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Introduction. This note provides yet another example of the difficulties that arise
when one wants to extend the spectral theory of subnormal operators to subnormal
tuples. Several basic properties of a subnormal operator Y remain true for tuples; e.g. the
existence and uniqueness of its minimal normal extension N, the spectral inclusion
o(N) a a(Y)-proved for n-tuples in [4] and generalized to infinite tuples in [5]. However,
neither the invariant subspace theorem nor the spectral mapping theorem in the "strong
form" as in [3] is known so far for subnormal tuples.

The present note shows that even such a well known equality as

valid for bounded sequences {Yn} of subnormals fails to have a multiparameter analogue.
Namely, we shall construct a sequence of subnormal pairs (Sn, Tn) for which the equality
(1) below fails.

Sn, 0 Tn) = (U o(Sn, Tn))~. (1)

Here a stands for the joint spectrum in the sense of J. L. Taylor [8, 2], the bar
denotes closure in the natural topology of C2. By subnormal we mean a pair being a
restriction of two commuting, bounded normal operators to one of their common
invariant subspaces.

Remarks. The containment "=>" in (1) does always take place. However, each of
the following conditions suffices for the equality there for pairs, or even tuples of arbitrary
commuting operators.

(a) The sequence (Sn, Tn) is constant beginning from some k: for all n >k.
(b) H S J H O a n d H r j ^ O a s n ^ o o .
(c) Sn = Tn and the Sn are subnormal for n large enough.

(To prove (b) use the semicontinuity of a, cf. [6]. (c) follows from (*) if we identify
a(S, S) with o(S).)

It would be interesting to know more nontrivial sufficient conditions for the equality
in (1), since this equality may be applied to solving certain linear equations, a technique
developed in the proof of our main result.

The author expresses his gratitude to Professors Jan Janas and Jan Stochel for helpful
conversations and for finding numerous mistakes in the former version of this note.

Preliminaries. Let 5 and T be a pair of bounded, commuting operators on a Hilbert
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space H. Then, by definition, (0.0) $ o(S, T) iff the mappings: f-+Sf®Tf and
(g(Bh)^>Sg-Th form a short exact sequence 0 - » t f - > # © / f - » / / - + 0 . If this is the
case, then the "Laplacian" X:= 55* + TT* is invertible and for A := 5*Z~1, B := T*X'1

we have

5,4 + TB = I, (2)

where / denotes the identity operator on H. See [2]. Conversely, if (2) has a solution with
A, B in a commutative algebra containing 5 and Tthen (0,0) £ o(S, T). Generally, o(S, T)
is denned as {(z, w) e C2; (0, 0) e a(5 -zI,T- wl)}.

If 5, T are multiplication operators on a Hardy space, the equality (2) looks like a
solution of the corona equation. This formal similarity lies behind a deep relationship
between (1) and the corona problem; cf. [5]. In that setting instead of Taylor's joint
spectrum I have considered the so called extended spectrum of subnormal representations
of H"(Q), the algebra of all bounded analytic functions on a (Runge) domain Q in C2.
Then (1) for that type of spectrum is equivalent to the corona theorem for /T°(Q) and so
is not always true. This follows from N. Sibony's counterexample, given in [7]. Here we
use the following modification of this example: there is a Runge domain G contained in
the unit bidisc D2 such that D2cf:G but Hm(G) = //°°(D2) i.e., any/e//°°(G) extends
analytically onto D2 with the same norm. The construction in [7] is simple.

Choose a discrete subset a= {am\m <°°} of the unit disc D such that |M(Z)| =£
supm |«(<*m)| for all u e H°°(O), z e O. Next construct a non-negative bounded subhar-
monic function VonD such that a = V~l{0}. Let G:={(z, w) eO2; |w| <exp(-K(z))};
then

H"(G) = /T(D2). (3)

However, we need here such an extension for some Hilbert space of analytic
functions on G in place of H"(G). Unfortunately, I cannot prove that this extension takes
place for the Hardy or Bergman space over G, but only for the Lumer-Hardy space
LH2{G) which does not seem to be a Hilbert space. To overcome this difficulty I
introduce some technical L2-norms.

The construction. Let G be as in (3) a domain related to the set a = {J*=2Cn,
where each Cn is a collection of n4 points equidistributed at the circle \z\ = 1 - (l//z).
Choose an exhaustion of G by a sequence of smoothly bordered domains of holomorphy
Qn (cf. [5]) such that Qn a Qn+i c . . . c G = \J Qn and for which (z, w) e Qn if either
z e Cn, \w\ «s 1 - (1/n) or if \z\ =s 1 - (l/2/i) and \w\ «s i

Notation:

v volume i.e. 4-dimensional Lebesgue measure on C2

Hn the equidistributed probability measure on Cn and
v' the planar Lebesgue measure on C.
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Let us define the measure vn on Qn by the following formula:

\fdvn =\ fdv+i dnn(z) \ f(z, w) dv'(w). (4)
•* JQn JCn -V|<l-(l/n)

As (Sn, Tn), we shall take the multiplication by z and by w operators on the space Hn,
defined as the closure in L2(vn) of all complex polynomials p(z, w). In other words,
(Snf)(z, w) = zf(z, w) and (Tnf)(z, w) = wf(z, w). Note that Hn is nothing else but the
renormed Bergman space with a norm equivalent to the L2(u)-norm. The point of this
modification is that the norms of elements he Hn will be more influenced as n —* °° by the
values h(z, w) for z e Cn, helping to "enlarge" radii of convergence in the variable w.
More precisely, for 0 =£ r « I, having a function a analytic on rO, put

\a(w)\2dv'(w))a
Then for s := 1 — {Hn), r := 1 — (l/2n) our basic estimate will be

+ C«-2||fl||r, (5)

where C is independent of n, a. The proof of (5) will be given later on. Let us also note
that if a(w) = £ akw

k, then using polar coordinates one may easily estimate the Fourier
coefficients ak as follows

\ak\^Mk\\a\\,, (6)

where t = \ and M\ = 42*+2(A: + l)/«.
The key property of the sequence {//„} is contained in the following result.

LEMMA. ///„ e Hn form a sequence converging pointwise on G with the L2{vn)-norms
of fn bounded by some M < °°, then f := \imfn extends analytically onto D)2.

Assuming the lemma and (5) for a moment, we shall prove our main result.

PROPOSITION. The (Sn, Tn) are subnormal pairs of contractions for which the equality
(1) fails.

Proof. The subnormality is obvious—the same formulae define normal extensions on
L2(vn) of these pairs. ||Sn|| =£ 1, since \z\ < 1 on Qn and similarly \\Tn\\ =£ 1. It is easy to see
that o(Sn, Tn)czG. Indeed, for (z', w') $G there exist functions /, g analytic on G such
that (z — z')f + (w — w')g = 1. Therefore the equation (2) has solutions in the algebra of
multiplication operators by functions from H"(Qn) and the criterion (2') is applicable
(cf. [5]).

Let us fix a point (z't w') e D2\G. If (1) were true, we would have (0, 0) $ o(S, T),
where 5 := © (Sn — z'l), T := © (Tn — w'l), and there would exist operators X, A, B of
the form A = @An, B = ®Bn with \\An\\, \\Bn\\ bounded, which would solve (2).

The constant polynomial 1 has its L2(un)-norms bounded as n—»t» and so have the
functions /„ : = An\ and gn :=Bn\. We may apply a normal family argument and assume
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that these functions converge on G to certain functions /, g respectively. These functions
satisfy (z - z')f + (w - w')g = 1 (by (2)) for any (z, w)eG and, after analytic continua-
tion (by the Lemma)—also for any (z, w) e D2, which is absurd: taking z = z', w = w' we
get 0 = 1. •

REMARK. We do not know if the An, Bn commute with Sn and Tn. If this were true, it
would be a major simplification as these operators would then be multiplications by /„ and
gn, and this would provide the uniform estimates (on Qn) for these functions. To
conclude we need to prove (5) and the Lemma.

Proof. For z e C with \z\=s (i.e. 1 - (1/n) let Lz be the point of Cn next to z in the
clockwise direction of this circle. Then

If r = l - ( l / 2 « ) and |w|=£r, the estimate on the derivative a'(w) treated as a Taylor
coefficient gives l a ' ^ ) ! ^K'n2 \\a\\r. To see this, use (6) for the L2-norm of a over
{z, \z — w\ < r — \w\} when r — \w\ 3= \n. Hence

\a(z)-a{Lz)\ ^KK'n2'4 \\a\\,:= K"n~2 \\a\\r. (7)

Let n be the normalized Lebesgue measure on the unit circle. Then it is easy to see
that

[ | a | 2 ^ n = [ \a(Lsz)\
2dn.

Denoting the square root of the last integral by / and using (7) we get

a \1/2

\a\2dfinj + K"n~2 \\a\\r.
Now the comparison between the Bergman and Hardy norms yields \\a\\s^ jimsJ^nJ,
which proves the estimate (5).

To prove the Lemma let us develop / and /„ in power series in the variable w, say
f(z, w) = E ak(z)wk for (z, w)eG and fn(z, w) = E akjz)wk if {z} x (WD) c Qn, (e.g. if
\z\ ^r, \w\ « ? or if z e Cn and |w| ^ 5 , where r, s are as above).

Obviously, the functions akn are analytic on | z | < l — (l/2n) and converging to ak

uniformly on compact subsets of D since fn—*f along with all derivatives.
From (6) we obtain

\fn(z,w)\2dv'(w).
4

Integration over rD and the definition of vn gives the estimate \\akn\\r*sMkM, which is
independent of n. Indeed, r D x | D c Q n and dv'(z)dv'(w) = dv(z, w). Similarly, the
second term contributing to vn and (6) with s in place of t gives JCn \akn\

2d[in«
s-2k(M'M)2. Now the application of (5) implies that \\aktn\\s ̂ s~kM" + Cn~2MkM. Note
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that ||a||, is increasing and continuous with respect to t, so we may fix s' < 1 and, since
5 = 1 - 1/n-* 1, letting n^oowe shall obtain \\ak\\s< =£ AT. Because s' may be arbitrarily
close to 1, also Ha*Hi =s A/". This, independent of k estimate, guarantees the convergence
of E ak{z)wk for all (z, w) e D2, proving the Lemma.

Note added in September 1986. The example obtained in this work can be used, as
noted by J. Janas, to show the following: the description of the spectrum of inductive
limits given in [9] for self-adjoint operators cannot be extended to inductive limits of
subnormal pairs.
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