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Abstract

‘Seed heteromorphism’ is a broadly- and loosely-defined term used to describe differences in
size/mass, morphology, position on mother plants and ecological function (e.g. dispersal, dor-
mancy/germination) of two or more seeds or other diaspores produced by an individual plant.
The primary aim of this review paper was to characterize via an in-depth classification scheme
the physical structural design (‘architecture’) of diaspore monomorphism and diaspore het-
eromorphism in angiosperms. The diaspore classification schemes of Mandák and Barker
were expanded/modified, and in doing so some of the terminology that Zohary, Ellner and
Shmida, and van der Pijl used for describing diaspore dispersal were incorporated into our
system. Based on their (relative) size, morphology and position on the mother plant, diaspores
of angiosperms were divided into two divisions and each of these into several successively
lower hierarchical layers. Thus, our classification scheme, an earlier version of which was pub-
lished in the second edition of ‘Seeds’ by Baskin and Baskin, includes not only heteromorphic
but also monomorphic diaspores, the Division to which the diaspores of the vast majority of
angiosperms belong. The scheme will be useful in describing the ecology, biogeography and
evolution of seed heteromorphism in flowering plants.

Introduction

‘Seed (diaspore) heteromorphism’ is a broadly- and loosely-defined term used to describe dif-
ferences in size/mass, morphology, position on mother plant and ecological function (e.g. dis-
persal, dormancy/germination) of two or more seeds or other diaspores produced by an
individual plant. Thus, the term is applied to a variety of situations concerning degree of dis-
tinctness of differences in size/mass, morphology and position of diaspores on a plant. For
example, Aethionema arabicum (Brassicaceae) produces two morphologically distinct aerial
diaspores with no intermediates (Arshad et al., 2019), Heterosperma pinnatum (Asteraceae)
produces two morphologically distinct diaspores connected by a series of morphologically
intermediate ones (Venable et al., 1987, 1995; Martorell and Martínez-López, 2014) and
Ceratocarpus arenarius (Amaranthaceae) produces two morphologically distinct ground-level
diaspores and a series of aerial diaspores that differ continuously in size and morphology from
top to bottom of the plant canopy (Lu et al., 2013). It is no wonder, then, that in a recent paper
Scholl et al. (2020) stated that defining seed heteromorphism is a challenge.

The aim of this review paper is to provide an in-depth classification scheme, an earlier ver-
sion of which was published in the second edition of ‘Seeds’ by Baskin and Baskin (2014),
based on size, morphology and position on the mother plant that will give more exactness
to use of the term ‘seed heteromorphism’. More generally, our aim was to characterize the
diversity of structural design (‘architecture’) of diaspore monomorphism and heteromorphism
in angiosperms.

Methods

Our classification scheme is based on information in the literature on the size/mass, morph-
ology and position (e.g. aerial, basal and subterranean) on the mother plants of the diaspores
of angiosperm taxa. Basically, we greatly expanded/modified the diaspore classification
schemes of Mandák (1997) and Barker (2005), sometimes using terminology that Zohary
(1937, 1962), Ellner and Shmida (1981) and van der Pijl (1982) applied to diaspore dispersal.
Seeds (diaspores) were first divided into two major categories (monomorphic and hetero-
morphic) called divisions and each Division into several successively lower hierarchical layers.

Our scheme does not include the terms that Zohary (1937, 1962), Ellner and Shmida
(1981), van der Pijl (1982) and/or Gutterman (1993, 1994b) used to describe agents/modes
of dispersal such as anemochory (wind), hydrochory (water), ombrohydrochory (rain) and
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zoochory (animals). Neither does it include genetic polymorph-
ism, in which (1) two or more kinds of diaspores are produced
by a species, (2) a population may be diaspore-monomorphic
or dimorphic/polymorphic and (3) individual plants produce
only one kind of diaspore, which is determined by Mendelian
inheritance, i.e. a genetic segregation, not a somatic differentiation
(see Appendix A).

In general, we follow Scholl et al.’s (2020) definition of ‘seed
heteromorphism.’ According to these authors, variation in the
morphology of heteromorphic diaspores can be discrete or con-
tinuous. However, if the variation is continuous the most extreme
diaspores need to be widely divergent morphologically, such as
occurs in H. pinnatum (see Introduction), for them to qualify
as heteromorphic. Diaspores that do not meet one of these two
criteria are, by default, considered to be monomorphic.

Results and discussion

The classification scheme we assembled for diaspore mono-
morphism and heteromorphism is shown in Table 1. However,
as pointed out by Imbert (2002) and Scholl et al. (2020) seed het-
eromorphism (and thus monomorphism) is not easy to define.
According to Harper et al. (1970), most individual plants and
populations have a normal or skewed (continuous) distribution
for seed size or shape, but that ‘It is, however, characteristic of
some species to produce two or more sharply defined types of
seed.’ Thus, the word ‘monomorphic’ does not mean that all
seeds on an individual plant have a single size/mass or morph-
ology (or that they have the same degree of dormancy). In fact,
there is considerable variation in these traits (especially mass)
among monomorphic seeds on an individual plant and even
among those on the same infructescence or within a fruit as vari-
ous authors have reported (e.g. Janzen, 1977a, b; Ernst, 1981;
Thompson, 1981; Pitelka et al., 1983; Stanton, 1984; Thompson,
1984; Wolf et al., 1986; Wulff, 1986; Michaels et al., 1988;
McGinley, 1989; Winn, 1991; Fenner, 1992; Susko and
Lovett-Doust, 2000). Monomorphic simply means that seeds can-
not easily be sorted into two or more clearly-defined (distinct)
groups based on traits such as size/mass and/or morphology.
Monomorphic seeds may show differences in dormancy/germin-
ation: cryptic polymorphism (i.e. ecological differentiation in the
absence of obvious morphological differences) of Venable (1985).
Heteromorphic seeds, on the other hand, means that seeds on an
individual plant readily can be sorted into two or more distinct
groups that differ in size/mass and/or morphology.

An excellent example of cryptic seed heteromorphism has
been reported by Liyanage et al. (2016) for two species of
Fabaceae (Bossiaea heterophylla and Viminaria juncea) whose
seeds have physical dormancy. They found that individual plants
of the two species, which occur in fire-prone ecosystems in
southeastern Australia, produce seeds with a high threshold
temperature and a low threshold temperature for physical dor-
mancy break. There were no significant differences in mass or
visible differences in shape or color of high- and low threshold
temperature seeds from individual plants of either species.
Seeds with a low threshold temperature for dormancy break
could germinate after exposure to temperatures of a low-
intensity fire (40–60°C), whereas those with a high threshold
temperature for dormancy break could germinate only after
exposure to temperatures of a high-intensity fire (≥80°C).
Further, under competition with seedlings of Acacia linifolia
(Fabaceae), a co-occurring species, seedlings of B. heterophylla

emerging after low-intensity fire temperature grew better than
those emerging after high-intensity fire temperature.
Competition would be more intense following low- than high-
intensity fire due to the survival of more plants in the low-
than high-intensity-burned community. Thus, although low
and high threshold temperature seeds did not exhibit differences
in mass or morphology they differed in their dormancy-breaking
response to fire intensity and in seedling growth response to
competition resulting from different fire intensities.

Overall, we show that there is considerable structural diversity
in design (‘architecture’) of diaspore-heteromorphic angiosperm
species based on diaspore size, morphology and position on the
mother plant and of diaspore-monomorphic angiosperms based
on diaspore position (e.g. aerial, basal and subterranean) on the
mother plant. To date, only a few hundred of the >250,000 extant
angiosperm species have been reported to produce heteromorphic
diaspores (Imbert, 2002; Wang et al., 2010; Baskin et al., 2014;
Scholl et al., 2020; Zhang et al., 2020), apparently meaning that
the vast majority of flowering plants produce monomorphic
diaspores.

In a recent survey for homomorphic (=our monomorphic)
and heteromorphic species in the North American deserts,
using information in various floras for the area, Scholl et al.
(2020) identified 458 monomorphic species and 101 hetero-
morphic taxa, of which 75 of the latter were annuals. They also
reported that their study brought the total number of known
seed heteromorphic species to 378. The flora of this area contains
many annuals, the climate is arid/semiarid and amount and tim-
ing of rainfall is unpredictable, which are conditions that favor
bet-hedging via diaspore heteromorphism as a life history strategy
(Scholl et al., 2020; Gianella et al., (2021). Thus, the North
American deserts undoubtedly are highly over-represented in pro-
portion of heteromorphic species compared to other bioclimatic
regions. In which case, we should expect that the proportion of
diaspore-heteromorphic species in the world’s flora is much
lower than that in the North American deserts.

Mandák’s (1997) classification scheme for seed (diaspore) het-
eromorphism divides heteromorphic diaspores into Amphicarpy
and Heterodiaspory and distinguishes three subgroups for the lat-
ter category: heterocarpy (Heteromericarpy of van der Pijl, 1982),
heteroarthrocarpy and heterospermy. (See Table 1 for definition
of each of these three terms and of those mentioned in the follow-
ing.) Barker’s (2005) diaspore classification scheme deals only
with basicarpy, geocarpy and amphicarpy. His scheme includes
full geocarpy, with three subtypes, i.e. active geocarpy, geophytic
geocarpy and passive geocarpy; and basicarpy, also with three
subtypes, i.e. aerial amphicarpy, amphi-geocarpy and amphi-
basicarpy. Note that all of the categories in Mandák’s (1997)
scheme fit under our Division II (Heteromorphic), whereas the
scheme of Barker (2005) includes terms under both our
Division I (e.g. Full geocarpy) and Division II (e.g.
Amphi-basicarpy). Imbert (2002) recognized two categories of
diaspore heteromorphism: heterocarpy and heterospermy.

Many species of grasses (Poaceae) produce cleistogamous (CL)
axillary spikelets within leaf sheaths at nodes on flowering culms
(Connor, 1979, 1981; Campbell et al., 1983). Some grasses, e.g. the
well-studied species Triplaris purpurea (e.g. Chase, 1908, 1918;
Cheplick, 1996; Cheplick and Sung, 1998), produce these clandes-
tine spikelets at all nodes on the flowering culm, which is termi-
nated by an inflorescence of chasmogamous (CH) spikelets.
Caryopsis mass decreases continuously [in a log-linear (or nearly
so) fashion] from the lowermost to one of the upper leaf sheaths,
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Table 1. A classification system for monomorphic and heteromorphic diaspores in angiosperms based on size/mass, morphology and position on mother plant.

DIVISION I. Monomorphic. One type of fruit and one type of seed produced by an individual plant (see Discussion for further explanation).

Supergroup 1. Monomorphic aerial. Fruits/seeds produced on aerial stems (not including basal part of aerial stem at ground-level).

Group A. All fruits/seeds produced by chasmogamous (CH) flowers; includes most angiosperm species.

Group B. Fruits/seeds produced by both CH and cleistogamous (CL) flowers; includes a few hundred angiosperm species, e.g. many, but not all, Viola
species (Violaceae) (Uphof, 1938; Lord, 1981; Culley and Klooster 2007).

Group C. All fruits/seeds produced by CL flowers (complete cleistogamy) (Uphof, 1938; Lord, 1981; Culley and Klooster, 2007), e,g, species in the
mycoheterotropic genus Gastrodia (Orchidaceae) (Suetsuga, 2013, 2014, 2016).

Supergroup 2. Monomorphic basal or subterranean. One type of fruit and one type of seed produced at or near ground-level or underground.

Group A. Basicarpy. Flowers and fruits at or near ground-level but not subterranean, e.g. Asteriscus pygmaeus (Asteraceae) (Zohary, 1962; Ellner and
Shmida, 1981), Oenothera triloba (Onagraceae) (Walck and Hidayati, 2007), Trigonella stellata (Fabaceae) (Zohary, 1962; Ellner and Shmida, 1981), holoparasitic
plants [with ‘dust seeds’ and undifferentiated embryo (Baskin and Baskin 2022)] in Balanophoraceae and Cytinaceae (Barker, 2005).

Group B. Geocarpy. Subterranean fruits from subterranean or aboveground flowers.

Subgroup a. Full geocarpy (protogeocarpy sensu Zohary, 1962). Flowers and fruits subterranean, e.g. Rhizanthella gardneri (Orchidaceae) (Warcup,
1985).

Subgroup b. Active geocarpy (hysterogeocarpy sensu Zohary, 1962). Flowers aboveground. After fertilization, ovary is pushed or pulled underground,
where the fruit develops, e.g. Arachis hypogaea (Fabaceae) (Smith, 1950), Holocarpha spp. (Asteraceae) (Barker, 2005) and Trifolium subterraneum (Fabaceae)
(Darwin, 1888; Katznelson and Morley, 1965).

Subgroup c. Geophytic geocarpy. Stigma aboveground but ovary remains belowground at all times, e.g. the holoparastic genera [with ‘dust seeds’ and
undifferentiated embryo (Baskin and Baskin 2022)] Hydnora (Hydnoraceae) (Bolin et al., 2009) and Lophophytum (Balanophoraceae) (Borchsenius and Olesen,
1990) and Iridaceae species (Barker, 2005). In some geophytic species in the monocot families Amaryllidaceae, Colchicaceae and Iridaceae with bulbs or corms,
the flower is raised into the air by elongation of the perianth tube, which acts as a pedicle, and the ovary remains belowground. The peduncle elongates after
flowering and raises the fruit above the level of the soil surface. In Syringodea leipoldtii (Iridaceae), the upper part of the ovary is raised aboveground, and the
lower part remains belowground. In Crinum acaule (Amaryllidaceae), the short peduncle may, or may not, lift the ovary above ground (Burtt, 1970, 1977).

Subgroup d. Dioecious geocarpy. Male flowers produced on aerial stems of male plants and single-flowered female inflorescences produced
belowground (or below ocean-sediment surface in seagrasses) on horizontal rhizomes of female plants. The ephemeral stigma protrudes aboveground (or
above ocean-sediment surface in seagrasses), where it is pollinated by wind, e.g. Alexgeorgea (Restionaceae) (Carlquist, 1976; Meney et al., 1990), or water, e.g.
geocarpic species in the seagrass genera Cymodocea and Halodule (Cymodoceaceae) and Halophila (Hydrocharitaceae) (Kuo and Kirkman, 1992; Ackerman,
2006; Orth et al., 2006).

Subgroup e. Passive geocarpy. Flowers and fruits at ground-level, but fruits become covered via natural soil (sand) disturbance, e.g. the sea strand plant
Arctotheca populifolia (Asteraceae) (Barker, 2005)

DIVISION II. Heteromorphic [somatic polymorphism sensu Harper et al. (1970) and Harper (1977), which Harper (1977, p. 69) defines as ‘ … the production of
seeds of different morphologies or behavior on different parts of the same plant – not a genetic segregation but a somatic differentiation.’]. Two or more
distinct kinds of fruits and/or seeds (produced by an individual plant) that differ in size/mass and/or morphology; fruits sometimes with accessory parts such
as phyllary, bracteoles or perianth; different morphs usually show definite differences in dispersal and/or dormancy. The proportion of diaspore morphs
produced can vary between years, habitats, populations and individuals within a population, and the variation may have a genetic, progeny- environmental
and/or a maternal (and even a great grandmother or grandmother) environmental component (transgenerational plasticity) (Baker and O’Dowd, 1982; Cheplick
and Quinn, 1983; Venable et al., 1987; Venable and Búrquez. 1989; 1995; Mandák and Pyšek, 1999; Imbert and Ronce, 2001; Wang and Wei, 2007; Lu et al., 2012,
2021; Talavera et al., 2012; Baskin and Baskin, 2014; Martorell and Martínez-López, 2014; Yang et al., 2015a,b; Zhang et al., 2017; Gan et al., 2020; Wang et al.,
2021). For Heterotheca subaxillaris, an invasive species (from the USA) on the eastern shore of the Mediterranean Sea in Israel, Robinson et al. (2023) found that
not only was the proportion of dispersing (disc) cypselae greater in the leading-edge populations than in the core populations but the investment in pappus of
the dispersing cypselae was greater in the leading-edge populations. Some genetic aspects of diaspore heteromorphism are discussed by Baskin and Baskin
(2014, see Table 8.14 and text page 351).

Group A. Heterodiaspory. Two or more types of diaspores (or of fruits within diaspores) produced aboveground (in some species including a few at or
near ground-level, i.e. basal).

Subgroup a. Heterocarpy. Two, three or more kinds of fruits/seeds.

Type 1. Between-diaspore (inter-diaspore) variation. e.g. Atriplex spp. (Amaranthaceae) (Flores-Olvera et al., 2011), Garhadiolus papposus (Asteraceae)
(Sun et al., 2009) and other Asteraceae species (Imbert, 2002), some of which have morphologically distinct diaspores connected by a series of morphologically
intermediate ones [e.g. Heterosperma pinnatum (Asteraceae) (Venable et al., 1987)] and the Rumex bucephalophorus species complex (five subspecies)
(Polygonaceae) [for plants of this species complex that produce aerial diaspores only(Talavera et al., 2010, 2011, 2012)]. See additional information about the R.
bucephalophorus species complex under Amphicarpy sensu lato. Note that in addition to within-diaspore variation (see below), at least some species of Aegilops
(Poaceae) exhibit between diaspore (inter-diaspore) variation within a spike, e.g. A. cylindrica (Donald and Ogg, 1991; Fandrich and Mallory-Smith, 2006) and A.
tauschii (Wang et al., 2023). Thus, some Aegilops species fit into both between-diaspore and within-diaspore heteromorphism.

Type 2. Within-diaspore (intra-diaspore) variation (synaptospermy, i.e. two or more seeds or fruits joined together forming a compound diaspore,
sensu Ellner and Shmida, 1981), e.g. Aegilops spp. (diaspore is spikelet or whole spike, depending on the species) (Waisel and Adler, 1959; Wurzburger and
Leshem, 1967; Datta et al., 1970; Wurzburger et al., 1974; Wurzburger and Koller, 1976; Marañon, 1989; Donald and Ogg, 1991; Dyer 2004; Fandrich and
Mallory-Smith, 2006; Guzzon et al., 2018; Gianella et al., 2020, 2022; Wang et al., 2022, 2023); Eremopyrum distans (Poaceae, diaspore is a spikelet) (Wang et al.,
2010); wild emmer wheat (Triticum dicoccoides) (Poaceae, diaspore is a spikelet) (Horovitz et al., 2013; Nave et al., 2016; Volis, 2016); and Xanthium spp.
(Asteraceae, diaspore is an indehiscent bur with hooked prickles that develops from the involucre and contains two cypselae) (Arthur, 1895, 1906; Crocker, 1906;
Wareing and Foda, 1957; Esashi and Leopold, 1968; Martin and Carnahan, 1983; Hockling and Liddle, 1986). If the seeds in the compound diaspore differ in
dormnancy-breaking/germination requirements, it is referred to as heteroblasty (Zohary and Imber, 1963). Thus, all the species mentioned in this section are
heteroblastic.
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above which there is little or no change in mass of caryopses,
including those in the terminal CH spikelets. Chase (1908,
1918) used the term ‘cleistogene’ to describe the solitary sessile
single floret with palea and lemma but without glumes in the
lower leaf sheaths of T. purpurea. Chase (1918) applied the
term ‘chasmogene’ to the terminal (‘ordinary’) spikelet. Her illus-
trations clearly show that the caryopsis from the cleistogene is
much larger than that from the chasmogene. We have (cau-
tiously) suggested that T. pupurea might fit subgroup B of amphi-
basicarpy (Table 1).

Monomorphic aerial CH/CL plants/populations may produce
only CH or only CL flowers (Wilken, 1982; Sun, 1999; Hayamizu
et al., 2014). Corallorhiza bentleyi (Orchidaceae), is an example
of a species in which some populations produce only CL and others
both CH and CL (see Freudenstein, 1999; Culley and Klooster,
2007). Small or young individuals of some CL species or indivi-
duals growing under unfavorable conditions produce only CL
(Coker, 1962; Minter and Lord, 1983; Oakley et al., 2007;
Hayamizu et al., 2014). Epifagus virginiana (Orobanchaceae) is
an annual CL holoparasite with ‘dust seeds’ and an undifferentiated
embryo that is host-specific on the roots of American beech (Fagus
grandifolia). However, most, and sometimes all, of the flowers are
CL, and the CH flowers usually are sterile. Thus, most seeds are
produced by CL flowers (Schrenk, 1894; Cooke and Schively,
1904; Thieret, 1969, 1971; Musselman, 1982).

Lloyd and Schoen (1992) state that CH and CL seeds in most
CL species differ in size, dispersal and germination. However,
seeds from CH and CL flowers of our Group B of Supergroup 1
(monomorphic aerial) may or may not differ in these respects

(Baskin and Baskin, 2014, 2017). When there is a difference in
mass of CH and CL seeds, the mass of CH seeds usually is greater
than that of CL seeds (e.g. Cope, 1966; Hiratsuka and Inoue, 1988;
Cheplick, 2005; Eckstein et al., 2006; Albert et al., 2011; Huebner,
2011; Munguía-Rosas et al., 2012). Differences in germination of
CH and CL diaspores are more likely to occur in amphicarpic
sensu stricto species than in aerial CL species. In 58 of 65 case
studies (89.2%) for amphicarpic sensu stricto species, seeds from
CH and Cl flowers differed in germination percentage, whereas
in aerial CL species 83 of 132 case studies (62.9%) of seeds
from CH and Cl flowers differed in germination percentage
(Baskin and Baskin, 2017). Further study may show that a new
category needs to be split out of Group B (Supergroup I,
Division I) and incorporated into Division II. The new category
would include species in which fruits/seeds produced by CH
and CL flowers are morphologically distinct and (presumably)
differ in ecology.

In Ceratocarpus arenarius, the basicarps differ in morphology
and mass (and in embryo mass) from the aerial dispersal/germin-
ation units, which show continuous variation (increase or
decrease) in morphology (see Supplementary Table S1 in Lu
et al., 2013). Thus, there is discontinuous variation in this species
between the basicarps (a) and aerial dispersal units (b)–(f) (Lu
et al., 2013). Gao and Wei (2007) and Gao et al., (2008) recog-
nized only two morphological types of fruits on plants of this spe-
cies, namely subterranean (the two basicarps, which are, in fact,
basal and not subterranean) and aerial.

In Pisum fulvum (Fabaceae), there is a gradient from amphi-
carpic plants (sensu stricto) with both aerial and subterranean

Subgroup b. Heteroarthrocarpy (heteromericarpy sensu van der Pijl, 1982). One type of fruit with distinct proximal and distal segments, each typically
bearing a single seed that is a distinct morph, e.g. Cakile spp. (Barbour, 1970; Rodman, 1974; Keddy, 1980; Payne and Maun, 1981; 1982; Hocking, 1982; Maun
and Payne, 1989; Maun et al., 1990; Zhang, 1994; Donohue, 1997) and other species of Brassicaceae, tribe Brassiceae (Hall et al., 2011).

Subgroup c. Heterospermy. One or more types of fruits (F), without proximal/distal segments, containing seeds (S) that differ within and/or between
fruits. Examples include (1) two types of fruits, each with a different type of seed (2S : 2F), e.g. annual species of Aethionema (Brassicaceae) (Zohary and Fahn,
1950; Arshad et al., 2019), Diptychocarpus strictus (Brassicaceae) (Lu et al., 2010) and Suaeda aralocaspica (Amaranthaceae) (Wang et al., 2008); (2) two types of
fruits with three types of seeds (3S : 2F), e.g. Ceratocapnos heterocarpa (Fumariaceae) (Ruiz de Clavijo, 1994); and (3) one type of fruit with two types of seeds in
same fruit (2S : 1F), e.g., Capsella bursa-pastoris (Brassicaceae) (Toorop et al., 2012; Gomez-Cabellos et al., 2022) and Plantago coronopus (Plantaginaceae)
(Dowling, 1933; Schat, 1981).

Group B. Amphi-basicarpy. Flowers and fruits produced at or near ground-level and on aerial parts of stem. Aerial and ground-level diaspores may differ
in morphology and/or size.

Subgroup a. sensu stricto. Diaspores on aerial part of stem do not exhibit a continuous change in morphology or size, e.g. Trionptiles solitaria and some
other Cyperaceae (Haines, 1971; Haines & Lye, 1977; Browning, 1992; Bruhl, 1994; Smith et al., 2006); and Nassella clarazii (Poaceae) (Lerner et al., 2008).

Subgroup b. sensu lato. Diaspores on aerial part of stem (canopy) exhibit a continuous change in morphology and size, e.g. Ceratocarpus arenarius
(Amaranthaceae) (Lu et al., 2013). Cleistogamous grasses such as Triplasis purpurea (see Discussion), Amphibromus scabrivalvis (Cheplick and Clay, 1989) and
Achnatherum brachychaetum (Lerner et al., 2008) might fit here.

Group C. Amphicarpy. One type of fruit or more than one type of fruit produced both above- and belowground (Note exception in the Rumex
bucephalophorus species complex, Amphicarpy Subgroup b. senso lato.) that differ in ecological function, e.g., dispersal and dormancy (Baskin and Baskin,
2014; Zhang et al., 2020).

Subgroup a. sensu stricto (amphi-geocarpy sensu Barker, 2005). Flowers aerial (CH or CH/CL) and subterranean (CL only); fruits aerial and
subterranean. Examples include Amphicarpaea bracteata (Fabaceae), Amphicarpum amphicarpon (Poaceae), Cardamine chenopodifolia (Brassicaceae),
Commelina benghalensis (Commelinaceae) and Vigna minima (Fabaceae) (Zhang et al., 2020). In Amphicarpum and three other genera of grasses, the
subterranean spikelets with large caryopses are produced on specialized rhizomes called rhizanthogenes (Dobrenz and Beetle, 1966; Campbell et al., 1983).

Subgroup b. sensu lato. Flowers aerial (CH) and at or near ground-level (CH); fruits aerial and subterranean [or aerial and (basal→ subterranean) in the
Rumex bucephalophorus species complex (see below)], e.g., Catananche lutea (Asteraceae) (Ruiz de Clavijo, 1995; Ruiz de Clavijo and Jiménez, 1998), Emex
spinosa (Polygonaceae) (Ortiz et al., 2009, Gymnarrhena micrantha (Asteraceae) (Koller and Roth, 1964) [Various authors have reported erroneously that
subterranean fruits of C. lutea, E. spinosa and G. micrantha are produced by CL flowers, when, in fact, they are produced by CH flowers that are insect pollinated
(see Baskin and Baskin, 2017).] and plants of the R. bucephalophorus species complex that produce both buried and aerial types of diaspores. Plants in some
populations of the R. bucephalophorus species complex that form a basal rosette may produce female flowers and mature diaspores in the leaf axils that are
buried by the action of contractile roots (buried diaspores) as well as aerial hermaphrodite flowers and diaspores. Plants that do not form a rosette produce
only aerial flowers and diaspores. Altogether, one buried and three aerial diaspore types are produced by this species complex (Talavera et al., 2010, 2011,
2012). C. lutea and G. micrantha are examples of Asteraceae species with two types of capitula, i.e. aerial and basal (partly underground) (Burtt, 1977).
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flowers and fruits to plants that produce only aerial flowers and
fruits (Mattatia, 1977). One of the stages in the gradient is a basi-
carpic form that produces CH flowers near the soil surface, which
Mattatia (1977) called ‘subamphicarpic.’ Thus, this species con-
sists of both monomorphic (e.g. basicarpic form) and hetero-
morphic (e.g. amphicarpic form) plants.

Some species may exhibit plasticity as to the diaspore classifi-
cation category to which they belong. For example, species that
are amphicarpic and produce both aerial and subterranean dia-
spores under favorable environmental conditions may produce
only underground fruits under stressful conditions and thus be
‘facultatively geocarpic’, e.g. Amphicarpaea edgeworthii
(Fabaceae) (Zhang et al., 2017), Amphicarpum amphicarpon
(Poaceae) Cheplick and Quinn, 1983) and Gymnarrhena
micrantha (Asteraceae) (Koller and Roth, 1964; Zeide, 1978;
Loria and Noy-Meir, 1979/80). In which cases, individuals of
these two annual species have the capacity to be either diaspore-
heteromorphic (amphicarpic) or monomorphic (geocarpic).

Unlike these amphicarpic species, the cold desert annual
diaspore-polymorphic amphi-basicarpic species Ceratocarpus are-
narius produces both basal (typically two) and aerial diaspores in
the most stressful conditions in which it grows in its cold desert
habitat. In the cold deserts of northwest China, we have observed
that the smallest (5 cm tall, no branches) and largest (35 cm tall,
bushy) plants of this species produce both basal and aerial dia-
spores, albeit in different basal morph:aerial morph and
within-aerial morph ratios. Detailed experimental garden studies
on the effect of abiotic (e.g. soil physicochemistry) and biotic
(i.e. inter- and intraspecific competition) stress on phenotypic
plasticity of the growth and reproduction of C. arenarius, includ-
ing variation in diaspore morph ratios, have been published by
Gan et al. (2020) and Lu et al. (2021).

Concluding remarks

We have documented via a hierarchical-based classification sys-
tem the considerable diversity in structural design (‘architecture’)
of diaspore monomorphism and heteromorphism in angios-
perms. The scheme will enable investigators working on the
broad topic of ‘seed heteromorphism’ to more precisely commu-
nicate their research to others, in part at least by giving more
exactness to the term. It also will aid plant biologists in the prep-
aration of a profile (spectrum) of the kinds (hierarchical categor-
ies) of diaspore monomorphism and heteromorphism for the
various ecological and biogeographical units on earth. Finally, a
detailed classification scheme that includes both diaspore mono-
morphism and hetermorphism is required for addressing the
phylogenetic/evolutionary aspects of ‘seed heteromorphism’ in
angiosperms (e.g. see Fernández et al., 2001; Cruz-Mazo et al.,
2009, 2010). All that being said, however, it is likely that more
hierarchical categories will need to be added to our system and/
or existing ones revised/refined as literature and field research
continues on diaspore monomorphism and heteromorphism in
angiosperms.
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Appendix A Genetic diaspore polymorphism in angiosperms

Genetic diaspore polymorphism is best known in the family Valerianaceae,
including Plectritis (Ganders et al., 1977a,b; Carey and Ganders, 1980) and
Valerianella (Eggers Ware, 1983). In Plectritis congesta, experimental crosses
showed that the kind of fruit morph is monogenically inherited with the allele
for winged fruits dominant over wingless fruits (Ganders et al., 1977a). In
Plectritis brachystemon, homozygous winged plants (i.e. selfed plants produced
only winged fruits) x homozygous wingless fruits (i.e. selfed plants produced
only wingless fruits) → F1 hybrids, all of which produced winged fruits. The F2
(F1 selfed) consisted of 27 plants that produced winged fruits and nine that
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produced wingless fruits (a 3:1 ratio). Thus, fruit dimorphism in P. brachystemon
is controlled by a single locus with the allele for winged fruit dominant (Ganders
et al., 1977b). In Valerianella ozarkana, crosses between forma ozarkana (winged)
and forma bushii (fusiform) indicated that there was a simple monogenic rela-
tionship in which the ozarkana (winged) allele is dominant over the bushii (fusi-
form) allele (Eggers-Ware, 1983). It should be pointed out that not all species that
produce two or more kinds of diaspores fit either somatic polymorphism or gen-
etic polymorphism, i.e. they neither fit one nor the other. Fedia cornucopiae and F.
grandflora (Valerianaceae) have been shown to exhibit both somatic and genetic
polymorphism (Mathez and Xena de Enrich, 1985a, 1985b).,

Genetic diaspore heteromorphism (only one morph per plant) has been
reported in the two grass species Aegilops speltoides (e.g. Zohary and Imber,
1963; Belyayev and Raskina, 2013; Ruban and Badaeva, 2018) and Achnatherum
hymenoides (Jones and Nielson, 1999; Jones et al., 2007). In one of the two mor-
photypes of A. speltoides (i.e. form aucheri), the spike is the dispersal unit, and in
the other morphotype (form ligustica) the spikelet is the dispersal unit. In A. hyme-
noides, seed size, i.e. jumbo > globose > elongate) is under genetic control, and
degree of seed dormancy decreases from jumbo to globose to elongate.

A kind of genetic polymorphism for capitulum type occurs in British
populations of Senecio vulgaris (Asteraceae). Plants of this species have radiate
and non-radiate capitulum morphs, which are under genetic control. The
radiate morph originated via introgressive hybridization between the native
non-radiate allotetraploid S. vulgaris and the introduced diploid radiate S.
squalidus. Two tightly-linked genes of S. squalidus were introgressed into S.
vulgaris. A short-rayed form (a heterozygote) is produced from crosses
between radiate and non-radiate forms of S. vulgaris. Fresh cypselae from

radiate and non-radiate morphs differ in germination phenology. There also
were differences in germination percentages after cypselae from radiate and
non-radiate morphs were stored in the laboratory from October to June, dur-
ing which time after-ripening may have occurred (e.g. Trow, 1912; Richards,
1975; Ingram et al., 1980; Abbott, 1986, 1992; Abbott et al., 1988, 1992,
1998; Abbott and Horrill, 1991; Chapman and Abbott, 2010).

Spergula and Spergularia are two genera in the Caryophyllaceae containing
species that produce heteromorphic seeds with a genetic component. Spergula
arvensis produces papilate (P) and smooth, i.e. non-papilate (NP), seeds and a
hybrid (P × NP) intermediate between the two morphs; the hybrid is produced
in a low frequency. Inheritance of seed coat character is controlled by one gene,
one locus and two alleles. The intermediate morph is heterozygous with
incomplete dominance (New, 1958, 1959, 1961, 1978; New and Herriott,
1981; Wagner, 1986, 1988; Kucewicz and Gojło, 2013).

Several species of Spergularia (e.g. S. marina and S. media) produce winged
and non-winged seeds and a heterzygous intermediate with a narrow wing
produced in a low frequency (Salisbury, 1958; Sterk, 1969a,b,c,d; Sterk and
Dijkhuizen, 1972; Telenius and Torstensson, 1989, 1991; Telenius, 1992;
Ceynowa-Giełdon, 1993; Redbo-Torstensson, 1994; Redbo-Torstensso and
Telenius, 1995; 1999; Mazer and Lowrey, 2003; Memon et al., 2010). Seeds
of Spergularia diandra collected near Sede Boker in the Negev Desert of
Israel consisted of three genotypes (hairy, partly-hairy and smooth). Each
genotype had three seed-color phenotypes (black, brown and yellow), and
there were differences in germination of the phenotypes. Thus, there were
nine seed morphs, i.e. 3 phenotypes × 3 genotypes = 9 types of seed morphs
(Gutterman, 1994a, 1996, 1997a, b, 1998, 2000).
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