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Abstract

Let Ao be a semisimple eigenvalue of an operator TQ . Let r 0 be a circle with centre Ao

containing no other spectral value of To . Some lower bounds are obtained for the convergence
radius of the power series for the spectral projection P(t) (and for trace T(t)P(t)) associated
with a linear perturbation family T(t) = TQ + tV0 and the circle Fo . They are useful when To

is a member of a sequence (Tn) which approximates an operator T in a collectively compact
manner. These bounds result from a modification of Kato's method of majorizing series, based
on an idea of Redont. If Xo is simple, it is shown that the same lower bounds are valid for the
convergence radius of a power series yielding an eigenvector of T(t).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47 A 55, 47 A 70,
47 A 10, 41 A 35.

1. Introduction

Let TQ and Vo be closed (linear) operators on a domain Do, which is a
dense subspace of a Banach space X over the field C of complex numbers.
For t e C, consider the operator

Then T(0) — To is called the unperturbed operator, tV0 the perturbation
and T{t) the perturbed operator. This situation typically arises in quantum
mechanics as follows. Let To be the Hamiltonian of a quantum mechanical
system and VQ be a potential energy operator. Then T{\) = To + Vo is
the Hamiltonian of the perturbed system. Also, in operator approximation

© 1990 Australian Mathematical Society 0263-6115/90 $A2.00 + 0.00

138

https://doi.org/10.1017/S1446788700030299 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030299


[2] Eigenelements of perturbed operators 139

theory, one considers a sequence of operators (Tn) which approximates a
given operator T. One can let To = Tn for some fixed integer n and
Vo = T - To, so as to have T =T{\).

Let o(TQ) denote the spectrum of TQ and Ao be an isolated point of it.
Let Fo be a simple closed curve which separates Ao from the rest of o(T0).
For z £ o{TQ), let R0(z) - (TQ - zl)~l. Consider the following open disk
in C:

0(ro) = { f e C : | r | .

where ra denotes the spectral radius. For all t e <9(F0), it follows that
T{t) is a closed operator on the domain Do, and Fo does not intersect the
spectrum a{T(t)) of T{t). For z £ a ( r ( r ) ) , let /?(/, z) = (T(t) - zl)~l.
Then the spectral projection

associated with T(t) and Fo , is an analytic function on d(TQ). If the alge-
braic multiplicity of Ao is m < oo, that is, if P(0) has rank w , then for
all t€d(T0), P{t) has rank m and Fo contains precisely m eigenvalues of
T(t): k{{t), ... , Xm{t), repeated according to their algebraic multiplicities.
Also, the function

X(t) = 1 trace T(t)P(t) = (A, (/) + • • • + XJt))/m

is analytic for t in d(F0).
It is of interest to know for which values of the parameter t, the power se-

ries for P(t) and X(t) converge. The method of majorizing series developed
by Kato [2, pages 89-91] allows one to find lower bounds for the convergence
radii of these series. A modification of Kato's method yields improved re-
sults for the case where Ao is a semisimple eigenvalue of To (Lemma 2.1 and
Remark 2.2). This procedure also gives an upper bound for \Xt(J:) - Ao|, /' =
1 , . . . , m, and a disk of isolation for the set {A,(t),... , Xm(t)} from the
rest of the spectrum of T(t) (Theorem 2.3). The basic idea behind these
results is given in Redont's unpublished work [7, pages 79-80] (compare also
[6, Proposition 2.1] and [4, Theorem 10.5]. The results are applicable when
a compact operator T is approximated in a collectively compact manner
(Remark 2.5).

In case Ao is a simple eigenvalue of To, let <j>0 (respectively 4>*Q ) be an
eigenvector of To (respectively ro*) corresponding to Ao (respectively Ao)
such that (<f>0, 4>*0) - 1, and consider the meromorphic function

<t>(t) = P(t)4>0/(P(t)<j>0><t>*0).
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140 B. V. Limaye and M. T. Nair [3]

If t0 e d(ro) is not a pole of the function (f>, then <j>{t0) is an eigenvector
of T(t0).

We describe a subregion of d(T0), which is devoid of any pole of the func-
tion <j> (Proposition 3.2). This again yields a lower bound for the convergence
radius of the power series for 4>{t) about 0 (Theorem 3.3 and Remark 3.4).

2. Eigenvalues of T(t) near Xo

We assume that Ao is a semisimple eigenvalue of To of algebraic multi-
plicity m, that is, the range of the spectral projection P(0) = PQ coincides
with the eigenspace of To corresponding to Ao and is of dimension m. Let
So denote the reduced resolvent associated with To and Ao:

(1) 5 0 = l i m i ? 0 ( 2 ) ( / - P 0 ) .
z-»A0

Then So{{I_Po)Do is the inverse of (7'0-A0/)|(/-i'0)D0- S i n c e a(To\(i-Po)Do) =
<7(ro)\{A0}, it follows that

Let 0 < e < 1. Consider the circle Fe with centre Ao and radius e/| |50| | .
The convergence radii of the series for P(t) and X(t) are greater than or
equal to the radius of d(Fe). To find a lower bound for the radius of d(TE),
we introduce the following notation:

s = \\S0\\, P = ||K0P0||, g = \\V0S0\\,

LEMMA 2.1. Let 0 < e < 1. The radius of d(Te) is at least
r 2 2 2 i-'/2

[ er e(l-f i) (1 -e)2J
The convergence radii of the power series for P(t) and X(t) about 0 are ai
/eas? equal to

\p2s2 2psq r2 "T1 / 2

(4) mn = max ^ - + ,, ^ . + 5-
0 o<£<i [ e

2 e ( l - e ) ( l -e)2J
PROOF. Since Ao is semisimple, we have T0P0 = X0PQ. Hence Xo is a pole

of order 1 of R0(z). The Laurent expansion of R0{z) about Ao is given by
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[4] Eigenelements of perturbed operators 141

for 0 < |z-A0| < dist(A0, o(TQ)\{A0}) (compare [2, (5.18)]. Writing RQ(z) =
R0(z)P0 + R0(z)(I - Po), we see that

where

[V0R0(z)]2 = A(z) + Bx{z) + B2(z) + C{z),

A{z) = [V0R0(z)P0]
2 = (V0P0)

2/(z-XQ)2,

Bl(z) = V0R0(z)PQV0R0(z)(I-P0)

= " £ *V»0K0S*+2(z - Xof - (V0P0VQS0)/(z - Ao),
fc=0

B2(z) = VQR0(z)(I-P0)V0R0(z)P0

k=0

and

C(z) = [V0R0(z)(I - P0)f = f^Y " °*+1

k=0 j=0

For z e Te, we have |z - Ao| = e/5, so that

\\A(z)\\ = ^ - , | |5,(z)| | , \\B2(z)\\ <pqs[-^- + - \ =

and

(5)
\\C(z)\\<(f^\\V0S

k
0
+lVQSQ\\\z-X0A

\k=Q I

<r
2/(l-\z-XQ\s)2 = r2/(l-e

j=0

as \\V0S*+lV0S0\\/s
k < r2 for k = 0, 1, 2, . . . . Thus, it follows that for

Also, by the spectral radius formula,

ra(VQR0(z)) = J n f |

As the radius of d(Te) is min z 6 r ^ ^ ( ^ ^ ( z ) ) , we see that it must at least

W , 2psq r2 V12
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Since for every e in (0, 1), the functions P(t) and X(t) are analytic on
d(Te), it follows that their power series converge if |/| is less than m0,
given by (4).

REMARK 2.2. Letting e = </ps/(y/ps + y/q), we see that

(6) (VPS~+V4)~i[PS + 2Vpfq + r2/qfl/2<m0.

Since r2 < | | ^ 5 0 | | 2 = q2 , it follows that (6) improves upon the lower bound
(y/ps + y/q)~2 given by Kato [2, (3.21)]. This bound was obtained by ma-
jorizing the series

z xo k=0

term by term by the power series for the function

(See [2, (3.14)].) On the other hand, the lower bound tn0 given by (4) is
obtained by majorizing the series for [V0R0(z)]2 by the power series for the
function

2

THEOREM 2.3. The convergence radii of the power series for P{t) and X(t)
are at least equal to 1/4M , where

(7) M = max{/?s, s/psq, r).

If \t\ < 1/4M, then the operator T(t) = T0+tV0 has m eigenvalues Xx{t),... ,
X (t), counted according to their algebraic multiplicities, and they satisfy

(8)

Further, kx(t), ... , Xm(t) are the only spectral values of T(t) lying in the
open disk

PROOF. Let 0 < e < 1. Then by Lemma 2.1, the radius of the disk d(Te)
is at least

V 2M2 U2 l ~ 1 / 2
= e ( l - e )

2 + e ( l - e ) + (i _e) 2 J ~ u
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It can be easily seen that \t\ < e(l - e)/w if and only if u^t) < e < u2(t),
where

(10) M , ( 0 = ^ and u2{t) =

Hence for every e satisfying u{(t) < e < u2(t), we see that t e d(Te). Thus,
Fe contains m eigenvalues Aj(f), . . . , Am(r) of 7*(f) (counted according to
their algebraic multiplicities) and does not contain any other spectral value
of T[t). In particular,

Letting e —• u,(<), we have

1 — y / l — 4u\t\
\/-j(t) — Ao| < }L-^ , i = I, ... , m ,

while letting e —* u2{t), we find that the open disk

does not contain any other spectral value of T(t).

REMARK 2.4. The functions u{(t) and u2(t) introduced in (10) satisfy
0 < ux{t) < j < u2(t) < 1 for \t\ < 1/4M, and they depend only on \t\.
As | / | | 0 , u{(t) monotonically decreases to 0, while u2{t) monotonically
increases to 1, and as |/| t 1/4M, ux{t) monotonically increases to \ , while
u2(t) monotonically decreases to \ . Thus, a smaller absolute value of the
parameter t (corresponding to a smaller perturbation tVQ) yields a better
estimate for \At(t) - Ao|, i = 1, ... , m , and at the same time a larger disk
of isolation of {A,(f), . . . , Xm{t)} from the rest of o(T{t)). For all t with
|r| < l /4«, we have

These phenomena are illustrated in Figure 1.

REMARK 2.5. The lower bounds

l \ps + 2yJpsqA and
\ 4max{ps,y/psq,r}

for the convergence radii of the series for P(t) and X(t) obtained in Remark
2.2 and Theorem 2.3 are significant in the operator approximation theory.
We note that both these bounds tend to infinity if p and r approach 0,
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Figure 1

and if 5 and q remain bounded. Let a compact operator T on X be
approximated by a sequence of bounded operators (Tn) in a collectively
compact manner (that is, Tnx —> Tx for every x e X and the set U^l, {(T-
Tn)x: x e X, \\x\\ < 1} is totally bounded). Let A be a simple eigenvalue of
T such that |A| > dist(A, a(T)\{k}). It is shown in [3, Theorem 2.1] and [5,
Theorem 3.4] that for all large n, Tn has a simple eigenvalue kn such that
Xn - A , and if we let To = Tn, VQ = T- Tn, Ao = Xn, sn = | | S J , pn =

I I W . «, = FAH and

r2
n=sup{\\VnS

k
n
+lVnSn\\/\\Sn\\

k:k = 0 , 1 , 2 , . . . } ,

then pn —> 0 and rn —• 0, while (5n) and (qn) remain bounded as n —> oo.
The above lower bounds then guarantee that for a suitably large fixed n,
the point 1 lies in the convergence disks of P(t) and X(t), and hence the
spectral projection P(l) and the eigenvalue k — k{\) of T{\) = T can be
approximated by the partial sums of the power series for P(t) and X(t),
respectively.

We note that since (qn) may not tend to zero as n —» oo, the lower bound

^y/PrJn + V^n)~2 ^0T t n e convergence radii of P(t) and for X(t) obtained by
Kato is not useful for ascertaining the convergence at t = 1. In case {Tn)
converges to T in the norm, then (qn) does tend to zero as n -^ oo, and
Kato's lower bound becomes applicable. We mention that there are many
important cases where (Tn) approximates T in the collectively compact
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manner, but not in the norm. For example, for a nonzero compact Fredholm
integral operator T on X = C([a, b]), let (Tn) be a sequence of Nystrom
or Fredholm approximations of T, or if nn is an interpolatory projection
on X with nnx -> JC for all x e X, let Tn = Tnn or nnTnn ([1, pages
18-19] and [4, pages 292-294]).

In case To is a normal operator on a Hilbert space X, then every eigen-
value of TQ of finite algebraic multiplicity is semisimple. For this case, we
refer to [4, Theorem 10.6] and [2, Theorem 3.9] for an especially elegant
analogue of Theorem 2.3.

3. Convergence radius of an eigenvector series

Let Ao be a simple eigenvalue of To, that is, Ao is a semisimple eigenvalue
and the associated eigenspace is one dimensional. Then for t e d(T0), P(t)
is of rank 1, and the operator T(t) = To + tV0 has only one simple eigen-
value k(t) lying inside r o , so X{t) = X(t) is analytic for t e d(T0). Let
4>0 be an eigenvector of To corresponding to Ao . Then the adjoint opera-

tor TQ is closed and densely defined in the adjoint space X = {x*: X —>
C; x* is conjugate linear and continuous} . There is a unique eigenvector 4>*0

of To corresponding to JQ such that (00 , 4>*Q) — 1 and we have

Pox = (x,<j>*Q)(t>Q, xeX.

As mentioned in the introduction, the function

(11) l
is meromorphic in d(T0) and 0(0) = <p0. If tQ e d(T0) is not a pole of the
function ^ , t h e n <j>(t0) is an eigenvector of T(tQ) corresponding to X(tQ).
We have not been able to decide whether the function <j> ever has a pole in
d(T0). Nevertheless, we shall obtain a subregion of d(T0) which contains 0
and which is free of any pole of the function (j>.

LEMMA 3.1. Let t0 € d(T0). Then there is a unique nonnegative integer
kQ such that

(12) y,(to) = fonP(t)4>ont-to)
k°

is an eigenvector of T(t0) corresponding to X(t0). Further, t0 is a pole of
the function <f> if and only if {y/{tQ), 4>*0) - 0, and in this case, y/(t0) is an
eigenvector also of the operator (I - •
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PROOF. Let t0 e d(V0). Since .P(O)c£o = </>0 ^ 0, the X-valued analytic
function t H-» / J ( O 0 O *S n o t identically zero on d(V0). Hence either it has
an isolated zero of finite order at tQ or it is nonzero at t0. In any case,
there is a unique nonnegative integer k0 and an analytic function ^ in a
neighbourhood U of t0 such that P(t)<f>0 = (t - to)

h°y/(t) and y/(t0) ^ 0 .
For t E U, we have

Hence the function

has a pole at tQ if and only if {y/{t0), <j>*Q) = 0 . Clearly, l im,^, y/(t) exists

and equals i//{tQ). Now,

i/,(t) = P ( t ) c f > 0 / ( t - t 0 ) k \ t e U , t * t Q ,

is an eigenvector of T(t) corresponding to X(t). The continuity of the func-
tions 11-» P(t) and t >-* y/(t) at t = t0 shows that y/{tQ) is an eigenvector
of T{t0) corresponding to A(f0).

Assume now that /0 is a pole of the function cf>. Then

that is, i//(t0) e (I - P0)D0 . Since

(/ - P0)T(t0)V(t0) = l(to)(I - P0)y(t0) = X(to)y,(to),

it is apparent that y/{t0) is an eigenvector of (/ - Po)T(tQ),y_p,D corre-
sponding to k(t0).

PROPOSITION 3.2. The meromorphic function 4> given by (11) has no pole
in the open set

G = {ted(ro):s\A(t)-Xo\ + r\t\<l}.

For every t GG, (f>(t) is an eigenvector of T(t) corresponding to X(t).

PROOF. Let t e G. We show that k(t) is not in the spectrum of the
operator (/ - P0)(T0 + /Ko)| ( /_,o) />o = (/ - Po)T(t)](I_Po)Do. Lemma 3.1 then
implies the desired result.

Let us denote (/ - P0)D0 by Z and k{t) by z for brevity. Since teG,
we have \z - Ao| < \/s. By (2), Ao is the only spectral value of r o in the
open disk with centre Ao and radius l/s, and a{T^z) — o(T0)\{X0} . Hence
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[10] Eigenelements of perturbed operators 147

it follows that z £ a(T^z). In order to conclude z £ a(I-P0)(T0 + tV0)^z ,
it is enough to show that ra(E(z)) < 1, where

E{z) = [T0lz - (/ - P0)(TQ + tV0)lz][T0[z - zl]zr\

Now,

and if z ^ Ao, then

E(z) = -t(I-P0)V0R0(z)lz.

In the first case,

r.(E(X0)) < \t\ra((I - P0)VQS0) = \t\ra(V0SQ(I - PQ))

which is less than 1 since t eG. In the second case, that is, when z ^ Xo ,

ro(E(z)) < \t\ra((I - PQ)V0R0(z)) = \t\ra{V0RQ{z){I - PQ))

by (5). Since z = k(t) and t e G, it again follows that ra(E(z)) < 1.

THEOREM 3.3. Let 0 < e < 1 and t e C be such that

' [ e2 e ( l - £ ) ( l - e ) 2 J

Then <f>(t) = P(t)<j>0/(P(t)<pQ, <f>*Q) is an eigenvector of T{t) corresponding to
k(t) such that (4>(t), 4>*0) = 1. The radius of convergence of the power series
for <j)(t) about 0 is at least equal to m0 given by (4).

PROOF. By Lemma 2.1, t belongs to d(TE), so that |A(f) - Ao| < e/s.
Hence

s\X(t) - Ao| + r\t\ < e + — — m < 1.
\P f i Ipsq , r2

By Proposition 3.2, we see that <f>(t) is an eigenvector of T{t) corresponding
to k{t). It is obvious that (<f>(t), 4>*0) = 1. Thus, the function <f> is analytic
on

2/?5g

for every e, 0 < e < 1. The desired result now follows from the very
definition of m0.
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REMARK 3.4. As the quantities

l F rY
X \ps + IJpsq •)— and

are at most equal to m0, they also give lower bounds for the convergence
radius of the power series for (j>(t), just as we had noted this for P(t)
and X(t). The lower bound (y/ps + y/q)~2 for <j)(t) given in [2, Prob-
lem 3.7] (obtained by finding a majorizing series for 4>{t)) is thus improved
t o (y/ps + T/qy^lps + ly/psq + S/q]1'2. ( N o t e r<q.)

The lower bound 1/(4 max{ps, yjpsq, r) ) for the convergence radii of the
series for A(t) and for <p{t) is obtained in [5] by considering estimates for
the iteratively denned n th terms of the power series for k{t) and <j>(t), while
in [7, pages 82 and 85], a similar lower bound is obtained by considering the
power series for P(t).

References

[1] P. M. Anselone, Collectively compact operator approximation theory, (Prentice-Hall, En-
glewood Cliffs, N. J., 1971).

[2] T. Kato, Perturbation theory for linear operators, 2nd ed. (Springer-Verlag, Berlin, Hei-
delberg, New York and Tokyo, 1976).

[3] R. P. Kulkarni and B. V. Limaye, 'On the error estimates for the Rayleigh-Schrodinger
series and the Kato-Rellich perturbation series', J. Austral. Math. Soc. Ser. A 46 (1989),
456-468.

[4] B. V. Limaye, Spectral perturbation and approximation with numerical experiments,
Proc. Centre Math. Anal., Vol. 13, (Australian National Univ., 1986).

[5] B. V. Limaye and M. T. Nair, 'On the accuracy of Rayleigh-Schrodinger approximation,'
/ . Math. Anal. Appl. 139 (1989), 413-431.

[6] M. T. Nair, 'A note on the Rayleigh-Schrodinger series', J. Math. Phys. Sci. 23 (1989),
185-193.

[7] P. Redont, Application de la theorie de la perturbation des opirateurs lineaires a
I'obtention de bornes d'erreur sur les elements propres et a leur calcul, (These Doct-
Ing., Univ. de Grenoble, 1979).

Indian Institute of Technology University of Goa
Powai, Bombay 400076 Santa Cruz, Goa 403005
India India

https://doi.org/10.1017/S1446788700030299 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030299

