper-layer currents, in which case solutions have been constructed in terms of
the hypergeometric function (§ 5). Significant squeezing of the wavefronts of interfacial
ring waves, similar to that described for a piecewise-constant current, can take place for
some currents in the family. Such currents are close to river inflows and exchange flows
in straits, while for wind-generated-type currents the wavefronts appear to be elongated in
the direction of the current. We conclude in § 6.

2. Dimensional modal and amplitude equations for ring waves

The derivation of the modal and amplitude equations described in this section briefly
overviews that given in Khusnutdinova & Zhang (2016a) but it is developed in dimensional
form. Also, we reformulate the boundary conditions assuming that the bottomis at z = —#,
where £ is the undisturbed fluid depth, and the undisturbed surface is at z = 0, which is
customary in oceanographic applications. These modifications aim to make the theory
directly applicable in oceanographic contexts.

We consider a ring wave propagating in an inviscid incompressible fluid, described by
the full set of Euler equations with the free surface and rigid bottom boundary conditions.
Assuming that the waves are long we neglect surface tension. We assume that u, v, w are
the velocity components in the x, y, z directions respectively, p is the pressure, p is the
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density of the fluid, g is the acceleration due to gravity, z = n(x, y, t) is the height of the
free surface (with z = 0 at the unperturbed surface and z = —# at the flat bottom) and p,
is the atmospheric pressure at the surface. The vertical particle displacement ¢ is used as
an additional independent variable, which is defined by the equation

G+ ul + 8y + Wi = w, (2.1)
and the surface boundary condition
{=n atz=n(xy1). 2.2)
The fluid is in the following basic state:
uyp = uo(z), vo=wp=0, po;=—pog ¢=0. (2.3a—d)

Here, up(z) is a horizontal shear flow in the x-direction and py = po(z) is a stable
background density stratification.

We introduce the cylindrical coordinate system moving at a constant speed ¢, and use
the same notations for the projections of the velocity field on the new coordinate axes

x—ct+rcosf, y—rsinf, z—>z, t—>1, (2.4a—d)
u— ug(z) +ucosf —vsinf, v — usind + vcoso, (2.5a,b)
w—w, p—>p, p— po+p. (2.6a—c)

Then, the equations and boundary conditions take the form

2
v v
(po + p) [u, + uu, + 7”9 + wu, — - + ((up — c)uy + ug;w) cos 6

sin @

—(up — c)(ug —v) ] +pr=0, 2.7)

v uv
(po + p) [vt + uv, + ;U@ + wu, + " + (g — ¢)v, cos O
V u .
— ((uo — 0 (79 + ;) + uozw> sm9] + l? —0, (2.8)

v sin 6
(po + p) |:Wt + uw, + ;we +ww; + (up — ¢) (Wr0089 —we7>] +p.+gp =0,

2.9)
v sin @
pr + upr + P +wp; + (uo —¢) | prcost — Po—— + po;w =0, (2.10)
u vy
ur+—-+—+w, =0, (2.11)
r r
v sin 6
w=n; + un, + ~7e + (up — ) (mcos@ — e ) atz =, (2.12)
n
D 2/ gpo(s)ds atz=n, (2.13)
—h
w=0 atz=—h, (2.14)
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with the vertical particle displacement satisfying the following equation and boundary
condition:

v sin 6
&+ ulr + ;{9 + wi; + (o — ©) ({r cost — C@T) =Ww, (2.15)

f=n atz=n. (2.16)

The derivation by Khusnutdinova & Zhang (2016a) was based on the observation
that the linearised equations in the far field (r ~ O(¢™1)), where ¢ is a small amplitude
parameter) admit the modal decomposition (separation of variables) of the form

=A,R,0)p(z,0), (2.17)
mk
u; = —A¢ug;cos — 1 g Aoy, (2.18)
m'F
A¢l/l()z sinf — mA¢Z, (219)
wi = A¢Fo, (2.20)
__ o o)
pP1 = WAF ¢z (2.21)
p1 = —poA, (2.22)
nm=A¢ atz=0, (2.23)

where & = m(0)r — st, R = erm(0) and s was defined to be the wave speed in the absence
of any shear flow (with m = 1). The function ¢ = ¢(z; #) is non-dimensional, and it
satisfies the following modal equations:

2

( s ¢z> + poN*p =0, (2.24)
Ve
ﬁvZ
b —gh =0 atz=0, (2.25)
¢ =0 atz=—h, (2.26)
where
F=F0)=—s+ (uy— c)(mcosd —m'sing), N> = —EP% (2.27a,b)
£0

with m = m(0) and m’ = dm/df. We fixed the speed of the moving coordinate frame c to
be equal to the speed of the shear flow at the bottom of the fluid.

We will refer to the non-dimensional function m(0) as the speed modifying function (or
simply as the modifying function) for the speed of the ring wave in a particular direction
compared with the speed s in the absence of the shear flow, and we shall refer to the
corresponding differential equation for this function as the angular adjustment equation
(or simply as the angular equation). Indeed, the modified speed of a linear long wave
propagating at an angle 6 to the current is s/m(6), and the angular equation can be regarded
as the two-dimensional long-wave dispersion relation.

The derivation of the nonlinear amplitude equation was then developed using an
asymptotic multiple-scale expansion around this leading-order far-field solution. It was
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U2 = y((z+h)h)

p

T

Figure 1. Homogeneous fluid with a linear shear current.

based on the existence of two small parameters; the amplitude parameter € = a/h and
the wavelength parameter § = h/A, where a and A are the characteristic amplitude and
wavelength. The ‘maximal balance’ condition used to derive the nonlinear amplitude
equation is 8> = €. The dimensional form of the equation for the amplitude function
A(&, R, n) is given in Appendix A.

To leading order, the shape of a wavefront in the far field at a distance » from the origin
at a fixed moment of time is given by the equation m(6)r — st = const, and we require
that m(6) > 0 considering an outward propagating ring wave. Both s and m(0) are to be
determined from the solution of the modal equations. The vertical structure of the wave
field is also defined by the modal equations. Moreover, the coefficients of the amplitude
equation depend on the solution of the modal equations (see Appendix A). Thus, the
system of modal equations (2.24)—(2.26) constitutes an important new spectral problem.
Solutions for various configurations of the basic stratification and shear flow need to be
found in order to make progress in the study of the long three-dimensional ring waves and
their generalisations (see § 3). Therefore, our present paper is devoted to the analysis of
the modal equations.

To illustrate, let us first re-consider an example of surface ring waves in a homogeneous
fluid with a shear flow (Johnson 1990, 1997) from the viewpoint of the generalised
formulation (2.24)—(2.26), and in dimensional form. In particular, let us choose the linear
shear flow shown in figure 1. We take the density of the fluid, pg, to be a constant, whilst the
shear flow is given by ug(z) = y ((z + h)/h), where y is a positive constant characterising
the surface strength of the current.

We will use this example in order to formulate a rather general sufficient condition
ensuring the absence of critical layers, and to introduce quantitative measures for the
description of the deformation of the wavefront of a ring wave on a shear current. We will
also examine the two-dimensional vertical structure of the ring waves described by the
modal functions. This analysis is new since the formalism developed in Johnson (1990,
1997) was not based on the ideas of modal decomposition.

On solving (2.24) subject to (2.26) we find

A 2 ”2 | A 2 2 h
¢=M/ dr = (n” +m7)+h) , (2.28)
P —n F? z+h /s
pS s—yT(mcose—m sin @)
927 A37-6
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(b) 5000
y(m) o
, ‘ —5000 ?
0 b 2n —5000 0 5000
0 x (m)

Figure 2. (a) The general solution (2.32) for a = 0, 0.2, 0.4, 0.6 (blue, thin) with its envelope (2.33) (red,
thick) for y = 5ms~!. (b) Wavefronts of surface ring waves. The black (solid) curve is for y = Oms~!, the
red (dash) curve for y =2m s~ and the blue (dot) curve for y=5m s~1. Here, g=98m s72,h = 10m and
rm(6) = 5000 m.

where A is a parameter which may depend on 6. Then, to satisfy the condition (2.25), we
find that the speed modifying function m must satisfy the differential equation

m? +m'® = ih[s — y(mcos — m' sin6)]. (2.29)
g

Assuming the absence of a shear flow by setting y = 0 and m = 1, we have from (2.29)
that

s* = gh, (2.30)
thus (2.29) becomes

m2 +m? =1—L(ncosd —m'sin6). 2.31)
S

This coincides with the generalised Burns condition for this linear shear flow (Johnson
1990, 1997) but is given in dimensional form. It is a nonlinear first-order differential
equation which has a general solution of the form

m(@) =acos6 + b(a)sinf, where b(a) ==+,/1— Za — a2, (2.32)
s

It was shown that the solution that describes a ring wave is in fact the envelope of the
general solution (so-called singular solution of (2.31)) (Johnson 1990, 1997). This solution
is found by requiring that dm/da = 0, which implies b'(a) = —(1/tan ) and allows us to
find the singular solution in the form

2

cosf+ |14+ 2= (2.33)

14

2./gh 4gh’
The upper sign should be chosen for the outward propagating ring wave, so that m > 0
for all values of 6. From this we can recover that, in the absence of a shear flow, with
y =0 ms~!, m(@) =1, a condition that we stated for concentric waves. The general
solution (2.32) and its singular solution (2.33) are shown in figure 2(a). The wavefronts
fory =0ms™!, y =2ms™! and y = 5ms~! are shown in figure 2(b). Naturally, for
y =0 ms~—!, in the absence of a shear flow, the wavefront takes the form of a circle.
Increasing the value of y elongates the wavefronts of surface waves in the direction of the
current.

m() = —

927 A37-7
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A critical layer occurs when F(z,0) = 0. Consider Fy = —(ug — ¢)(m + m") sin 6. Let
us assume that uy — ¢ > 0, i.e. there are no current reversals, which is the case in the
example above and in all subsequent examples. We shall consider a singular solution
satisfying m +m” > 0, i.e. an outward propagating wave. Indeed, such a wave in the
absence of any current is described by m = 1, therefore m +m” > 0 for a sufficiently
weak current, by continuity. Then, I:"g <0 if 8 € (0, ™) and I:”@ >0 if 0 € (m,2n).
Therefore, £ will reach a maximum at & = 0. Thus, to avoid critical layers we require

F < Flog—g = —s+ (up — c)m(0) < 0, (2.34)
implying (1o — ¢)m(0) < s. Here, s/m(0) > s is the downstream wave speed, implying
up—c<s < ﬁ. (2.35)

Thus, the inequality uyp — ¢ < s is a simple, and rather general, sufficient condition for
the absence of critical layers, generalising the condition formulated by Khusnutdinova &
Zhang (2016a) for a piecewise-constant current. The inequality uy — ¢ < s/m(0) is less
restrictive, and this is the necessary and sufficient condition. It requires the knowledge
of m(0). Both conditions are applicable to all examples in this paper, and there are no
critical levels. In particular, for the present example, ug = y ((z 4+ h)/h), and we obtain the
sufficient condition

y < gh. (2.36)

The necessary and sufficient condition reads

y < vgh . (2.37)

Next, we shall introduce a measure of the deformation of the wavefront. This can be
done globally, for the whole ring wave, considering the distance between the points on the
wavefront in the downstream and upstream directions, i.e.

St st

=0 T (2.38)

and comparing this distance to a similar distance in the absence of the shear flow, Dy = 2st.
It is natural to consider the ratio

By 1L, 2.39)
5o =3 () .

Here, m(0) is given by (2.33). The plot of this global measure as a function of the strength
of the current is shown in figure 3(a). It might be also helpful to show the plots of the ratios
of the speeds of the wavefront at & = 0 and 6 = 7 (downstream and upstream directions)
to the speed s in the absence of any current. This can be seen in figure 3(b), where the
upstream speed has been shifted upwards by 2 units, for a better comparison with the
downstream speed. Both plots give a clear indication of a significant elongation of the
wavefront in the direction of the current.

However, in many satellite images the oceanic internal waves propagate as a part of a
ring and not the whole ring (see, for example, figure 1 in Khusnutdinova & Zhang (2016a)
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L
=

Distance/2st

y(ms™T) y(ms™)

Figure 3. (a) Relative distance between the points on the wavefronts of surface ring waves in downstream and
upstream directions as a function of y. (b) Relative speed of the wavefronts of surface ring waves in downstream
and upstream directions as a function of y. The blue (solid) curve is for & = 0 (downstream) and the red (dash)
curve for § = 7 (upstream). Here, g = 9.8 ms~2 and & = 10 m. (The upstream speed has been shifted upwards
by 2 units.).

or figure 13 in Apel 2003). Therefore, it is desirable to introduce a local measure of the
deformation of the wavefront. This can be done by introducing the geometric curvature of
the wavefront, which in polar coordinates is given by (e.g. Da Cormo 2017)

2 4+ 2r% — |
S S o where r = r(0). (2.40)
Applying this formula to r(0) = st/m(0) we obtain

i
k, = —mtm] (2.41)

N 2732
m
st 1+<—)
m

In the absence of any current, m(0) = 1 and ko(0) = (st)~ 1. Taking the ratio,

ky, |m + m”|
o = RESEk (2.42)
m
1+ (%)
m
which in the present example gives
2
7
ky (0) 452 y? sin” 0
%0 @) = G2 where G = 1 + 12 5 (2.43)
1+ Y2  ycos6
452 2s

The plot of this local measure as a function of the strength of the current is shown for
0 =0, /2 and 7 in figure 4. We can see that the curvature is growing in the upstream
and downstream directions, while it is decreasing in a transverse direction, giving a clear
indication (and quantitative measure) of the elongation of the wavefront compared with
the concentric wavefront in the absence of the current.

927 A37-9
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Figure 4. Relative curvature of the wavefronts of surface ring waves in different directions as a function y.
The blue (solid) curve is for & = 0, the black (dash-dot) curve for 6 = /2 and the red (dash) curve for 6 = m.
Here, g = 9.8ms~ 2 and 7 = 10m.

(a) (b)
0 : : : — 0
....... P i
z (m) -5¢ - 1 =57 =7
,.w“,‘: = z "’"' g
ZF 7
-10 : : : : —10 == : : :
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
¢ (2) ¢ (2)
()
0
z(m) -5¢
-10 : : : :
0 0.2 0.4 0.6 0.8 1.0

6@

Figure 5. Plots of the modal function (2.28) for y = Oms~! (black, solid), y =2m s~! (red, dash) and y =
5ms~! (blue, dot). Here, g=98 ms~2and 2 = 10m. (a) 6 = 0 (downstream); (b) 6 = 7 (upstream) and (c¢)
6 = 7 /2 (orthogonal).

Note that, in accordance with the Gauss—Bonnet theorem for closed convex curves (e.g.
Da Cormo 2017), the curvature (a time-dependent function) satisfies the relation

?f k, ds = 2, (2.44)

which yields the total curvature conservation law in the following general form:

27 27 Vi

|m + m"”|
kyds= | k@)W /2d9=f T 14 = 2m. 2.45
f Y ) /(; }/() r +r 0 m2+m/2 T ( )

This conservation law can be used, for example, to control the accuracy of computer
assisted plots of the wavefronts of ring waves, which becomes essential in some
complicated cases (in particular, we used it for the flows considered in § 5, having fixed an
error in Khusnutdinova 2020).
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It is also instructive to examine the two-dimensional structure of the modal function
(2.28). Before we can do this, the parameter A must be determined. We normalise ¢ by
setting ¢ = 1 at z = 0. This gives

A = pg, (2.46)

which is independent of 6. Thus,

2 2
gm” +m=)(z+ h) ’ (2.47)

¢=
h
s [s - yz%(mcosé — m/sin0)1|

and the modal function is shown in figure 5 for 8 = 0, =, /2, i.e. in the downstream,
upstream and orthogonal directions, respectively. The current has the effect of a similar
magnitude in the downstream and upstream directions, while the effect in the orthogonal
direction to the current is expectedly weak. We conclude that the vertical structure of the
wave field is shifted towards the surface in the downstream direction, and towards the
ocean bottom in the upstream direction.

3. Derivation of modal equations from the formulation for plane waves

The aim of this section is to arrive at the modal equations (2.24)—(2.26) starting from the
equations for the plane waves. This allows us to clarify the roles of the general solution
of the angular adjustment equation and its envelope, provides a natural way of describing
important properties of the ring waves (e.g. their group speed) and allows us to outline an
analytical approach to constructing more general hybrid wavefronts consisting of an arc of
a ring wave and two tangent plane waves.

Since the terms of interest are linear and in the long-wave regime, it is sufficient to
consider only the linear long-wave equations. Relative to a background shear flow ug(z)
and a background density field pg(z), the equations are in the same domain —/ < z < 0,
and in standard notation,

po(ur + uoty + up;w) + px = 0, (3.1
po(v; + ugvy) +py =0, (3.2)
p:+8p =0, (3.3)

pr + uppx +wpo; = 0, (3.4

Uy + vy +w; =0, 3.5

S+ uply —w = 0. (3.6)

The boundary conditions are

p—8po¢ =0 atz=0, (3.7)
w=0 atz=—h. (3.8)

Since the only inhomogeneity is the z-dependence in ug, pp, it is convenient to look
at the linear long-wave theory in Fourier space, for a disturbance proportional to
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exp (ikx + ily — ikct), i.e.
(u, v, w,p, p,¢) = (@t, 0, W, p, p, {) exp(ikx + ly — k1)) + c.c. (3.9)

Then (3.1)-(3.6) become, after eliminating w, p,

pol—ik(¢ — uo) (it + uo:t)] + ikp = 0, (3.10)
pol—ik(@ — up)v] +ilp = 0, (3.11)

ikit 4 10 — ik[(& — ug)Z], = 0, (3.12)
poN*C + p. = 0. (3.13)

Next, we use (3.11), (3.12) to eliminate u, v and so obtain in place of (3.10), (3.11),

2
pol—ik (@ — u0)2L.] + (1 + Ii2> =0. (3.14)

Together with (3.13) these equations form two equations for E p. The final step is to
eliminate p between (3.13) and (3.14) to obtain

lZ
[00(E — u0)*Z;1: + poN? (1 + ) ¢=0. (3.15)
The boundary conditions (3.7), (3.8) are similarly reduced to
- 2\ -
@ —up)’z; = (1 + k_2> gt atz=0, (3.16)

Next, we can write £ = A(k, )¢ (z) and so
l2
[0(@ — )21z + poN? (1 + k2> ¢ =0, (3.18)

subject to the boundary conditions

12
(5—u0)2¢Z:g(1+k—2)¢ atz=0, and ¢ =0 atz=—h. (3.19)

The speed ¢ and the modal function now retain a dependence on k, [, which is removed
in the one-dimensional case when [/ = 0. The KP equation follows when /* < k% and
again this reduces to the usual modal equation where, at leading order, ¢ is a constant.
In the general case when there is a shear flow u((z) # const, the dispersion relation is not
isotropic.

It is useful to note that the integral identity readily obtained from the modal equation in
the case of continuous stratification,

0
D@ = [ p0[P@ —u079? — NE + P19%]dz = Lpoogh + P71 = O
—h
(3.20)

can be regarded as the dispersion relation, recalling that w = k¢ and k(¢ — ug) = w — kuyg.
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More generally, k, / may be defined as local wavenumbers depending on x, y, in the spirit
of Whitham (1999), and then the wavefronts become the curves

S(x,y,t) =const, wherek=3S,, [=S5), w=-5. (3.21)
They can be determined by solving the equations
kk+wy,=0, L +w,=0, k=1, wherew=uw(k,l. (3.22a—c)

Here, the third equation is only required at t = 0 since the first two equations imply that
(ky — 1) = 0. Next, in order to change to a reference frame moving with a known speed
¢, we need to use a Galilean transformation which in effect replaces uy with uy — c.

Let us now use the above to recover the modal equations for the ring waves described in
the previous section. In polar coordinates, the wavefronts are described by

S =3S8(r0,1) = const, (3.23)
where x = rcosf, y = rsin6. Then, we define
S
p=S, &= (3.24a,b)
r
where
Vi+w =0, ro;+wpg=0, py=(0),. (3.25a—c)

The local wave vector k = (k, [) in Cartesian coordinates becomes the local wave vector in

polar coordinates, k = p7 + &6 where 7 = (cos 0, sin ) and 0 = (—sin@, cos 0) are unit
vectors in the radial and polar angle directions, respectively. Hence

k=7ycosf —aosinf, [=7ysinh + o cosh. (3.26a,b)

We can define y =k cos B, & =k sinB so that k = k cosa, [ = k sina, and k = |k| =
(P24 62)1/2 is the wave vector magnitude. Here, « = 0 + B, where B is the angle
between the vectors k and 7. Then, the modal equations (3.18), (3.19) become

[pok* (€ — up) ;1. + poN*k*¢p = 0, (3.27)

K@ —up)’p. = gk’¢p atz=0, and ¢ =0 atz= —h. (3.28)

Here, «, k can be expressed in terms of 7, 6; 0, and the dispersion relation generally, for a
piecewise-continuous stratification, can be expressed in the form

w(y,6:0) = ké(k, k). (3.29)
In the case of continuous stratification, the dispersion relation can be expressed in the
form,

(P, 6:0) = ki(sec? ), seca = % (3.30a,b)

or in the integral form
0
D(w,7.6;0) = f polk* (@ — uo)*¢2 — N**¢*1dz — [pog*$*1e=0 = 0,
—h (3.31)
k(@@ —up) = w — kug = w — (P cos — 6 sin@ug, «>=7p>+6°2.
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For instance, if we choose to write, as in the previous section,
S = mr — st, (3.32)
where m = m(0) and s is a constant speed in the absence of the shear flow, then
p=m &6=m and w=s. (3.33a—c)
The wavefronts of the ring waves are given by mr — st = const , with

kK2=m>+m? k=mcosO —m'sinh, [=msin6+ m coso. (3.34a—c)

The modal equations (3.27), (3.28) take the form

(P0F22); + poN*(m* +m'*)¢p = 0, (3.35)
F¢.=gm*+m?¢ atz=0, and ¢=0 atz=—h, (3.36)

where
F = —k(@@ — up) = —s + ug(mcos 6 — m' sin0), (3.37)

which in the reference frame moving with the speed ¢ becomes
F = —k(€—up) = —s + (g — ¢)(mcos® — m' sin ). (3.38)

These equations are equivalent to the modal equations (2.24)—(2.26) from the previous
section. It is important to note that here the modal equations are defined locally, and
the relevant solutions of the corresponding angular equation associated with the modal
equations are members of the general solution, which clarifies their role as solutions
describing the plane waves tangent to the ring wave. The existence of the far-field modal
decomposition for the ring waves is a global result. The relevant solution is the singular
solution of the same angular equation.

In the case of continuous stratification, the dispersion relation (3.29) with «, k given by
(3.34a—c) takes the form

s = (mcost — m' sin0)e[(m* + m'®)/(mcosf — m' sin)?], (3.39)

and may be written in the integral form (3.31) as

0
D(s, m, m'; 0) = f polF2¢? — N*(m® + m'®)p?1dz — [pog(m* + m'*)$p*].—o = 0.
- (3.40)

In general, the angular equation (3.39) forms a rather complicated ordinary differential
equation for m(6) since F=F (z; 0). We will analyse its solutions for the cases of a
two-layered fluid with the linear current and a power-law upper-layer current in the next
sections.

Here, we consider another simple example. Suppose that N = const. Then, for
up(z) = 0, and in the Boussinesq and rigid-lid approximations, the solution of the modal
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equations is given by

. nmz
¢=As1nT, wheren =1,2,3, ..., (3.41)
where
m (nJTS)2 (3.42)
m> . .
Nh

The parameter A can be used to normalise the modal function to be equal to one at some
level of interest. Here, since there is no shear flow, m = 1, and then (3.42) implies that

Nh
s=—, wheren=1,2,3,..., (3.43)
n

describing the speeds of the concentric ring waves. It is instructive also to consider the
general solution of (3.42), which is given by

m=acosf + b(a)sinf, where A+ b= (nN_J-;;>2 , (3.44)
as these solutions describe plane waves propagating at an arbitrary angle
S =mr — st =[acosO + b(a) sinO]r — st = ax + by — st, (3.45)
where
2 = Z:\/az—l—bz a=k, b=1, and k= (k). (3.46)

Looking for a singular solution, we re-parametrise the general solution as
nis nis nms |
m= "2 cos(@ — 0), (a = 050, b=""2sin @) , (3.47a,b)
Nh Nh Nh

and then find the envelope of this general solution, by requiring that dm/d® = 0, which
immediately yields m = 1. The case when uo(z) = Uy = const can be reduced to the
previous case by a Galilean transformation, and therefore again describes concentric ring
waves in a reference frame moving with the speed ¢ = Up.

Next, it is useful to obtain the group velocity and the wave action conservation law
related to the ring waves. This can be done working with the local wave numbers given by
the formulae (3.34a—c). The wave action conservation law is expressed by

A+ V- (A =0, (3.48)

where the group velocity ¢ = (wy, @) and A is the wave action density (e.g. Whitham
1999), given in the long-wave limit by

0
A= / po(€ — up)|AI*$? dz. (3.49)
—h

In the case of continuous stratification, since w = w(k, ) = k¢ = k¢[(k2 + 12) /kz], we
have

. 3 2 _ 21 . 2
cg=\c— gk—z,%; §=l+p. (3.50)
The integral form (3.20) can be used to obtain
Dycg+ Vi - D =0. (3.51)

As an example, we shall consider the outward propagating surface ring waves over a
linear current shown in figure 1. The angular adjustment equation is given by (2.29) and
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can be rewritten in the form
2

s S Vs
K®=— — —k, 3.52
o gh (3.52)
leading, on choosing a positive root of the quadratic equation for s, to the formula

k 2
w:k&:s:,/gh(ozk2+12)+%, _1+ﬂ (3.53)

Then, we can define the phase velocity of the plane waves tangent to the ring waves as
. 1)
¢p = —k, (3.54)
K
where the local wave vector is given in Cartesian coordinates by

k= (k1) = (mcos® —m’sin6, msin® + m’ cos )

= <—2— + o cos 6, o sin 9) (3.55)

and in polar coordinates by

cosf

Y Y
2./gh " 2./gh

k=(@,0)=mm) = (a — sin 9) . (3.56)

The length of the local wave vector is

2
k=VR+2=p2+62=Vm+m?=1+2 — Y 5cos6. (3.57)
28 \/gh
Note that the projection of the local wave vector k on the radial direction (i.e. the radial
wave number) is ¥ = k cos 8 = m(0). This gives us the link between the vector phase
velocity of the local plane wave tangent to the ring wave and the scalar velocity of the ring
wave in a radial direction. Indeed, since the wavefront of the ring wave is described by
m(@)r — st = 0, the speed in the radial direction corresponding to the angle 6 is given by
s/m(09).
Next, we calculate the group velocity of the local plane wave tangent to the ring wave to
be, in Cartesian coordinates,

2
&y = (dw d—“’) — (V L YhoTk - Vel ) (3.58)

dk’dl 2 SRR o B
and in polar coordinates,

. do dw dw dw dw dw
Cg=\—=,—=x)=|--cos0 +—sinf, ———sinf + — cos
dy do dk d/ dk d/

2
y gh ( + nkcos@) y gh (8 — y—hksiné)
= | =cosf +
2 o2k + 2 2 ok + 2

(3.59)

where k and / are given by (3.26a,b). The dependence of the radial and tangential
components of the group velocity of the ring wave on € is shown in figure 6 for y = 0,
y=2andy =5ms~!
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Figure 6. The (a) radial component and (b) tangential component of the group velocity as functions of 6

for y = 0ms~! (black, solid), y = 2ms~! (red, dash) and y = 5ms~! (blue, dot). Here, g = 9.8ms 2 and
h=10m.

If there is no current, i.e. y = 0, we have

k 1 k
Cg = Vgh (;, E) = /gh(cosa, sina) = @; (3.60)

The local group velocity of the ring wave is then simply /g, it is the same in all radial
directions and coincides with the local phase speed.

If y #0, it is useful to introduce a unit vector in the direction of the local wave vector,
k= (k, I)/x and a unit vector normal to lAc, KT = (=1, k)/k. Then, (3.58) can be expressed

as
kK Jeh(c2k2+12)\ » ! 2kl .
Z- — J/_ + g(a——l—) k — )/_ + Y kT
2k K 2 die\/gh(o2k? + I2)

. 2k .
LY S A 4 T (3.61)
kK Kk \2  4./gh(c?k? +2)

Thus, in general, the group velocity associated with a ring wave is not parallel to the local
wave vector and therefore the group velocity is not aligned with the phase velocity when
there is a shear flow. The phase and group velocity vectors ¢, and ¢, are shown for several
values of 6 in figure 7 for y =0 and y = 5ms~'. We note that the length of the group
velocity vector, |Cg, is equal to s/m(6*), where tan 6* = dw/dk/dw/dl, giving us the link
between the group velocity vector and the scalar velocity of the ring wave in a radial
direction.

We will finish this section by outlining the construction of more general hybrid solutions
which are formed by a part of an outward propagating ring wave and two tangent plane
waves shown in figure 8. Similarly looking wavefronts are often present in satellite images
of internal waves, see, for example, figure 13 in Apel (2003). They were considered for
surface waves in the absence of a current by Ostrovsky & Shrira (1976). Other related
hybrid solutions have been discussed by Chakravarty & Kodama (2014), Khusnutdinova
et al. (2013), Ostrovsky & Stepanyants (2020) and Ryskamp, Hoefer & Biondini (2021)
(see also the references therein).

Here, we will consider only a simple case of surface waves on the current uy =
y((z+ h)/h), but similar solutions can be constructed for all examples of surface and
internal waves discussed in our paper. We are concerned only with the kinematics of
such hybrid solutions, addressing the issue of finding the analytical description of the
wavefronts shown in figure 8.

For this current, the angular adjustment equation has the form (2.31). Let us consider
the full set of solutions (i.e. the set includes both the general and singular solutions) and
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Figure 7. The phase velocity vector (red, dash) and group velocity vector (blue, solid) for several values of 6
for (@) y =0m s~ and (b) y=5m s~!. The corresponding wavefront (black, solid) rm(6) = st is shown for
t = 1s. Here, g = 9.8ms2and h = 10m.

(@) ®)
I 8000 fy (m) o
_ /_ -------- ,/',
FY 10000 - -~ " x (m) i 0 ,-710000 x (m)

—8000 —80004

Figure 8. Wavefronts of hybrid solutions for (a) 6p = 0 (symmetric wavefront) and (b) 6y # 0 (asymmetric
wavefront). Here, « = 0.5 and y = 5m s~1. The blue (dash) lines represent the tangent lines, the black (dot)
curve is the ring wave and the red (solid) curve is the wavefront of a hybrid solution. Here, g = 9.8 ms~2,
h = 10m and rm(#) = 5000 m.

let m = mq + m, where my is the singular solution of (2.31). Let m(6p) = —«, witha > 0.
Substituting this into (2.31) we obtain

? =o%— (o +m)?, (3.62)
m(0y) = —a. (3.63)

This problem has two solutions

0 —6
= —20 sin? [ —22 + arcsin al , (3.64)
2 20

yielding the explicit formulae for two particular members of the general solution

m = dacosf + bsiné, (3.65)
where
a= _r + o cos | 2 arcsin /i +6p ), (3.66)
2s 20
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Py

Uy(2) = y((z + h)/h)
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h'@/y////////////'x

Figure 9. Two-layer model with a linear shear current.

b = %o sin (2 arcsin 21 + 90) . (3.67)
V 20

The physical nature of the two new solutions is clear if we recall that A = A(mr — st),
and therefore, using (3.65) for m(6), we obtain

A=A(kx+ly —st), where k = (k,[) = (@, b). (3.68)

The two plane waves are a part of the general solution of (2.31). They are tangent to the
ring wave at the points defined by the polar angles

0 = 6y & 2arcsin .| — (3.69)
20

and intersect at the point C as shown in figure 8. If the wavefront of the ring wave is given
by r = st/mo(6), where mq(6) is the singular solution of (2.31), then the distance from the
origin to the intersection point of the two tangent lines is given by

st

|OC| = (3.70)

mo(0p) — o
This description completely defines the tangent lines in terms of convenient parameters
6o and |OC|, which can be extracted from observational data. Such a hybrid wavefront
may propagate in a coordinated manner, with matched speeds and slopes at the junctions.
Stability of outward propagating localised hybrid waves in the absence of a current
was discussed by Ostrovsky & Shrira (1976). Similarly looking internal waves, stably
propagating outwards, have been observed by Stashchuk & Vlasenko (2009) in the
numerical modelling of the satellite observations of the waves generated by a river plume,
reported by Nash & Moum (2005).

4. Two-layer fluid with a linear shear current
4.1. Problem formulation and modal equations

We now consider a two-layered fluid with the free surface and the shear flow given
by uo(z) = y((z + h)/h) for some positive constant y, as shown in figure 9. This is a
generalisation of the example considered in the previous section.
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The modal equations are given by

poF?
m¢z —8pozp =0, 4.1)
Z
ipZ
m¢z — g¢ =0 atz=0, (42)
6=0 atz=—h, (4.3)

where pg = poH(z+ h) + (p1 — p2)H(z + d) and H(z) is the Heaviside function. We
choose c to be equal to the speed of the shear flow at the bottom which gives ¢ = ug(—h) =
0, thus

A z+h ;.
F =F(z; 6):—s+yT(mcose—m sinf). “4.4)

When the value of 6 is not specified, we shall write F (z; 0) as simply F (z) where —h <
z < 0, for brevity. On solving (4.1)—(4.3) we find that

A 2 2
¢1=—1[1+M] —d <z<0, (4.5)
018 FO)F(2)
and
A 2 2 h
gy = M2 AmOGEEn (4.6)

p2F(—h)F(2)

where A1 2 are parameters dependent on 6. Requiring the continuity of ¢ at the interface
between the two layers (z = —d), we obtain

r LIk N 2 2
Ay — P2 F[—h][F(0)F(—d) — gd(m” +m )]A1-

- 4.7)
p18FI01(h — d)(m? + m'?)

Thus, the solution to the modal equations in the two layers is given, in dimensional form,
by

2 ”2
¢12A[1+M] d<z<0, (4.8)
F(O)F(z)
A & . 2 2
br— A | FOFCd) —gd? +m?) | 2h 4.9)
FO)F(2) h—d

where A = Aj/p1g.
Integrating (4.1) across the interface from z = —d — € to z = —d + € and considering
the limit ¢ — 0, we obtain the jump condition

F2(—d)

w2 = S, (4.10)

[009:]

which provides the angular adjustment equation for the ring waves, i.e. an equation
defining both the speed in the absence of the current, and the speed modifying function
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m(#) for the ring wave at all angles to the direction of the current, when the current is
present

(p2 — p1)gd(h — d)(m* + m*)? — prgF (—d)[F(—h)d + F(0)(h — d)](m* + m'?)
+ paF(—h)F(0)F?(—d) = 0. 4.11)

To find the wave speed s in the absence of a shear flow we set y =0 and m = 1. The
dispersion relation takes the form of a bi-quadratic equation in s,

pas* — paghs® + (02 — p1)g*d(h — d) = 0. (4.12)
Thus the wave speed in the absence of a shear flow is given by

2 _ PashE VA

(4.13)
22
where
A1 = (028h)* — 4pa(p2 — p1)g2d(h — d)
h2
> (pagh)® — 4p2(p2 — pl)gzz = p1p2g*h® > 0. (4.14)

The upper sign corresponds to the surface mode and the lower sign to the slower internal
mode. For example, if p; = 1000, p = 1020 kg m~=3, h=10 and d = 5m, we obtain
Saur = 9.88 and sjp; &~ 0.69ms ™!, In the estimate, we used the maximum of the function
d(h — d) on the interval 0 < d < h.

With the shear flow present, (4.11) constitutes a nonlinear first-order differential
equation for the function m(6). We have

o _ p8F(IAF(=)] + (h — DF(O0)] £ VA2

2 , 4.15
e 202 — p)gd(h — ) B
where
Ay = pagF(—d)[dF (—h) + (h — d)F(0)]?
— 4(p2 — p1)g*d(h — d) p2 F(—=h)F(0) 2 (—d). (4.16)

We can show the positivity of A, in the absence of a shear flow. Indeed, when y = 0,

h2
Ay = s 1p3h* — 4p2 (02 — p1)d(h — d)] > s*g> [/ﬁhz —4py(p2 — PI)Z:|
=s*g*p1p2h” > 0, (4.17)

by the same argument presented above in proving that A; > 0. By continuity, this
inequality will hold in the case of a sufficiently weak shear flow that we consider here.

We recall that the generalised Burns condition (Johnson 1990) for surface waves in a
homogeneous fluid with this linear shear flow is given by (2.31), as discussed in § 2. We
note that this equation can be recovered from (4.11) in the limit d — 0.
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4.2. Singular solution for the interfacial ring waves: rigid-lid approximation

We now impose the rigid-lid approximation at the surface to eliminate surface waves

$=0 atz=0. (4.18)
The modal functions in the top and bottom layers now are, respectively,
A 2 2
_AmTAmTz <o, (4.19)
FO)F(z)

_ A(=d)(m? + m™?)(z + h)
FO)F()(h — d)

where, as before, A is a parameter depending on 6. The jump condition at the interface
again provides the angular adjustment equation
w4 = F(=d)[p1F(0)(h — d) + sz(—h)d]. @21)
(p2 — p1)gd(h — d)
Assuming that (o2 — p1)/p2 < 1, we can show that, to leading order, the right-hand side
of this equation is given by

—h<z<—d, (4.20)

(033

p2hF?(—d) 0
> 9
(o2 — p1)gd(h — d)

which by continuity will continue to hold for a sufficiently small y .
Setting ¥y = 0 and m = 1, the speed of the waves in the absence of a shear flow is found

(4.22)

as
— dh—d
2 (p2 — p1)gd( ) o , (4.23)
p1(h—d) + pad
and the angular adjustment equation (4.21) can be written in the form
2h —d d](— h—dyM
w1 IO DE ) =Dy M
(p2 — p1)gdh
where M = mcosf — m’ sin 6. The general solution has the form (2.32), where
@+ b* =1+ o’a® — Ba, (4.25)
and
2
h—d 2h —d d
2oy p1( ) > vslpi( ) + pad] (4.26a.b)

(2 — p1)gdh’ — (p2—pi)gdh
The right-hand side is equal to 1 for y = 0, and by continuity it will remain positive for
sufficiently weak currents considered here. Solving for b, we find

b= :i:\/l — (1 —a?)a® — B2a, (4.27)

where

B>+ B+ 4(1 —a?)
2(1 —a?) '
Here, we assume that the locus of parameters ¢ and b is an ellipse, i.e. 1 — @ > 0implying
2 _ (p2 = pr)gdh
pi(h—d) ’

i.e. we consider an elliptic regime, when a part of the ring can propagate upstream in the
reference frame moving with the speed of the current at the bottom (Khusnutdinova 2020).
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The general solution can be found in the form

m(0) = acosf + \/1 — (1 —a?)a? — B2asinb, (4.30)
and reparametrised as
—B* + V4l —a?) + picos p VAl —a?) + B4
5 cos 6 +
2(1 —a?) 2V1 —o?
Then, the singular solution is found by requiring dm/d¢ = 0, which yields

tang =+ 1 — a2 tané. (4.32)

Finally, the singular solution corresponding to the outward propagating ring wave takes
the form

m(0) = singsinf. (4.31)

1 .
= 20— ad) [—B%cosb + \/[4(1 — a2) + B4[cos2 6 + (1 — a2)sin20]].  (4.33)

4.3. Singular solutions for surface and interfacial ring waves: free surface

If we do not make the rigid-lid approximation, the required singular solution cannot be
found in the form m = m(#), but it can be found in parametric form m = m(a), 6 = 6(a).
On substitution of m(6) = acos 6 + b(a) sin6 into (4.15) we obtain

pg (s + %(h — d)a) [d(=s5) + (h — d)(~s + ya)| £ /A3

21 p? = , 4.34
“ 2p2 — p0g2d(h — d) 39
where
2
A3 = (pag (=5 + %(h — d)a) [d(=5) + (h — d)(~s + ya)])
2 4 2
— 4(p2 = PG — d)pa(~9)(=s + ya) (s + = da) . @435

We can show that when y = 0, Az > p1p2s4g2h2 > (. Thus, by continuity, the solutions

will exist for a sufficiently weak shear flow.
The singular solution m = m(0) takes the form

m(0) = acosf + b(a) sinf, (4.36)
b'(a) = —1/tan0, 4.37)

pag (—s+ %(h — d)a) [d(=s5) + (h — d)(~s + ya)) £ /A3

2(p2 = p1)g*d(h — d)

where the upper sign corresponds to the interfacial mode, and the lower sign to the surface
mode.
Let us denote

a* + b*a) = . (4.38)

pg (=5 + %(h — d)a) [d(=s) + (h = d)(~s + ya)| £ /A3

2 b2 —
@+ 2p2 — prg2d(h —d)

(4.39)
The solution of the inequality b* = Q — a* > 0 determines the domain of a € [amin, dmax]-
We are interested in an outward propagating ring wave, thus we require m(6) > 0. In order
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to keep the positivity of m(6) everywhere, a must take both positive and negative values,
therefore the interval [ain, dmax] should be chosen such that it contains the point a = 0.
Following Khusnutdinova & Zhang (2016a) (for details see Appendix B), we find that

40,20
V(Qu —2a)? + 4b%

m(a) = (4.40)

and

iy |1 OO, wan)
MBI EN L1 e e (. am). '

Therefore, if 6 € (0, 1), then
b=+vQ—a?, (4.42)
20 —a?

tanh = — , (4.43)
O, —2a
and we let
2 _ 2

arctan (—ﬁ) ifQ,—2a <0,
0 (4.44)

an (- 22 L 0, —2a= 0

arctan | —— T oi — > 0.

O, —2a “ “

Likewise, if 6 € (7, 2m), the solution is obtained using the symmetry of the problem, and
is explicitly given by

b=—Jo-d, (4.45)
2y 0 — a?

tan = ——, (4.46)
Qq —2a
where we let
2 1) — 2
arctan g +7n  ifQ,—2a>0,
Qq — 2a

(4.47)

2.0 — a2
arctan & +2n if O, —2a < O.
Qu —2a

The function m(0) is shown in figure 10 for both the surface and interfacial mode for a
range of different shear flow strengths before it is used to plot the wavefronts of the surface
and interfacial waves described by rm(6) = 5000 m in figures 11(a) and 11(b). We keep
p1 = 1000, po = 1020 kg m~3 and d = 5 m as before.

For these values, the approximate solution (4.33) for the internal waves that arose
from applying the rigid-lid approximation is compared with the exact solution given by
(4.36)—(4.38) in figure 12 for y = 0.5 and y = I ms~!. The solutions are very close,
although the agreement is slightly worse for larger values of y.

It is clear from figure 11(a) that the surface wavefronts here share the same qualitative
characteristics as the surface wavefronts presented in § 2, i.e. the wavefronts become
elongated in the direction of the shear flow as the strength of the shear flow increases.
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Figure 10. Plots of the function m(6) for the surface (a) and interfacial (b) modes. (a) Surface mode: y =
0ms~! (black, solid), y = 2ms~! (red, dash) and y=5 ms~! (blue, dot). (b) Interfacial mode: y =0m s

(black, solid), y = 0.5 ms~! (red, dash) and y =1 ms~! (blue, dot).
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4000 4000
2000 2000 !
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Figure 11. Plots of the wavefronts for the surface (a) and the interfacial (b) modes. (a) Surface mode: y =
0ms~! (black, solid), y = 2ms~! (red, dash) and y=5 ms~! (blue, dot). (b) Interfacial mode: y =0m s7!
(black, solid), y = 0.5 ms~! (red, dash) and y =1 ms~! (blue, dot).

0 T 2n
0
Figure 12. Plots of the function m(8) for the interfacial mode: rigid-lid approximation (blue, solid) and exact
(red, dash).

It is also clear from figure 11(b) that the interfacial wavefronts do not become elongated.
To quantify the weak deformation of the wavefront in that case we shall use the global and
local measure introduced in § 2.

The relative distance between points on the wavefronts in the upstream and downstream
direction given previously by (2.39) are plotted, for both modes, in figure 13 as a function
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Figure 13. Relative distance between the points on the wavefronts of (a) surface ring waves and (b)
interfacial ring waves in downstream and upstream directions as a function of y.
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Figure 14. Relative speed of the wavefronts of (a) surface ring waves and (b) interfacial ring waves as a
function of y. The blue (solid) curve is for & = 0 and the red (dash) curve for 8 = 7.

of y. The speed of the wavefronts in the downstream and upstream directions is shown in
figure 14, while the relative curvature is shown in figure 15.

The relative distance between the points on the wavefronts in the downstream and
upstream directions increases for the surface ring waves which indicates elongation of
the wavefront in the direction of the flow, and gently decreases for the interfacial waves,
thus indicating a slight squeezing of the wavefront in the direction of the flow. Note that
figure 15 for the curvature of the wavefronts is more instructive than figure 14 for the
speeds in the downstream and upstream directions, indicating again elongation of the
surface ring wave and a small squeezing of the wavefront of the interfacial wave. Unlike
the strong squeezing reported in the case of a piecewise-constant current, the effect is very
weak in that case, and the interfacial wavefront is mainly convected by the flow. It is known
that the plane interfacial waves on a constant vorticity current are stable (e.g. Chesnokov
et al. 2017; Barros & Voloch 2020), and there is no long-wave instability unlike the case of
the piecewise-constant current discussed earlier. We think that this explains the difference
in the behaviour of the wavefronts of interfacial ring waves in these two examples. In § 5 we
shall shed more light on the deformation of wavefronts of interfacial waves by considering
a family of power-law upper-layer currents approaching the piecewise-constant current as
a limiting case.

To plot the modal functions, we need to choose the parameter A by normalising ¢. We
do this by requiring ¢ (0; 6) = 1 for the case of the surface mode, and ¢ (—d; ) = 1 for the
interfacial mode. From the modal functions (4.8), (4.9) with the free surface conditions and
(4.19), (4.20) with the rigid-lid conditions we can see that applying the normalisation for

the interfacial mode at z = —d allows us to find A as a function of 0, i.e. the normalisation
can be performed simultaneously for all directions.
927 A37-26
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Figure 15. Relative curvature of the wavefronts of (a) surface ring waves and (b) interfacial ring waves in
different directions as a function of y. The blue (solid) curve is for 6 = 0, the black (dash-dot) curve for
6 = /2 and the red (dash) curve for 0 = 7.
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Figure 16. Plots of the modal functions of the surface mode for a homogenous fluid (HF) and a two-layer
fluid with a free surface (2L) (a,c,e) with shear flow strengths of y = Om s~ (HF blue, solid) (2L red, dash),
y =2m s~ (HF black, solid) (2L pink, dot) and y = 5m s~! (HF brown, solid) (2L green, dash dot), and plots
of the modal function of the interfacial mode with the free surface (FS) and in the rigid-lid (RL) approximation
(b,d,f) with shear flow strengths of y = Oms~! (RL blue, solid) (FS red, dash), y = 0.5ms~! (RL black,
solid) (FS pink, dot) and y = I m s~ (RL brown, solid) (FS green, dash dot), for different values of 6. (a,b)
0 =0;(c,d)0 = 7/2and (e,f) 0 = .

The exact solutions for the surface mode in the two-layer case is shown in figure 16 along
with the counterpart of this solution in the case of a homogeneous fluid shown previously
in figure 5.

927 A37-27


https://doi.org/10.1017/jfm.2021.787

https://doi.org/10.1017/jfm.2021.787 Published online by Cambridge University Press

C. Hooper, K. Khusnutdinova and R. Grimshaw

(@ - ®) 2
0
0 .
—_— /1
. Uy (@) =y (z+d)*/d
d —d
1)
—h -Ix'y X —h X
[TTTIE ELT LT 0 y

Uo (z)

Figure 17. Two-layer model with a power-law upper-layer current given by (5.1). (@) Two-layer fluid with an
upper-layer current (o > 1). (b) Upper-layer current with @ = 1 (red, dash), &« = 1/2 (blue, dot), « = 1/5
(pink, solid) and o = 0 (green, dash-dot).

Also in figure 16 are the modal functions for the interfacial mode obtained with
the rigid-lid approximation and also with the free surface condition. There is virtually
no difference between the two solutions, which should be expected as we have
shown in figure 12 that m(@) for the rigid-lid and exact solutions are in good
agreement.

For both modes, the effect of the parallel shear flow is expectedly small in the
orthogonal direction. The vertical structure of the wave field is shifted towards the ocean
surface in the upstream direction, and towards the ocean bottom in the downstream
direction. It gradually changes between these two extremes as 6 changes from 0
(downstream) to 7w (upstream). For the interfacial mode, the variation of ¢ in the
upstream direction is larger in the bottom layer, but in the downstream direction it
is larger in the upper layer. Overall, there are significant differences in the behaviour
of all modal functions in the downstream, orthogonal and upstream directions, and
the wave field becomes strongly three-dimensional with the increasing strength of the
shear flow.

5. Two-layer fluid with a power-law upper-layer current
In this section we consider a family of upper-layer currents

74+ d\*“
, if —d<z<0,
o (z) = V( d ) (5.1)

0, if —h<z<-—d,

see figure 17. The current tends towards a piecewise-constant current in the limit o« — 0.

Here, we will consider surface waves in the approximation of a homogeneous fluid
with that current, and interfacial waves in the rigid-lid approximation, extending the
analysis developed in Khusnutdinova (2020). The emphasis is on the global and local
characterisation of the deformation of the wavefronts introduced in § 2. We note that the
problem can be also handled analytically with the free surface condition, but the formulae
become more cumbersome and are not shown here.
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5.1. Surface waves in a homogeneous fluid
Solving the modal equations (2.24)—(2.26) with N> = 0 and requiring the continuity of the

modal function at z = —d, we obtain, in respective layers,
A 0d
$1(x) = — Lgmﬁ+w%f-% , —d<z<0, (5.2)
8 : Fj
0
d
Al—gﬁ+m%/ i
$2(2) LS PR d (53)
2(2) = z , —h<z<—d, .
g(h—d)

where ﬁ“l =—s+y((z+d)/d)*(mcosd — m'sinf), and A is a parameter which can be
used to normalise the modal function to be equal to 1 at the surface. Requiring continuity
of the derivative with respect to z, ¢1; = ¢, at z = —d, we obtain the angular adjustment
equation for m(9)

gh 0 dz 2 72 h
<+h—d_dﬁ)ml+m) — (5.4)

Here, the integral can be expressed in terms of the hypergeometric function 7F (e.g.
Wolfram Mathematica 12.1.1.0)

0

d d 1 1

/;;gzﬁzﬂ(ZEJ47;%Mwm9—m%m®), (5.5)
—d

yielding the equation

h

2 n
= dgh 1y o 60
h—d+ —-2F1 (2, —, 1+ —, =(mcost —m sin0)

s a a s

First, when y =0, we have m =1 and 2F1(2, 1/, 1 + 1/, 0) = 1, yielding §2 = gh.
Next, the general solution of (5.6) can be found in the form m = acos6 + b(a) sin6,

where

h

@ +b* = (5.7)

1 I v\’
h—d+dFi |2, —, 14—, ~a
o [0

and the singular solution can be found in parametric form by requiring dm/da = 0, which

yields
h
ba)= | ———— — &2, 5.8
@ Jh—d+ﬂHm ¢ ©8)
2b[h — d + s*1(a)]?
arctan [ +sl@] , if a € [ao, amax] (9 € [O, E]) ,
0(a) = 2alh — d + s21(a)]? + s2hl' (a) 2

2b[h — d + s*1(a)]?
2alh — d + s%1(a)]? + s2hl' (a)

arctan +m, ifa € [amin, a0l (9 € [g Tf]) ,
5.9)
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where
d 1 1
K3 o oa s
d 1 1 1
I'(a) = —2F (2, — 14—, ﬁ) , (5.11)
o o S

aas? (1 B ﬁ)Z
s

and [amin, dmax] 1 the interval where b(a) is real valued, i.e.

h 2
——— —a“ > 0. 5.12
h—d+ s21(a) @ = (5-12)

The interval must contain zero in order to have m(6) > 0 for all 8. It is sufficient to define

the solution for 6 € [0, 7] because of the symmetry of the problem (see § 4). The value ag
corresponds to 6 = 7/2, and is found from the equation

2alh — d + s*1(a)]> + s*hl' (a)] = 0. (5.13)

We note that, for many values of «, the hypergeometric function featured in the solution
reduces to elementary functions, e.g.

2F1(2,1,2,2) = 1% (@ =1), (5.14)
_ arctanh ,/z B
2F1(2,1/2,3/2,2) = 12 + W (a =2), (5.15)
2[—z — log(1 — z) + zlog(l — z)]
Fi1 (2,2 = =1/2 1
2F1(2,2,3,2) 1122 (@=1/2) (5.16)

(e.g. Wolfram Mathematica 12.1.1.0).

5.2. Internal waves in the rigid-lid approximation

Solving the modal equations (4.1)—(4.3) with pg = poH(z + h) 4+ (p1 — p2)H(z + d) and
the free surface condition replaced with the rigid-lid approximation (4.18), we obtain,

requiring the continuity of the modal function at z = —d,
32 ) 0 dz
$1(2) = —A(m” +m~) ﬁ —d<z<0, (5.17)
z+ dz
$(2) = ( )( 2 /2)/ = —h <z< —d, (5.18)
Fi

where I:] =—s+y((z+d)/d)*(mcosd — m'sin0), and Aisa parameter which is used
to normalise the modal function to be equal to 1 at the interface.
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The jump condition at z = —d gives an angular adjustment equation for m(6)
” dz 2 [0 dz
2= pugth— a0+ [ E o po—arme [ L s
F —d Iy

yielding the equation

2 p1(h—d) + ps*IIM(6)]
(p2 — p1)g(h — A)IIM(0)]’
where M(0) = mcos® — m’ sin@ and I[M(0)] = (d/s®) 2F1 (2, 1 /o, 1 + 1/, (y /s)M(0)).
When y =0, we have m = 1 and 2F (2, 1 /o, 1 4+ 1/a, 0) = 1, recovering the formula

(4.23) for the speed s of concentric waves in the absence of any current.
Next, the general solution of (5.20) is found in the form m = acos 6 + b(a) sin 6, where

2 _ p1(h — d) + pas*I(a)
(02 — p1)gh — d)(a)’

and the singular solution is found in parametric form by requiring dm/da = 0, which
yields, for 6 € [0, x],

m> +m' (5.20)

(5.21)

a+b

_ 2
by — \/ pith—d) + ppPl@ 522
(02 — p1)g(h — d)l(@)

2b(p2 — pgll (@) , 7
D @+ a1l (0[05]).

2b(p2 — p1)gll(@)]? . _ T
arctan 240 — poll@P + il @ + 7, ifa € [amin, aol (0 € [5 n]) ,
(5.23)

0(a) =

where I(a) and I’ (a) are given by (5.10) and (5.11), respectively. It is sufficient to define the
solution for 6 € [0, 1] because of the symmetry of the problem. The interval [ain, Gmax]
is the interval where b is real valued, i.e.

p1(h — d) + p2s*1(a) i
(02 — p1)gh — d)I(a) -

The interval must contain zero in order to have m > 0 for all . The value ag corresponds
to & = 1/2 and is found from the condition

(5.24)

2a(py — pgll@] + pi'(a) = 0. (5.25)

When o = 1 the singular solution can be rewritten in the form
m:\/1+ (L)Z—LCOSQ. (5.26)

2(p2 — p1)gd 2(p2 — p1)gd

Plots of the wavefronts described by rm(6) = 5000m of surface ring waves in a
homogeneous fluid and the interfacial ring waves in a two-layer fluid in the rigid-lid
approximation are shown in figure 18 for a set values of y and different values of «. We
keep p1 = 1000, p = 1020 kg m~3 and d = 5m, as before.
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Figure 18. Plots of the wavefronts for the surface mode in a homogeneous fluid (a) and interfacial mode of a
two-layer fluid with rigid-lid approximation (b). The current is given by (5.1). (a) Surface mode: y = Oms™!
(black, solid), and y =5 ms~! with @ = 0.5 (blue, dot), « = 1 (red, dash) and o = 2 (green, dash-dot). (b)
Interfacial mode: y = 0Oms~! (black, solid), and y =0.5 ms~! with @ = 0.5 (blue, dot), @ = 1 (red, dash)
and « = 2 (green, dash-dot).
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Figure 19. Relative distance between the points on the wavefronts in the downstream and upstream directions
as a function of y for (a) surface ring waves in a homogeneous fluid and () interfacial ring waves in a two-layer
fluid with rigid-lid approximation with « = 0.5 (blue, dot), @ = 1 (red, dash) and o = 2 (green, dash-dot).
Here, g = 98ms2andh = 10m.

The wavefronts of surface ring waves show the same qualitative features as in our
previous two examples and become elongated in the direction of the flow. It is not
immediately clear from figure 18(b) if the wavefronts at the interface are elongated or
squeezed, and we shall use the quantitative measure introduced in § 2 to clarify that.

The relative distance and curvature of the wavefronts in the downstream direction (see
§ 2 for the definitions) are shown in figures 19 and 20, respectively. Whilst the properties
of the surface wavefronts show similar features to our previous examples, we note from
figures 19(b) and 20(b) that, for « = 1 and o = 2, the relative distance and curvature
increase with y, but both decrease for o« = 0.5. This indicates that there is some critical
value o, between 0.5 and 1 where the wavefronts transition from elongation to squeezing.
Thus for o > o the wavefronts are elongated and for o < o, the wavefronts are
squeezed.

The value of «.; can be seen in figure 21 where the curvature in the downstream
direction is plotted as a function of « for different values of y. Squeezing is observed
where curvature is less than 1, elongation where curvature is greater than 1 and o is
located where the curvature equals 1. From figure 21(a), the value of «,; is smaller for
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Figure 20. Relative curvature between the points on the wavefronts in the downstream and upstream directions
as a function of y for (@) surface ring waves in a homogeneous fluid and (b) interfacial ring waves in a two-layer
fluid with rigid-lid approximation with o = 0.5 (blue, dot), &« = 1 (red, dash) and o = 2 (green, dash-dot).
Here, g = 9.8ms2and = 10m.
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Figure 21. Plots of the relative curvature for interfacial wavefronts as a function of « for (@) different values of
y and (b) different values of d. The value of «; is located where the curvature equals 1 (horizontal grey dash).
The corresponding currents are shown below in (c¢,d), respectively,with & = a.;. The light blue (horizontal)

lines show the surface, interface and bottom of the fluid in each case: (@) ¥ = 0.1ms~! (blue, dot), y =
0.3ms~! (red, dash) and y =05m s~! (green, dash-dot) with d = 0.5m; (b) d = 7m (blue, dot), d = 5m
(green, dash-dot) and d = 3 m (red, dash) with y = 0.5m s~1. (¢) Currents for d = 0.5 m with y =0.Im s~
(blue, dot), y =0.3m s~! (red, dash) and y =0.5m g1 (green, dash-dot), all with @ = a,i; (d) currents for

y =05m s~! with d = 7m (blue, dot), d = 5m (green, dash-dot) and d = 3 m (red, dash), all with & = o¢piy.

weaker currents given the same value of d, and from figure 21(b) we see that the value of
ocrir 18 smaller for smaller values of d (i.e. when the interface is closer to the surface). The
corresponding currents are shown in figures 21(c) and 21(d).

The modal function of the two-layered fluid with upper-layer current given by (5.17)
and (5.18) is plotted in figure 22 in the downstream, upstream and orthogonal directions.
Naturally, all functions are almost the same in the lower layer, where there is no current.
Once again, the effect of the shear flow is least in the orthogonal direction. Similar
qualitative features are observed in the downstream and upstream directions as with the
linearly increasing current, and the vertical structure is again strongly three-dimensional.

927 A37-33


https://doi.org/10.1017/jfm.2021.787

https://doi.org/10.1017/jfm.2021.787 Published online by Cambridge University Press

C. Hooper, K. Khusnutdinova and R. Grimshaw

(b)
0 =
T D
R —
-5F .“.~n."-".n-
-10 . . . .
0 0.2 0.4 0.6 0.8 1.0
¢ (2)
(©)
0
z(m) -5f
-10

0 0.2 0.4 0.6 0.8 1.0

¢ (2)
Figure 22. Plots of the modal functions (5.17) and (5.18) for y = 0Oms~! (black, solid) and y = 0.5ms™!
with o = 0.5 (blue, dot), « = 1 (red, dash) and o = 2 (green, dash-dot). Here, g = 9.8 m s 2and h = 10m:
(a) & = 0 (downstream); (b) 0 = 7 (upstream) and (c) 6 = /2 (orthogonal).

The squeezing of the interfacial wavefronts with decreasing o can be seen in
figure 23(a). The effect is strengthened considerably when the density jump is smaller
(i.e. when the interfacial waves are slower) which we achieve by decreasing p; from 1020
to 1006 kg m—3. The wavefronts are plotted in figure 23(b) for the same values of y and «
as in figure 23(a). In all cases, y < s/m(0), i.e. there are no critical layers.

6. Conclusion

In this study we linked the description of the ring waves in a cylindrical geometry with
the description of the plane waves tangent to the ring wave and propagating at various
angles to the shear flow. It was shown, in particular, that the geometry of the wavefronts
of both sets of waves can be described by one and the same angular adjustment equation
for the speed modifying function m(6). The general solution of this nonlinear first-order
differential equation corresponds to the plane waves tangent to the ring wave, while its
singular solution (i.e. the envelope of the general solution) describes the ring wave. All
considerations of the paper were developed in dimensional form and using the notations
suitable for oceanographic applications.

Working with a local wave vector and wave frequency, we defined the group speed and
wave action conservation law for the ring waves. We also described a convenient analytical
procedure for the construction of hybrid wavefronts consisting of a part of a ring wave and
two tangent plane waves. This is straightforward in the absence of a current when the ring
wave is concentric, but not so when the wavefront of the ring wave is deformed by a shear
flow. Such a hybrid wavefront has perfectly matched speeds and slopes at the junctions
and may propagate in a coordinated way. Here, we concerned ourselves only with the
kinematics of these solutions, in the spirit of the papers by Ostrovsky & Shrira (1976)
and Ostrovsky & Stepanyants (2020). The description of the evolution of nonlinear hybrid
waves is an interesting future problem.
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The main focus of the paper was on the analysis of the modal equations for several
configurations motivated by geophysical applications. The modal equations constitute a
new spectral problem, which must be solved in order to describe the wavefronts and
vertical structure of these three-dimensional waves, and to calculate the coefficients of
the amplitude equation (see Appendix A).

Two main examples presented in the paper were devoted to the description of surface
and interfacial waves in a two-layered fluid with a linear shear current and a power-law
upper-layer current. We obtained solutions of the modal equations ¢ (z; ) together with
the spectral function s/m(6), defining the wave speed in the directions at different angles
to the current.

Assuming weak stratification, we have shown that the modal function for the surface ring
wave is captured well in the approximation of a homogeneous fluid, while the rigid-lid
approximation works very well for the interfacial modal function. The modal functions
have been normalised to be equal to one either on the entire surface (for the surface mode)
or at the entire interface (for the interfacial mode), i.e. simultaneously in all directions.
This normalisation is convenient since the vertical particle displacement at these levels
is then described simply by the amplitude function which can be found by solving the
appropriate cylindrical KdV-type equation (see Appendix A). Our analysis shows that the
vertical structure of the ring waves propagating over a parallel shear flow strongly depends
not only on the depth, but also on the angle to the current at each depth, with the greatest
changes, compared with the case of the waves in the absence of the shear flow, being in the
downstream and upstream directions. Moreover, the vertical structure is shifted towards the
surface downstream, but towards the ocean bottom upstream. (The currents were stronger
at the surface.)

The solutions were used to analyse the behaviour of the two-dimensional wavefronts and
vertical structure of the wave field for increasing strengths of the shear flow. We considered
only sufficiently weak flows such that there were no critical levels. Both a simple sufficient
condition for the absence of the critical levels, and the necessary and sufficient condition,
were formulated under the assumption that there are no current reversals, and were satisfied
in all examples in the paper.

We also introduced and used global (distance) and local (curvature) measures for the
deformation of the wavefronts, which allowed us to study the transition from the regime
of elongating wavefronts to the regime of squeezed wavefronts for interfacial waves in a
two-layered fluid over a power-law upper-layer current

d o
y(” ) . if—d<z<0,
uo(z) = d (6.1)
0, if —h<z<-—d,

with some positive constants y (surface strength) and o« > 0. The currents with o > 1
could be used to model wind-generated currents, while the currents with & < 1 can
describe river inflows and exchange flows in straits, with the value of « fitted to
observational data. This family of currents tends to a piecewise-constant current as o« — 0
(see figure 17b).

The solution of the angular adjustment equation, and the modal function, have been
presented in terms of the hypergeometric function 2F1(2, 1/a, 1 + 1/, z). While all
currents were assumed to have one and the same surface strength, they varied in the bulk
of the upper layer, and this had a strong effect on the behaviour of the interfacial ring
waves (Khusnutdinova 2020). The quantitative measures introduced in the present paper
allowed us to study the dependence of the critical value of « on the surface strength of the
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Figure 23. Plots of the wavefronts for the interfacial mode of a two-layer fluid with rigid-lid approximation
and different lower densities. The current is given by (5.1): (a) p» = 1020kg m3: y =0m s~1 (black, solid)
and y = 0.5ms™! with o = 1/2 (green, dash-dot), « = 1/3 (red, dash) and o = 1/5 (blue, dot); (b) p2 =
1006kgm™3: y = 0ms~! (black, solid) and y = 0.5ms~! with & = 1/2 (green, dash-dot), & = 1/3 (red,
dash) and @ = 1/5 (blue, dot).

current, interfacial depth and density jump. Strong squeezing of the interfacial ring waves
can be observed for sufficiently small values of «, and the effect is stronger for a smaller
density jump. This observation invites theoretical studies into the stability of both plane
and ring waves on that family of currents since the presence of the strong squeezing could
be indicative of the presence of a long-wave instability for stronger currents. Of special
interest is the related study of stability of the hybrid solutions consisting of the matched
arc of a ring wave and two tangent plane waves. Similarly looking solutions are often
present on satellite images of internal waves generated in narrow straits (e.g. figure 13 in
Apel 2003).
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Appendix A
In dimensional variables, the amplitude equation has the following form:
A Ag
W1Ay + 2AAg + U3Agee + Ha— + Hs—— = 0, (A1)
where
0o 0o
i =2s / poF¢? dz, o = —3m f poF?¢; dz, (A2a,b)
—h —h
0 A
3 = —(m* +m®)m / poF?¢? dz, (A3)
—h
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((m2 —3m)F? — dm' (m® + m™) (ug — ¢) sinOF

/0 { pog2 m(m + m")
Ma = —

—h (m2 + I’I’l/z)2
—sin20(up — ¢)2(m® + m’2)2)

2 A -

+ %ngngzg (m'F + (m* + m"™*)(up — ¢) sin 9)} dz, (Ad)
2m 0 20, /T 2 12N o

s =——F—-> poF¢;[m F + (ug — ¢)(m™ + m™~) sinf]dz, (AS5)

ms +m —h
where & = mr — st, F=—s+ (ug — c)(mcos@ — m'sinB), and ¢(z; 0) is a solution of

the modal equations (2.24)—(2.26).

Appendix B
Differentiating (4.39) with respect to a we find
-2 2b
2a+2bb/=Qa=>b/=Qa a:tan@:— . (B1)
Qu — 2a
Therefore, m(a) = m(6(a)) can be written in the form
-2
m(a) = acos + bsinf = coso M
O, —2a
/ 1 -2
= sign(cos 0) 1Qa 0
I +tan?26 \ Q. — 2a
-2
— sign(cos 0)sign(Q, — 2a) 4Qq — 20 . (B2)
V(Qa — 2a)? + 412
From (B1),
. sign(—2b)
sign(Qq —2a) = —————, (B3)
sign(tan9)

thus (B2) becomes

L B cosf aQq — 20
m(a) = sign ( 2b tan@) <\/(Qa o 4b2> . (B4)

Since m(a) > 0, we obtain

. . cos 6
sign[m(a)] = —sign |:b(aQa —20) ] = 1. (BS)
tan 6
In the case of no shear flow Q > 0, aQ, — 20 < 0, therefore we can assume that for the
small values of y used here these inequalities will remain true. Then, it follows from (BS5)
that

0 0 0
—sign | b(aQ, — 20) cos = sign bg = 1 = sign(b) = sign cos? , (B6)
tan 6 tan 6 tan 6
giving us (4.40) and (4.41).
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