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Abstract. Let Z be a complete set of Sylow subgroups of a finite group G; that
is to say for each prime p dividing the order of G, Z contains one and only one Sylow
p-subgroup of G. A subgroup H of G is said to be Z-permutable in G if H permutes
with every member of Z. In this paper we characterise the structure of finite groups G
with the assumption that (1) all the subgroups of Gp ∈ Z are Z-permutable in G, for all
prime p ∈ π (G), or (2) all the subgroups of Gp ∩ F∗(G) are Z-permutable in G, for all
Gp ∈ Z and p ∈ π (G), where F∗(G) is the generalised Fitting subgroup of G.

2000 Mathematics Subject Classification. 20D10, 20D20.

1. Introduction and statements of results. All groups considered in this paper are
finite. We use conventional notions and notation, as in Huppert [5]. Throughout this
paper, G stands for a finite group and π (G) represents the set of distinct primes dividing
|G|.

A subgroup of G is called quasi-normal in G if it permutes with every subgroup
of G. We say, following Kegel [8], that a subgroup of G is S-quasi-normal in G if it
permutes with every Sylow subgroup of G. Recently, Asaad and Heliel [1] introduced
a new embedding property, namely the Z-permutability of subgroups of a group; Z is
called a complete set of Sylow subgroups of G if for each prime p ∈ π (G) , Z contains
exactly one Sylow p-subgroup of G, say Gp. A subgroup of G is said to be Z-permutable
in G if it permutes with every member of Z. Obviously, every S-quasi-normal subgroup
is Z-permutable. In contrast to the fact that every S-quasi-normal subgroup is
subnormal (see [8]), it does not hold in general that every Z-permutable subgroup of
G is subnormal in G. It suffices to consider the alternating group of degree 4.

Many authors have investigated the structure of a group G under the assumption
that some subgroups of G are well situated in G. Srinivasan [14] proved that a group
G is supersolvable if every maximal subgroup of any Sylow subgroup of G is normal.
Later on, Wall [15] gave a complete classification of finite groups under the assumption
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of Srinivasan. In [10], the authors obtained the following results ([10], Theorems 3.1
and 3.4): Let Z be a complete set of Sylow subgroups of a group G and p the smallest
prime dividing |G|. Then G is p-nilpotent if one of the following hold: (1) the maximal
subgroups of Gp ∈ Z are Z-permutable subgroups of G; (2) G is A4-free and the 2-
maximal subgroups of Gp are Z-permutable subgroups of G. In [11], the authors
obtained the following ([11], Theorems 3.1 and 3.4): Let Z be a complete set of Sylow
subgroups of a group G and p the smallest prime dividing |G|. Then G is p-nilpotent
if one of following holds: (1) every cyclic subgroup of prime order or order 4 (when
p = 2) of Gp ∈ Z is Z-permutable in G; (2) G is A4-free and every subgroup of prime
square order of Gp ∈ Z is Z-permutable in G. We know that if every subgroup of G is
normal in G; then G is the Dedikind group [13]; every subgroup of G is quasi-normal
in G; then G is the quasi-Hamilton group [2]. It is easy to see that that G is nilpotent if
and only if every subgroup of G of prime power order is Z-permutable in G, where Z

is a complete set of Sylow subgroups of G. In view of the above results, it is interesting
to give the structure of G under the assumption that for any Gp ∈ Z, every subgroup
of Gp is Z-permutable in G. We get the following.

THEOREM 1.1. Let G be a finite group and Z a complete set of Sylow subgroups of
G. Then every subgroup of Gp ∈ Z, for any prime p ∈ π (G), is Z-permutable in G if and
only if there exists a normal subgroup L of G satisfying the following:

(1) L is an abelian Hall subgroup of G and G/L is nilpotent;
(2) the elements of G induce power automorphisms in L;
(3) for any two distinct primes p, q �∈ π (L), [Gp, Gq] = 1, where Gp, Gq ∈ Z.

It is interesting to limit the hypotheses to a smaller subgroup of G. By [4] and [9], we
know the following: Let G be a finite group and Z a complete set of Sylow subgroups
of G and F∗(G) is the generalised Fitting subgroup of G. Then G is supersolvable
under one of following assumptions: (1) the maximal subgroups of Gp ∩ F∗(G) are
Z-permutable subgroups of G, for all Gp ∈ Z; (2) the cyclic subgroups of Gp ∩ F∗(G)
of prime order or order are Z-permutable subgroups of G, for all Gp ∈ Z. Hence,
it is interesting to investigate the structure of G under the assumption that all the
subgroups of Gp ∩ F∗(G) are Z-permutable subgroups of G, for all Gp ∈ Z. Here we get
the following.

THEOREM 1.2. Let G be a finite group and Z a complete set of Sylow subgroups of G,
and F∗(G) is the generalised Fitting subgroup of G. Then every subgroup of Gp ∩ F∗(G),
for any Gp ∈ Z and any p ∈ π (G), is Z-permutable in G if and only if there exists a normal
subgroup L of G satisfying the following:

(1) L is abelian and G/L is nilpotent;
(2) L is a Hall subgroup of F∗(G);
(3) p′-elements of G induce power automorphisms in Lp, the Sylow p-subgroup

of L.

COROLLARY 1.3. Let G be a finite group, and F∗(G) is the generalised Fitting subgroup
of G. Then every subgroup of F∗(G) is S-quasi-normal in G if and only if there exists a
normal subgroup L of G satisfying the following:

(1) L is abelian and G/L is nilpotent;
(2) L is a Hall subgroup of F∗(G);
(3) p′-elements of G induce power automorphisms in Lp, the Sylow p-subgroup

of L.
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Let Z be a complete set of Sylow subgroups of a group G. If N � G, we denote

ZN = {GpN : Gp ∈ Z },
ZN/N = {GpN/N : Gp ∈ Z },
Z ∩ N = {Gp ∩ N : Gp ∈ Z }.

The generalised Fitting subgroup F∗(G) of G is the unique maximal normal quasi-
nilpotent subgroup of G. Its important properties can be found in [7], Chapter X,
Section 13.

Now, GN denotes the nilpotent residual of G, which some authors prefer to write
as K∞(G); it is the last term in the lower central series of G.

2. Preliminaries. The following lemmas will be used in the proofs of our results.

LEMMA 2.1. ([1], Lemma 2.1) Let Z be a complete set of Sylow subgroups of G,
U a Z-permutable subgroup of G and N a normal subgroup of G. Then

(1) Z ∩ N and ZN/N are complete sets of Sylow subgroups of N and G/N,
respectively;

(2) UN/N is a ZN/N-permutable subgroup of G/N;
(3) U is a Z ∩ N-permutable subgroup of N if U ≤ N.

LEMMA 2.2. Let G be a finite group and Z a complete set of Sylow subgroups of G.
Suppose N is a normal p-subgroup of G; then every subgroup of N is Z-permutable in G
if and only if every subgroup of N is S-quasi-normal in G.

Proof. We only need to prove the necessity. Suppose any subgroup of N is Z-
permutable in G. Let L be an arbitrary subgroup of N. Then LGpi

is a subgroup of G
for every Gpi

∈ Z. Since N � G, it follows that L ≤ Nx for all x ∈ G. Hence Lx−1 ≤ N,

and therefore Lx−1
Gpi

≤ G. But LGx
pi

= (Lx−1
Gpi

)x is a subgroup of G, then L is S-
quasi-normal in G. �

LEMMA 2.3. ([7]; Chapter X, Section 13) Let G be a group and M a subgroup
of G.

(1) If M is normal in G, then F∗(M) ≤ F∗(G).
(2) If F∗(G) is solvable, then F∗(G) = F(G).

LEMMA 2.4. Let G be a finite group and Z a complete set of Sylow subgroups of G.
Suppose every subgroup of F∗(G) ∩ Gp is Z-permutable in G, for any Gp ∈ Z; then G is
supersolvable.

Proof. This is a corollary of results in [4] or [9]. �
LEMMA 2.5. Suppose G is a group and P a normal p-subgroup of G. Then P ≤ Z∞(G)

if and only if CG(P) ≥ Op(G).

Proof. If CG(P) ≥ Op(G), then G/CG(P) is a p-group; so P ≤ Z∞(G) by [16],
p. 220, Theorem 6.3. The converse is [12], Lemma 2.8. �

LEMMA 2.6. Suppose P is a normal p-subgroup of G. If every subgroup of P is
S-quasi-normal in G, then every p′-element of G induces a power automorphism in P.
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Proof. Take any a ∈ P. Let x be a p′-element of G. Then x ∈ Gp′ for some p′-Hall
subgroup of G. Then 〈a〉Gp′ is a group by hypotheses. Hence

a〈x〉 = a〈x〉 ∩ 〈a〉Gp′ = 〈a〉(a〈x〉 ∩ Gp′ ) ≤ 〈a〉(P ∩ Gp′) = 〈a〉,
i.e. a〈x〉 = 〈a〉. Therefore x induces a power automorphism in 〈a〉. �

In the next lemma we collect some properties of power automorphism.

LEMMA 2.7. Suppose N is a non-trivial normal p-subgroup of G. Then
(1) the p′-power automorphism of N is trivial if N is non-abelian;
(2) there exists a positive integer n such that aα = an, for all a ∈ N, if N is abelian

and α is a power automorphism of N;
(3) the power automorphisms of N are in the centre of Aut(N) if N is abelian;
(4) G/CG(N) is nilpotent if all p′-elements of G induce power automorphisms in N

by conjugate.

Proof. (1) It is [6], Hilfsatz 5.
(2) See [13], Chapter 13, Theorem 4.3.
(3) It is a direct corollary of (2).
(4) If N is non-abelian, then G/CG(N) is a p-group by (1); hence G/CG(N) is

nilpotent. If N is abelian, then the power automorphisms are in the centre of
Aut(N) by (3). It is easy to see that G/CG(N) is nilpotent.

�
LEMMA 2.8. Suppose L = K∞(G) is the nilpotent residual of G. If L is nilpotent, then

Lp = [Lp, G], for any p ∈ π (G).

Proof. By definition, L = [L, G] = [Lp × Lp′ , G] = [Lp, G] × [Lp′ , G] = Lp × Lp′ ,
for any p ∈ π (G). Hence Lp = [Lp, G]. �

3. Proofs.

Proof of Theorem 1.1. We prove the necessity of this theorem in several steps.
(i) G is supersolvable. Hence F∗(G) = F(G).
By Lemmata 2.4 and 2.3.
(ii) If N is a normal p-subgroup of G, then p′-elements of G induce power

automorphisms in N.
If N is a normal p-subgroup of G, then N ≤ Gp ∈ Z. Thus every subgroup of N

is Z-permutable in G by hypotheses; then is S-quasi-normal in G by Lemma 2.2. Now
applying Lemma 2.6, we get step (ii).

(iii) Pick L = GN ; then G/L is nilpotent. Furthermore, L is abelian.
By (ii) and Lemma 2.7(4), for any p ∈ π (G), we know that G/CG(Op(G)) is

nilpotent. So (G/CG(Op(G)))N = 1, and it follows that GN ≤ CG(Op(G)). Therefore
GN ≤ ⋂

p∈π(G) CG(Op(G)) = CG(F(G)) ≤ F(G). Then L ≤ Z(F(G)), Hence L is abelian.
(iv) L is a Hall subgroup of G.
Let p be the largest prime dividing |G|, and P is a Sylow p-subgroup of G. Since G

is supersolvable by step (i), we know that P � G. Then P = Gp ∈ Z. Now, we consider
the quotient group G/P. By Lemma 2.1, all subgroups of every member in ZP/P are
ZP/P-permutable in G/P. By induction, (G/P)N = GN P/P = LP/P is a Hall subgroup
of G/P.
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Suppose that every p′-element of G centralises P. Let Lp ∈ Sylp(L). If Lp �= 1, then,
by Lemma 2.8, Lp = [Lp, G] = [Lp, P] < Lp as Lp ≤ P, a contradiction. Hence Lp = 1
and L is a p′-group. Therefore, L ∼= LP/P is a normal Hall subgroup of G. Now suppose
that there exists a p′-element x which induces a non-trivial power automorphism on P.
Hence P = [P, G] ≤ L. Therefore L is a Hall subgroup of G.

(v) The elements of G induce power automorphisms in L.
It is easy to see from (ii)–(iv).
(vi) For any two distinct primes p, q �∈ π (L), [Gp, Gq] = 1, where Gp, Gq ∈ Z.
By the hypotheses, GpGq is a group. Since GpGq ∼= GpGqL/L ≤ G/L, GpGq is

nilpotent by (iii). Hence [Gp, Gq] = 1.
Conversely, it suffices to prove that 〈x〉〈y〉 = 〈y〉〈x〉, for any p-element x ∈ Gp and

q-element y ∈ Gq, where Gp, Gq ∈ Z.
If p, q ∈ π (L), since L is a normal abelian Hall subgroup of G, we have that x, y ∈ L

and 〈x〉〈y〉 = 〈y〉〈x〉.
If p, q �∈ π (L), by (3), [x, y] = 1. Hence 〈x〉〈y〉 = 〈y〉〈x〉.
Suppose p ∈ π (L) or q ∈ π (L). Without lose generality, let p ∈ π (L). Then x ∈ L

and 〈x〉 � G by (2). Hence 〈x〉〈y〉 = 〈y〉〈x〉. Finishing the proof. �

Proof of Theorem 1.2. We first prove the necessity of Theorem 1.2. With the same
arguments as in the proof of Theorem 1.1, we get steps (i)–(iii).

(i) G is supersolvable. Hence F∗(G) = F(G).
(ii) If N is a normal p-subgroup of G, then p′-elements of G induce power

automorphisms in N.
(iii) Pick L = GN ; then G/L is nilpotent. Furthermore, L is abelian.
(iv) Denote F = F(G). Then F = CG(L).
By the proof of (iii), we only need to prove CG(L) ≤ F . We know that L ≤

Z(CG(L)), and hence CG(L)/Z(CG(L)) ≤ G/Z(CG(L)) is nilpotent. Hence CG(L) is
nilpotent. Therefore CG(L) ≤ F(G).

(iv) F = Z∞(G) × L.
By [5], Chapter VI, Satz 7.15, G splits over L, i.e. G = X �< L, for some subgroup

X of G. So F = F ∩ (XL) = L(CG(L) ∩ X) = CX (L)L = CX (L) × L.
Now we prove that CX (L) = Z∞(G).
Notice that [CX (L), G] = [CX (L), X ] ≤ CX (L). Since X ∼= G/L is nilpo-

tent, there exists an integer n such that Kn(X) = K∞(X) = 1. Therefore
[CX (L), G, . . . , G] = [CX (L), X, . . . , X ] ≤ K∞(X) = 1. Therefore CX (L) ≤ Zn−2(G) ≤
Z∞(G). Thus Z∞(G) = Z∞(G) ∩ F = CX (L)(Z∞(G) ∩ L),

Next we want to prove that Z∞(G) ∩ L = 1. If Z∞(G) ∩ L �= 1, then there exists a
prime p ∈ π (G) such that Z∞(G) ∩ Lp �= 1. If every p′-element of G centralises Lp, then,
by Lemma 2.8, Lp = [Lp, G] = [Lp, Gp] < Lp, a contradiction. Hence there exists a p′-
element x which induces a non-trivial power automorphism on Lp, and so [Lp, x] �= 1.
On the other hand, we know that [Z∞(G) ∩ Lp, x] = 1 by Lemma 2.5. Hence [Lp, x] = 1
by (iii) and Lemma 2.7(2), a contradiction. Hence Z∞(G) ∩ L = 1. So Z∞(G) = CX (L).
Thus F = Z∞(G) × L.

(v) L is a Hall subgroup of F(G).
If L is not a Hall subgroup of F(G), then there is a prime p ∈ π (L) ∩ π (F(G)/L).

Denote C = CX (L).
By (iv), F = CG(L) = Z∞(G) × L = CX (L) × L = C × L. Since p ∈ π (C), we have

Cp �= 1; then Cp ∩ Z(C) �= 1. Therefore p ∈ π (Z(C)). For any p′-element x ∈ X , x

https://doi.org/10.1017/S0017089509990231 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990231


150 YANGMING LI, LIFANG WANG AND YANMING WANG

induces a power automorphism on Fp = Cp × Lp. By Lemma 2.5, [Cp, x] = 1. Hence
[Z(Cp), x] = 1. By Lemma 2.7(2), [Z(Cp) × Lp, x] = 1, and in particular, [Lp, x] = 1.
Therefore [Lp, Xp′ ] = 1. Then Lp = [Lp, G] = [Lp, X ] = [Lp, Xp] < Lp, a contradiction.
Therefore L is a Hall subgroup of F(G).

Conversely, it is easy to see that G is solvable; hence F∗(G) = F(G) �= 1. It suffices
to prove that every cyclic p-subgroup < g > of F(G) is S-quasi-normal in G, for any
prime p ∈ π (G).

Suppose g ∈ Op(G). If P ∈ Sylp(G), then g ∈ Op(G) ≤ P. Thus < g > P = P <

g >= P. Pick an arbitrary Q ∈ Sylq(G), where q �= p. If p ∈ π (L), then g ∈ Lp by (iii).
Then Q normalises < g > by (ii). Therefore Q < g >=< g > Q. Hence suppose that
p �∈ π (L). Then [< g > L/L, QL/L] = 1 as G/L is nilpotent by (i). So [< g >, Q] ≤ L. It
follows that [Q, g] ≤ L ∩ gG ≤ L ∩ Op(G) = 1. Hence Q < g >=< g > Q. Completing
the proof. �

Proof of Corollary 1.3. If every subgroup of F∗(G) is S-quasi-normal in G, then
G is supersolvable by the results in [4] or [9]. In particular, F∗(G) = F(G). For any
prime p ∈ π (G) and any Sylow p-subgroup Gp of G, every subgroup of Gp ∩ F∗(G) =
Gp ∩ F(G) = Op(G) is S-quasi-normal in G by the hypotheses. By Theorem 1.2, it is
easy to see the necessity of Corollary 1.3 holds. Conversely, by the proof of Theorem
1.2, we know that every cyclic p-subgroup of F(G) = F∗(G) is S-quasi-normal in G, for
any prime p ∈ π (G). It is easy to see that every subgroup of F∗(G) is S-quasi-normal
in G. Completing the proof. �
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