FINITE GROUPS WITH SOME \mathcal{Z}-PERMUTABLE SUBGROUPS

YANGMING LI
Department of Mathematics, Guangdong Institute of Education, Guangzhou 510310, China
e-mail: liyangming@gdei.edu.cn

LIFANG WANG
School of Mathematics and Computer, Shanxi Normal University, Linfen 041004, China
e-mail:lfwang_2003@yahoo.com.cn

and YANMING WANG
Lingnan College and Department of Mathematics, Zhongshan University, Guangzhou 510275, China
e-mail: stswym@mail.sysu.edu.cn

(Received 13 April 2007; accepted 28 July 2009)

Abstract. Let \mathcal{Z} be a complete set of Sylow subgroups of a finite group G; that is to say for each prime p dividing the order of G, \mathcal{Z} contains one and only one Sylow p-subgroup of G. A subgroup H of G is said to be \mathcal{Z}-permutable in G if H permutes with every member of \mathcal{Z}. In this paper we characterise the structure of finite groups G with the assumption that (1) all the subgroups of $G_p \in \mathcal{Z}$ are \mathcal{Z}-permutable in G, for all prime $p \in \pi(G)$, or (2) all the subgroups of $G_p \cap F^*(G)$ are \mathcal{Z}-permutable in G, for all $G_p \in \mathcal{Z}$ and $p \in \pi(G)$, where $F^*(G)$ is the generalised Fitting subgroup of G.

2000 Mathematics Subject Classification. 20D10, 20D20.

1. Introduction and statements of results. All groups considered in this paper are finite. We use conventional notions and notation, as in Huppert [5]. Throughout this paper, G stands for a finite group and $\pi(G)$ represents the set of distinct primes dividing $|G|$.

A subgroup of G is called quasi-normal in G if it permutes with every subgroup of G. We say, following Kegel [8], that a subgroup of G is S-quasi-normal in G if it permutes with every Sylow subgroup of G. Recently, Asaad and Heliel [1] introduced a new embedding property, namely the 3-permutability of subgroups of a group; \mathcal{Z} is called a complete set of Sylow subgroups of G if for each prime $p \in \pi(G)$, \mathcal{Z} contains exactly one Sylow p-subgroup of G, say G_p. A subgroup of G is said to be \mathcal{Z}-permutable in G if it permutes with every member of \mathcal{Z}. Obviously, every S-quasi-normal subgroup is \mathcal{Z}-permutable. In contrast to the fact that every S-quasi-normal subgroup is subnormal (see [8]), it does not hold in general that every \mathcal{Z}-permutable subgroup of G is subnormal in G. It suffices to consider the alternating group of degree 4.

Many authors have investigated the structure of a group G under the assumption that some subgroups of G are well situated in G. Srinivasan [14] proved that a group G is supersolvable if every maximal subgroup of any Sylow subgroup of G is normal. Later on, Wall [15] gave a complete classification of finite groups under the assumption

* Project supported in part by NSFC(10871210), NSF of Guangdong (006023728), NSF for youth of Shanxi Province (2007021004) and Tian YuanFund of Mathematics of China (10726002).
of Srinivasan. In [10], the authors obtained the following results ([10], Theorems 3.1 and 3.4): Let \(\mathfrak{Z} \) be a complete set of Sylow subgroups of a group \(G \) and \(p \) the smallest prime dividing \(|G| \). Then \(G \) is \(p \)-nilpotent if one of the following hold: (1) the maximal subgroups of \(G_p \in \mathfrak{Z} \) are \(3 \)-permutable subgroups of \(G \); (2) \(G \) is \(A_4 \)-free and the \(2 \)-maximal subgroups of \(G_p \) are \(3 \)-permutable subgroups of \(G \). In [11], the authors obtained the following ([11], Theorems 3.1 and 3.4): Let \(\mathfrak{Z} \) be a complete set of Sylow subgroups of a group \(G \) and \(p \) the smallest prime dividing \(|G| \). Then \(G \) is \(p \)-nilpotent if one of the following holds: (1) every cyclic subgroup of prime order or order 4 (when \(p = 2 \)) of \(G_p \in \mathfrak{Z} \) is \(3 \)-permutable in \(G \); (2) \(G \) is \(A_4 \)-free and every subgroup of prime square order of \(G_p \in \mathfrak{Z} \) is \(3 \)-permutable in \(G \). We know that if every subgroup of \(G \) is normal in \(G \), then \(G \) is the Dedikind group [13]; every subgroup of \(G \) is quasi-normal in \(G \); then \(G \) is the quasi-Hamilton group [2]. It is easy to see that that \(G \) is nilpotent if and only if every subgroup of \(G \) of prime power order is \(3 \)-permutable in \(G \), where \(\mathfrak{Z} \) is a complete set of Sylow subgroups of \(G \). In view of the above results, it is interesting to give the structure of \(G \) under the assumption that for any \(G_p \in \mathfrak{Z} \), every subgroup of \(G_p \) is \(3 \)-permutable in \(G \). We get the following.

Theorem 1.1. Let \(G \) be a finite group and \(\mathfrak{Z} \) a complete set of Sylow subgroups of \(G \). Then every subgroup of \(G_p \in \mathfrak{Z} \), for any prime \(p \in \pi(G) \), is \(3 \)-permutable in \(G \) if and only if there exists a normal subgroup \(L \) of \(G \) satisfying the following:

1. \(L \) is an abelian Hall subgroup of \(G \) and \(G/L \) is nilpotent;
2. the elements of \(G \) induce power automorphisms in \(L \);
3. for any two distinct primes \(p, q \notin \pi(L) \), \([G_p, G_q] = 1 \), where \(G_p, G_q \in \mathfrak{Z} \).

It is interesting to limit the hypotheses to a smaller subgroup of \(G \). By [4] and [9], we know the following: Let \(G \) be a finite group and \(\mathfrak{Z} \) a complete set of Sylow subgroups of \(G \) and \(F^*(G) \) is the generalised Fitting subgroup of \(G \). Then \(G \) is supersolvable under one of the following assumptions: (1) the maximal subgroups of \(G_p \cap F^*(G) \) are \(3 \)-permutable subgroups of \(G \), for all \(G_p \in \mathfrak{Z} \); (2) the cyclic subgroups of \(G_p \cap F^*(G) \) of prime order or order are \(3 \)-permutable subgroups of \(G \), for all \(G_p \in \mathfrak{Z} \). Hence, it is interesting to investigate the structure of \(G \) under the assumption that all the subgroups of \(G_p \cap F^*(G) \) are \(3 \)-permutable subgroups of \(G \), for all \(G_p \in \mathfrak{Z} \). Here we get the following.

Theorem 1.2. Let \(G \) be a finite group and \(\mathfrak{Z} \) a complete set of Sylow subgroups of \(G \), and \(F^*(G) \) is the generalised Fitting subgroup of \(G \). Then every subgroup of \(G_p \cap F^*(G) \), for any \(G_p \in \mathfrak{Z} \) and any \(p \in \pi(G) \), is \(3 \)-permutable in \(G \) if and only if there exists a normal subgroup \(L \) of \(G \) satisfying the following:

1. \(L \) is abelian and \(G/L \) is nilpotent;
2. \(L \) is a Hall subgroup of \(F^*(G) \);
3. \(p' \)-elements of \(G \) induce power automorphisms in \(L_p \), the Sylow \(p \)-subgroup of \(L \).

Corollary 1.3. Let \(G \) be a finite group, and \(F^*(G) \) is the generalised Fitting subgroup of \(G \). Then every subgroup of \(F^*(G) \) is \(S \)-quasi-normal in \(G \) if and only if there exists a normal subgroup \(L \) of \(G \) satisfying the following:

1. \(L \) is abelian and \(G/L \) is nilpotent;
2. \(L \) is a Hall subgroup of \(F^*(G) \);
3. \(p' \)-elements of \(G \) induce power automorphisms in \(L_p \), the Sylow \(p \)-subgroup of \(L \).
Let \mathfrak{Z} be a complete set of Sylow subgroups of a group G. If $N \triangleleft G$, we denote

\begin{align*}
\mathfrak{Z}N &= \{ G_pN : G_p \in \mathfrak{Z} \}, \\
\mathfrak{Z}N/N &= \{ G_pN/N : G_p \in \mathfrak{Z} \}, \\
\mathfrak{Z} \cap N &= \{ G_p \cap N : G_p \in \mathfrak{Z} \}.
\end{align*}

The generalised Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasi-nilpotent subgroup of G. Its important properties can be found in [7], Chapter X, Section 13.

Now, G^V denotes the nilpotent residual of G, which some authors prefer to write as $K_\infty(G)$; it is the last term in the lower central series of G.

2. Preliminaries. The following lemmas will be used in the proofs of our results.

Lemma 2.1. ([1], Lemma 2.1) Let \mathfrak{Z} be a complete set of Sylow subgroups of G, U a \mathfrak{Z}-permutable subgroup of G and N a normal subgroup of G. Then

1. $\mathfrak{Z} \cap N$ and $\mathfrak{Z}N/N$ are complete sets of Sylow subgroups of N and G/N, respectively;
2. UN/N is a $\mathfrak{Z}N/N$-permutable subgroup of G/N;
3. U is a $\mathfrak{Z} \cap N$-permutable subgroup of N if $U \leq N$.

Lemma 2.2. Let G be a finite group and \mathfrak{Z} a complete set of Sylow subgroups of G. Suppose N is a normal p-subgroup of G; then every subgroup of N is \mathfrak{Z}-permutable in G if and only if every subgroup of N is S-quasi-normal in G.

Proof. We only need to prove the necessity. Suppose any subgroup of N is \mathfrak{Z}-permutable in G. Let L be an arbitrary subgroup of N. Then $LG_{p_{\mathfrak{Z}}}^x$ is a subgroup of G for every $G_{p_{\mathfrak{Z}}}^x \in \mathfrak{Z}$. Since $N \triangleleft G$, it follows that $L \leq N^x$ for all $x \in G$. Hence $L^{x^{-1}} \leq N$, and therefore $L^{x^{-1}}G_{p_{\mathfrak{Z}}}^x \leq G$. But $LG_{p_{\mathfrak{Z}}}^x = (L^{x^{-1}}G_{p_{\mathfrak{Z}}}^x)^x$ is a subgroup of G, then L is S-quasi-normal in G. □

Lemma 2.3. ([7]; Chapter X, Section 13) Let G be a group and M a subgroup of G.

1. If M is normal in G, then $F^*(M) \leq F^*(G)$.
2. If $F^*(G)$ is solvable, then $F^*(G) = F(G)$.

Lemma 2.4. Let G be a finite group and \mathfrak{Z} a complete set of Sylow subgroups of G. Suppose every subgroup of $F^*(G) \cap G_p$ is \mathfrak{Z}-permutable in G, for any $G_p \in \mathfrak{Z}$; then G is supersolvable.

Proof. This is a corollary of results in [4] or [9]. □

Lemma 2.5. Suppose G is a group and P a normal p-subgroup of G. Then $P \leq Z_\infty(G)$ if and only if $C_G(P) \geq O^p(G)$.

Proof. If $C_G(P) \geq O^p(G)$, then $G/C_G(P)$ is a p-group; so $P \leq Z_\infty(G)$ by [16], p. 220, Theorem 6.3. The converse is [12], Lemma 2.8. □

Lemma 2.6. Suppose P is a normal p-subgroup of G. If every subgroup of P is S-quasi-normal in G, then every p'-element of G induces a power automorphism in P.

Proof. Take any \(a \in P \). Let \(x \) be a \(p' \)-element of \(G \). Then \(x \in G_p \) for some \(p' \)-Hall subgroup of \(G \). Then \(\langle a \rangle G_p \) is a group by hypotheses. Hence

\[
a^{(x)} = a^{(x)} \cap \langle a \rangle G_p = \langle a \rangle (a^{(x)} \cap G_p) \leq \langle a \rangle (P \cap G_p) = \langle a \rangle,
\]

i.e. \(a^{(x)} = \langle a \rangle \). Therefore \(x \) induces a power automorphism in \(\langle a \rangle \). \(\square \)

In the next lemma we collect some properties of power automorphism.

Lemma 2.7. Suppose \(N \) is a non-trivial normal \(p \)-subgroup of \(G \). Then

(i) \(p' \)-power automorphism of \(N \) is trivial if \(N \) is non-abelian;

(ii) there exists a positive integer \(n \) such that \(a^n = a \), for all \(a \in N \), if \(N \) is abelian and \(a \) is a power automorphism of \(N \);

(iii) the power automorphisms of \(N \) are in the centre of \(\text{Aut}(N) \) if \(N \) is abelian;

(iv) \(G/C_G(N) \) is nilpotent if all \(p' \)-elements of \(G \) induce power automorphisms in \(N \) by conjugate.

Proof. (1) It is [6], Hilfsatz 5.

(2) See [13], Chapter 13, Theorem 4.3.

(3) It is a direct corollary of (2).

(4) If \(N \) is non-abelian, then \(G/C_G(N) \) is a \(p \)-group by (1); hence \(G/C_G(N) \) is nilpotent. If \(N \) is abelian, then the power automorphisms are in the centre of \(\text{Aut}(N) \) by (3). It is easy to see that \(G/C_G(N) \) is nilpotent. \(\square \)

Lemma 2.8. Suppose \(L = K_{\infty}(G) \) is the nilpotent residual of \(G \). If \(L \) is nilpotent, then \(L_p = [L_p, G] \) for any \(p \in \pi(G) \).

Proof. By definition, \(L = [L, G] = [L_p \times L_{p'}, G] = [L_p, G] \times [L_{p'}, G] = L_p \times L_{p'} \), for any \(p \in \pi(G) \). Hence \(L_p = [L_p, G] \). \(\square \)

3. Proofs.

Proof of Theorem 1.1. We prove the necessity of this theorem in several steps.

(i) \(G \) is supersolvable. Hence \(F^*(G) = F(G) \).

By Lemmata 2.4 and 2.3.

(ii) If \(N \) is a normal \(p \)-subgroup of \(G \), then \(p' \)-elements of \(G \) induce power automorphisms in \(N \).

If \(N \) is a normal \(p \)-subgroup of \(G \), then \(N \leq G_p \leq \mathfrak{3} \). Thus every subgroup of \(N \) is \(\mathfrak{3} \)-permutable in \(G \) by hypotheses; then is \(S \)-quasi-normal in \(G \) by Lemma 2.2. Now applying Lemma 2.6, we get step (ii).

(iii) Pick \(L = G^N \); then \(G/L \) is nilpotent. Furthermore, \(L \) is abelian.

By (ii) and Lemma 2.7(4), for any \(p \in \pi(G) \), we know that \(G/C_G(O_p(G)) \) is nilpotent. So \((G/C_G(O_p(G)))^N = 1 \), and it follows that \(G^N \leq C_G(O_p(G)) \). Therefore \(G^N \leq \bigcap_{p \in \pi(G)} C_G(O_p(G)) = C_G(F(G)) \leq F(G) \). Then \(L \leq Z(F(G)) \), Hence \(L \) is abelian.

(iv) \(L \) is a Hall subgroup of \(G \).

Let \(p \) be the largest prime dividing \(|G| \), and \(P \) is a Sylow \(p \)-subgroup of \(G \). Since \(G \) is supersolvable by step (i), we know that \(P \leq G \). Then \(P = G_p \in \mathfrak{3} \). Now, we consider the quotient group \(G/P \). By Lemma 2.1, all subgroups of every member in \(\mathfrak{3} P/P \) are \(\mathfrak{3} P/P \)-permutable in \(G/P \). By induction, \((G/P)^N = G^N P/P = LP/P \) is a Hall subgroup of \(G/P \).
Suppose that every \(p' \)-element of \(G \) centralises \(P \). Let \(L_p \in Syl_p(L) \). If \(L_p \neq 1 \), then, by Lemma 2.8, \(L_p = [L_p, G] = [L_p, P] \leq P \) as \(L_p \leq P \), a contradiction. Hence \(L_p = 1 \) and \(L \) is a \(p' \)-group. Therefore, \(L \cong LP/P \) is a normal Hall subgroup of \(G \). Now suppose that there exists a \(p' \)-element \(x \) which induces a non-trivial power automorphism on \(P \). Hence \(P = [P, G] \leq L \). Therefore \(L \) is a Hall subgroup of \(G \).

(v) The elements of \(G \) induce power automorphisms in \(L \).

It is easy to see from (ii)–(iv).

(vi) For any two distinct primes \(p, q \notin \pi(L) \), \([G_p, G_q] = 1 \). Hence \([G_p, G_q] = 1 \).

By the hypotheses, \(G_pG_q \) is a group. Since \(G_pG_q \cong G_pG_qL/P \leq G/L \), \(G_pG_q \) is nilpotent by (iii). Hence \([G_p, G_q] = 1 \).

Conversely, it suffices to prove that \([x, y] = y \langle x \rangle \), for any \(p \)-element \(x \in G_p \) and \(q \)-element \(y \in G_q \). Let \(L \leq G \) be a normal abelian Hall subgroup of \(G \), we have that \(x, y \in L \) and \([x, y] = y \langle x \rangle \).

If \(p, q \in \pi(L) \), then \(x \leq G_p \) and \(y \leq G_q \). Therefore \(\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle \).

Suppose \(p \in \pi(L) \) or \(q \in \pi(L) \). Without lose generality, let \(p \in \pi(L) \). Then \(x \leq L \) and \([x, y] \leq G \) by (ii). Hence \([x, y] = y \langle x \rangle \). Finishing the proof. \(\square \)

Proof of Theorem 1.2. We first prove the necessity of Theorem 1.2. With the same arguments as in the proof of Theorem 1.1, we get steps (i)–(iii).

(i) \(G \) is supersolvable. Hence \(F^*(G) = F(G) \).

(ii) If \(N \) is a normal \(p \)-subgroup of \(G \), then \(p' \)-elements of \(G \) induce power automorphisms in \(N \).

(iii) Pick \(L = G^N \); then \(G/L \) is nilpotent. Furthermore, \(L \) is abelian.

(iv) Denote \(F = F(G) \). Then \(F = C_G(L) \).

By the proof of (iii), we only need to prove \(C_G(L) \leq F \). We know that \(L \leq Z(C_G(L)) \), and hence \(C_G(L)/Z(C_G(L)) \leq G/Z(C_G(L)) \) is nilpotent. Hence \(C_G(L) \) is nilpotent. Therefore \(C_G(L) \leq F(G) \).

(v) \(F = Z_\infty(G) \times L \).

By [5], Chapter VI, Satz 7.15, \(G \) splits over \(L \), i.e. \(G = X \bowtie L \), for some subgroup \(X \) of \(G \). So \(F = F \cap (XL) = L(C_X(L) \times X) = C_X(L)L = C_X(L) \times L \).

Now we prove that \(C_X(L) = Z_\infty(G) \).

Notice that \([C_X(L), G] = [C_X(L), X] \leq C_X(L) \). Since \(X \leq G \) is nilpotent, there exists an integer \(n \) such that \(K_n(X) \leq K_\infty(X) = 1 \). Therefore \([C_X(L), G, \ldots, G] = [C_X(L), X, \ldots, X] \leq K_\infty(X) = 1 \). Therefore \(C_X(L) \leq Z_{n-2}(G) \leq Z_\infty(G) \). Thus \(Z_\infty(G) = Z_\infty(G) \cap F = C_X(L)(Z_\infty(G) \cap L) \).

Next we want to prove that \(Z_\infty(G) \cap L = 1 \). If \(Z_\infty(G) \cap L \neq 1 \), then there exists a prime \(p \in \pi(G) \) such that \(Z_\infty(G) \cap L_p \neq 1 \). If every \(p' \)-element of \(G \) centralises \(L_p \), then, by Lemma 2.8, \(L_p = [L_p, G] = [L_p, P] < L_p \), a contradiction. Hence there exists a \(p' \)-element \(x \) which induces a non-trivial power automorphism on \(L_p \), and so \([L_p, x] \neq 1 \).

On the other hand, we know that \([Z_\infty(G) \cap L_p, x] = 1 \) by Lemma 2.5. Hence \([L_p, x] = 1 \) by (iii) and Lemma 2.7(2), a contradiction. Hence \(Z_\infty(G) \cap L = 1 \). So \(Z_\infty(G) = C_X(L) \).

Thus \(F = Z_\infty(G) \times L \).

(vi) \(L \) is a Hall subgroup of \(F(G) \).

If \(L \) is not a Hall subgroup of \(F(G) \), then there is a prime \(p \in \pi(L) \cap \pi(F(G)/L) \).

Denote \(C = C_X(L) \).

By (iv), \(F = C_G(L) = Z_\infty(G) \times L = C_X(L) \times L = C \times L \). Since \(p \in \pi(C) \), we have \(C_p \neq 1 \); then \(C_p \cap Z(C) \neq 1 \). Therefore \(p \in \pi(Z(C)) \). For any \(p' \)-element \(x \in X \), \(x \in Z(C) \).

\[x \in Z(C) \Rightarrow x \in C \Rightarrow x \in \text{Hall subgroup of } F(G) \]
induces a power automorphism on $F_p = C_p \times L_p$. By Lemma 2.5, $[C_p, x] = 1$. Hence $[Z(C_p), x] = 1$. By Lemma 2.7(2), $[Z(C_p) \times L_p, x] = 1$, and in particular, $[L_p, x] = 1$. Therefore $[L_p, X_p] = 1$. Then $L_p = [L_p, G] = [L_p, X] = [L_p, X_p] \vartriangleleft L_p$, a contradiction. Therefore L is a Hall subgroup of $F(G)$.

Conversely, it is easy to see that G is solvable; hence $F^*(G) = F(G) \neq 1$. It suffices to prove that every cyclic p-subgroup $< g >$ of $F(G)$ is S-quasi-normal in G, for any prime $p \in \pi(G)$.

Suppose $g \in O_p(G)$. If $P \in Syl_p(G)$, then $g \in O_p(G) \leq P$. Thus $< g > = P = P < g >= P$. Pick an arbitrary $Q \in Syl_p(G)$, where $g \neq p$. If $p \in \pi(L)$, then $g \in L_p$ by (iii). Then Q normalises $< g >$ by (ii). Therefore $Q < g >= Q > Q$. Hence suppose that $p \notin \pi(L)$. Then $[< g > \vartriangleleft L/L, QL/L] = 1$ as G/L is nilpotent by (i). So $[< g >, Q] \leq L$. It follows that $[Q, g] \leq L \cap g^G \leq L \cap O_p(G) = 1$. Hence $Q < g >= Q$. Completing the proof.

Proof of Corollary 1.3. If every subgroup of $F^*(G)$ is S-quasi-normal in G, then G is supersolvable by the results in [4] or [9]. In particular, $F^*(G) = F(G)$. For any prime $p \in \pi(G)$ and any Sylow p-subgroup G_p of G, every subgroup of $G_p \cap F^*(G) = G_p \cap F(G) = O_p(G)$ is S-quasi-normal in G by the hypotheses. By Theorem 1.2, it is easy to see the necessity of Corollary 1.3 holds. Conversely, by the proof of Theorem 1.2, we know that every cyclic p-subgroup of $F(G) = F^*(G)$ is S-quasi-normal in G, for any prime $p \in \pi(G)$. It is easy to see that every subgroup of $F^*(G)$ is S-quasi-normal in G. Completing the proof. □

REFERENCES

10. Y. Li and X. Li, \mathfrak{z}-permutable subgroups and p-nilpotency of finite groups, *J. Pure Appl. Algebra* 202 (2005), 72–81.