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SMOOTH VARIATIONAL PRINCIPLES IN RADON-NIKODYM SPACES

ROBERT DEVILLE AND ABDELHAKIM MAADEN

We prove that if / is a real valued lower semicontinuous function on a Banach space X,
for which there exist a > 0 and 6 G R such that f (x) ^ 2a||a;|| + b, x e X, and if X has
the Radon-Nikodym property, then for every e > 0 there exists a real function <p on X
such that ip is Frechet differentiable, ||v>||oo < £, llv'lloo < £, <p' is weakly continuous
and f + <p attains a minimum on X. In addition, if we assume that the norm in X is
^-smooth, we can take the function <p = gi + g2 where g\ is radial and /3-smooth, <?2
is Frechet differentiable, ||si||oo < £, HP2II00 < e, llslIU < e, Halloo < e> g'2 >s weakly
continuous and } + g\ +32 attains a minimum on X.

1. INTRODUCTION

Let X be a Banach space. A function / : X —> R is said to be Gateaux differentiable

at io £ X provided the limit f'G (x0) (x) := limf/ (x0 + tx) - / (xo))/t exists for each

x € X, and the operator f'G (XQ) (•) is continuous and linear. The function f'G (XQ) is

called the Gateaux derivative (or Gateaux differential) of / at XQ.

A bornology on X, denoted by (3, will be any nonempty family of bounded sets

whose union is all of X. Recall that the Gateaux bornology consists of all singletons, and

the Frechet bornology consists of all bounded sets.

A function / : X —> R is called /3-smooth if it is Gateaux differentiable and the

defining limit exists uniformly on members of (3.

A Banach space X has the Radon-Nikodym property if every bounded linear operator

T from Ll ([0,1]J into X is representable, which means that there exists g G L°°([0,1], A')

such that for / € L1 ([0,1]), Tf = J f (t) g (t) dt. The classical Radon-Nikodym theorem
expresses the fact that R has the Radon-Nikodym property. Let us mention that every
reflexive Banach space has the Radon-Nikodym property. On the other hand, L1 (W)

and the space of bounded uniformly continuous functions on E" fail the Radon-Nikodym
property. This property has been extensively studied in recent years, and there is an
equivalent geometrical definition of this property. Recall, first, the definition of a slice
S (x*,A,a) of a nonempty subset A of a Banach space X : For a > 0 and x* € A",
5 (x*, A,a) := \x € A : (x*,x) > supx* — a\. We say that a nonempty subset A of X is
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dentable provided it admits slices of arbitrarily small diameter; that is, for every e > 0
there exists x* € X* and a > 0 such that diam S(x*,A,a) < e. A subset A is said to
have the Radon-Nikodym property if every nonempty bounded subset of A is dentable.
For more details of the Radon-Nikodym property see [4, 8].

Let X be a Banach space. Let / : X —> R U {+co} be a lower semicontinuous

function bounded from below. By a variational principle we mean the existence of a

function <p : X —> K belonging to a given class such that / + ip attains its minimum on

X. The first one was established by Ekeland [9], who showed that one can take ip to be

a shift of the function £||.||, where e is an arbitrarily small positive number.

If we want <p to be smooth, then we speak about a smooth variational principle.
The first result of this type was shown by Stegall [12] : Let X be a Banach space.
Let C be a closed, convex and bounded subset of X with the Radon-Nikodym prop-
erty. Let / be a lower semicontinuous function and bounded below on C. Then the set
{x* £ X* : f + x* attains a minimum on C} is residual in X*.

Note that, there is an important class of Banach spaces satisfying the smooth vari-
ational principle but not having the Radon-Nikodym property. Indeed, c0 does not have
the Radon-Nikodym property and admits a C°°-smooth norm [2], so, it satisfies the
smooth variational principle. Borwein-Preiss [3] proved a smooth variational principal
imposing no additional conditions on the space except the presence of some smooth norm.

The existence of a smooth norm implies the presence of a smooth bump function
(a function b : X —> R is bump if it has nonempty and bounded support); but the
converse is not true in general. Haydon [10] gives an example of Banach space with
smooth bump function but not having an equivalent smooth norm. Deville-Godefroy-
Zizler [5, 6] extended the Borwein-Preiss principle to spaces admitting smooth bump
functions. The proof of their principle uses the Baire category theorem.

The work presented in this paper is motivated by the Stegall variational principle
[12]. A variant of Stegall's theorem due to Fabian [11] yields a minimum for a lower semi-
continuos function / defined on a space with the Radon-Nikodym property. It replaces
the condition that / be restricted to a bounded set with a strong lower-boundedness
hypothesis on all of X : Suppose that the Banach space X has the Radon-Nikodym prop-
erty and that / : X —>• R U {+00} is a lower semicontinuous function on X for which
there exist a > 0 and 6 € R such that / (x) ^ 2a||z|| +b, x £ X. Then for any e > 0
there exists x' £ X* such that ||x*||x- < £ and f + x* attains a minimum on X. This
result leads to a natural question : what about the existence of a smooth function ip such
that Halloo < e, H '̂lloo < £ and f + <p attains a minimum on X?

We give a positive answer to this smooth Deville's type variational principle in
Banach spaces with Radon-Nikodym property. We prove: Let X be a Banach space
with the Radon-Nikodym property and / : X —> R U {+00} be a lower semicontinuous
function on X for which there exist a > 0 and 6 € R such that / (x) ^ 2a| | i | | +6 , x £ X.
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Then for every e > 0 there exists a Frechet differentiable function <p : X —> R on X

such that Hvlloo < £> \W\\oo < £, f' is weakly continuous and f + <p attains a minimum

on X.

On the other hand, we give another smooth variational principle, where we want the

function ip to be of the form 51+52 , where g\ is radial, g\ and g2 are smooth with small

norms.

2. S M O O T H VARIATIONAL PRINCIPLES

In this section we give two smooth variational principles in Banach spaces with the
Radon-Nikodym property. More precisely we show the following :

THEOREM 2 . 1 . Let X be a Banach space with the Radon-Nikodym property.

Let f : X —> 1 U {+00} be a lower semicontinuous function on X for which there exist

a > 0 and b € R such that / (x) ^ 2o||x|| + b, for all x € X. Then for any e > 0 and
xi € X such that f (xi) < inf / + e2 /4, there exists <p 6 C 1 (X), such that :

(1) II^IU < e and Halloo < e,
(2) ip[ is weakly continuous,

(3) f + <p attains a minimum on X at some XQ,

(4) / ( io )< in f / + e.

A mapping g : X —> R is radial if it has the form g (x) = h(\\x\\) for some

h:R —> R.

THEOREM 2 . 2 . Let (X, ||.||) be a Banach space with the Radon-Nikodym prop-

erty. Let f : X —> R U {+00} be a lower semicontinuous function bounded below on

X. Then for any e > 0 and Xi € X such that f (xx) < inf/ + £2/128, there exist two

functions g\, g-i : X —> R such that :

(1) / + <7i + 92 attains a minimum on X at some XQ,

(2) HsiHoo < e and gx is radial,

(3) 52 is Frechet-continuously differentiable on X, \\g2\\0o < £ and \\g'2\\oo < £,

(4) g'2 is weakly continuous.

We remark that in Theorem 2.1 we can not replace the hypothesis / (x) ^ 2a||rc|| H- 6
by the lesser condition that / is bounded below in A'. Indeed, in this case Theorem 2.1
says: if / : X —¥ RU {+00} is lower semicontinuous and bounded below, and the space
has the Radon-Nikodym property, then for every e > 0 there exists <p € C 1 (X) such
that f + <p attains its minimum on X and \\<p\\oo < £> llv'lloo < £• But this means that
X satisfies Deville's smooth variational principle [5, 6], and hence the space X admits
a smooth bump function [7]. This contradicts the fact that not every Radon-Nikodym
Banach space has a smooth bump function.

https://doi.org/10.1017/S0004972700033372 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033372


112 R. Deville and A. Maaden [4]

We give now the proofs of our results. The tool used is the Stegall variational

principle. Recall that the Stegall theorem [12] is motivated by the Bishop and Phelps

theorem [11] : let C be a closed, bounded and convex subset of a Banach space X. Then

the set of support functionals of C is a norm dense subset of X*.

Phrasing this another way, if x* is any element of X* and e any positive number,

then there exists y* in X* with ||2/*||x« < £ such that x* + y* attains its supremum on C.

Bollobas [1] has proved a stronger form of the Bishop-Phelps theorem, in the case

of the localisation of the supremum : let C be a closed, bounded and convex subset of a

Banach space X. Let x* any element of X* and e any positive number. Let x\ in C be

such that supx* - £2/4 < (x*,xi). Then there exist y* in X* with ||i/*||x- < £ and x0 in
c

C such that x* + y* attains its supremum on C at xa and \\xi - xQ\\ < e.
By copying the proof of Stegall [12], and using the Bollobas stronger form of the

Bishop-Phelps theorem, one can prove the following:

THEOREM 2 . 3 . Let C be a bounded, closed and convex subset of a Banach

space X. Assume that C has the Radon-Nikodym property. Let f : C —> R be
lower semicontinuous and bounded below on C. Let e > 0 and x\ € C such that

f{xi)< inf / + £2/4. Then there exist x* G X* and xQ € C such that :

(1) \\x*\\x.<e,

(2) / + x* attains a minimum on C at some xo,

(3) /(io)<inf/ + e,

(4) | | i o - n | | < e .

PROOF OF THEOREM 2.1: Let g — f-b. By hypothesis f (x) ^ 2a||x|| + b, xeX.

So, for all x*0 6 X* such that ||iSlU* ^ a, we have,

(1) g(x) + (x'0,x)>2a\\x\\-a\\x\\=a\\x\\.

Observing that 2a||x!||-t-6 ^ / ( i i ) < inf f + e2/i, then ||xi|| ^ (inf / - 6 j / ( 2 a ) + e 2 / 8 a -

So, without loss of generality, we assume that ||xi|| < 1/16 (replacing / by / -I- A, for

some A € R if it is necessary).

Let B := B(Q,r); r := max(( / (0) - b+ l ) / a , ||a;i||) > 0. We have g&J <

inf g + (e2/i) ^ inf g + E2/4. By Theorem 2.3 (Stegall's theorem) there exists x* € X'

such that ||X*||A- < £ and g + (x*,.) attains its minimum on B at some x0 satisfying :

g (xo) < inf g + £ and ||xi - xo|| < e.
B

CLAIM 1. For any x € X, g(x0) + (x*,x0) ^ g (x) + (x*,x) and g{x0) < inf 3 + (5/4)e2.

Let x e X be such that g (x) + (x*, x) < g (x0) + (x', x0). So, by (1), assuming here

that 0 < e < a:
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< g (x0) + (x*, x0)

= M(g+(x*,.))

(x;0) = g(0) = f{0) -b,

so that

a a
This shows that x e B, contradicting the fact that g + (x*,.) attains its minimum at x0

on B.

We prove now that g (xo) < inf g + (5/4)e2. We have :

g{xo)<g(x) + {x*,x-xo), Vie A".

In particular for x = X\ :

g(x0) ^ g(xi) + (x*,xi - x0)
e2

** ™f9 + j + \\x*\\x>\\xi ~xo\\

<mig+£-+e2

and our claim is proved.

Let ao := / (XQ) — m + (X*,XQ), where m := inf/, and in the first place we assume

that Qo > 0.

We choose an even function ip : R —> R such that:

( oto if \t\ ̂  a0

<p((xt,x0)) = (x*,x0)
\t\ ^ip{t)^ a0 if |t| < a0

and <p is in C1 (X) and ||v?'||oo ^ 8.

CLAIM 2. The function f + (pox* attains its minimum on X at x0.

Indeed, let x € X:

CASE 1. x is such that

x*,x) | ^ a0. Then

= f{l)+ Qo
= f(x)+f{xo)-m+{x*,xo)
^ m + f (x0) -m+ (x*, x0)
= f{xo) + {x*,xo)
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C A S E 2. x is such that | (Z*, :E) | < a0. Then,

(x) + (x*,x)

{x*,xo)

Therefore, the proof of Claim 2 is complete.

CLAIM 3. H^oz'Hoo < e and Ikyoa;*)'! < e.
H Moo

It is clear that:

\\<P°x'\\00^f{xo)-m+\{x*,x0}\

< /(.To) -Tn+Ux'llx-ll^

^ 9 2 e

So, ||<p o s'Hoo < e (for £ small).

We now prove the second inequality. Let x G X.

CASE 1. (a;*,x) ^ a0. Then, by definition of <p, we have v?((a;*,a;)) = a0 and tp is in
C*(X). Hence, ( po i* ) ' ( i ) = fl.

CASE 2. |(x*,i)| < a0. Then we have ( p i ' ) ' ( i ) = y>'((a;',a;>)(a;',i). Hence

Case 1 and Case 2 prove that (for e small) :

(<pox')'\\

Therefore, Claim 3 is proved.

In the second place assume a0 ^ 0. Let A > 0 be such that 0o '•— f (^o) - m +

(X'.XQ) + X > 0. In this case, we repeat the same proof as before just replacing ao by @o

and (x',x0) by {x*,x0) + A.

Set tp := (pox*. Therefore, the function tp satisfies the requirements of the theorem
and the proof of our result is complete. D
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P R O O F O F T H E O R E M 2.2: Let e > 0 and xx 6 X be such that / (xx) < inf/ +

e2/128. Let e > 3 2 ^ > 0 be such that £i||a:i|| < £2/128. Let g := / + £X\\.|| and let

m := inf/. Then

+e i | |
2 2

We have 5(1) = f (x) + £i||a;||. Then, g(x) ^ m + Ei||a;|| for all x 6 X and 3 is a lower

semicontinuous function on X. Applying Theorem 2.1, there exists 52 : X —> R a C1-

function on X with H52II00 < ff/4, Halloo < e/4, 52 weakly continuous and g + g2 attains

its minimum at some XQ on X, g (xo) < inf g + e/4 and ||a;o — xi\\ ^ e/4. Therefore, for

all xeXJ(x)+ ex \\x\\ + g2 (x) > f {x0) + £i||xo|| + g2 (x0).

To finish the proof, we adopt the construction of the function ip as in the proof of

Theorem 2.1.

Let ip : R —> R be an even C'-function with ||y'||oo < 8 such tha t :

( Qo if \t\ ̂  a 0

y(ei||a;o||)=£i||a;o||
\t\ ^ < p ( t ) < Q 0 if |<| < a0

where a0 := / (^0) + 32 (^0) - M + £i||a;o||, M := inf (/ + g2) and we assume that (p
A

is constant in a neighbourhood of 0 (so ¥>(£i||-||) is smooth in X whenever the norm is

assumed to be smooth in X \ {0})

CLAIM 1. / + v(^ill-ll) + 32 attains its minimum at x0 on X.

Indeed, let x € X.

CASE 1. Ei\\x\\ ^ a0. Then
/ (x) + 32 (x) + ¥>(eiN|) = / (1) + 32 (1) + / (10) + 32 (x0) -M + ei\\xo\\

> M + /(a;o)+32(a;o)-M

+ 92(xo) + £i\\xo\\

CASE 2. ei\\x\\ ̂  a0. Then

/ (x) + g2 (x) + p(ei||a:||) ^ / (1) + 32 (1) +

= / (10) + 32 {xo) +
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Therefore we have proved Claim 1.

CLAIM 2. |<p(f i | | . | | )L < e.

It is clear that :

oo < a0 = f (z0) + 52 (x0) -M

On the other hand, we have :

/ (x0) + 92 (xo) ̂ f{x) + 32 (x) + e,

^f{x)+g2(x)+e1

In particular for x = X\ :

+ 92 (x0) ^ f (xi) + 92 ( i i ) + £i (||xi -x0

e2 e e

e2 e
inf / + Y ĝ + inf 52 + ^

+

Hence, / (x0) + g2 (x0) - M < (2e)/3, (for e small). Thus,

f + ei[lNo-sill + Hull]

2e 5e2

^ Y + l28< £-

CLAIM 3. | ( v o £ i l | . | | ) ' L ^ £•

Let x € X.

CASE 1. £i||a;|| ^ a0- Then, by definition of the function <p, we have f^oejU.lh (x) = 0.

CASE 2. e^liH < a0- Then

. | | ) ' (x) | ; x e X,£ i | | i | | < a0]

^ 8ei < e.

Therefore, we have ||(¥>°£i||. | |) < £•
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D
If we take the function 9? to be constant in a neighbourhood of 0, then the function

</>f£i||.||j is /3-smooth whenever the norm is assumed to be /3-smooth in X \ {0}. Recall

that a mapping g : X —> R is radial if it has the form g(x) = /i(||z||J for some

h : R —> M. We have the following :

COROLLARY 2 . 4 . Let (X,\\.\\) be a Banach space with the Radon-Nikodym

property and assume that the norm \\.\\ is 0-smooth on X\{0}. Let f : X —> Ru{+oo}
be a lower semicontinuous function bounded below on X. Then for all e > 0, there exist

two functions gltg2 : X —> R such that :

(1) / + 9\ + 92 attains a minimum on X at some x0,

(2) gl is f3-Cl{X), HffiHoo < e and Halloo < e where g'h0{x) is the /?-
derivative of gi at x,

(3) 51 is radial,

(4) </2 is Frechet-C1 (X), Halloo < £ and Halloo < £ where g'2 (x) is the Frechet-
derivative of g2 at x

(5) g'2 is weakly continuous.
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