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SCHUR PROPERTY AND tP ISOMORPHIC COPIES IN
MUSIELAK-ORLICZ SEQUENCE SPACES

B. ZLATANOV

The author shows that if the dual of a Musielak-Orlicz sequence space 1$ is a stabi-
lized asymptotic £«, space with respect to the unit vector basis, then t$ is saturated
with complemented copies of (.\ and has the Schur property. A sufficient condition
is found for the isomorphic embedding of £p spaces into Musielak-Orlicz sequence
spaces.

1. INTRODUCTION

The notion of asymptotic £p spaces first appeared in [14], where the collection of
spaces that are now known as stabilised asymptotic tp spaces were introduced. Later in
[13] more general collection of spaces, known as asymptotic £p spaces, were introduced.
Characterisation of the stabilised asymptotic £„> Musielak-Orlicz sequence space was
given in [4].

A Banach space X is said to have the Schur property if every weakly null sequence is
norm null. It is well known that £\ has the Schur property and it's dual £„, is obviously a
stabilised asymptotic £,» space with respect to the unit vector basis. A characterisation of
the Musielak-Orlicz sequence spaces £# possessing the Schur property, as well as sufficient
conditions for £$ and weighted Orlicz sequence spaces £M{U>) to have the Schur property
were found in [8]. Using an idea from [1] we find that if the dual of a Musielak-Orlicz
sequence space is a stabilised asymptotic £<*> space then it is saturated with complemented
copies of £i and has the Schur property. While simple necessary conditions for embedding
of £p spaces into Musielak-Orlicz spaces £* were found in [16], the problem of finding
analogous sufficient conditions, as it is done in [11] for Orlicz £M, appeared more difficult.
We find a sufficient condition for the existence of an £p copy in £$ in Paragraph 4.
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194 B. Zlatanov [2]

2. PRELIMINARIES

We use the standard Banach space terminology from [11]. Let us recall that an Orlicz
function M is even, continuous, non-decreasing convex function such that M(0) — 0 and
lim M(t) = oo. We say that M is a non-degenerate Orlicz function if M(t) > 0 for every
t—too

t > 0. A sequence $ = {^j}?^ of Orlicz functions is called a Musielak-Orlicz function.

The Musielak-Orlicz sequence space £$, generated by a Musielak-Orlicz function <£
oo

is the set of all real sequences {xi}^ such that £<&i(Aii) < oo for some A > 0. The
Luxemburg's norm is defined by

(
0 :

We denote by /i$ the closed linear subspace of £$, generated by all i £ ^ , such that
oo

53 $i(Axj) < oo for every A > 0.

If the Musielak-Orlicz function <3> consists of one and the same function M one
obtains the Orlicz sequence spaces lM and hM.

Let 1 ^ ft, i e N be a sequence of reals. The Musielak-Orlicz sequence space &j>,
where $ = {iPi}^i is called a Nakano sequence space and is denoted by £{Pij. In [3]
it was proved that two Nakano sequence spaces £{Pi), £{qi] are isomorphic if and only if
there exists 0 < C < 1 such that

An extensive study of Orlicz and Musielak-Orlicz spaces can be found in [11, 15,

6 ,9] .

DEFINITION 2.1: We say that the Musielak-Orlicz function $ satisfies the <S2 con-
dition at zero if there exist constants K, 0 > 0 and a non-negative sequence {CJJJJLJ € l\

such that for every n € N

provided te [O,*

The spaces £$ and h$ coincide if and only if $ has the <$2 condition at zero.

Recall that given Musielak-Orlicz functions $ and * the spaces 1$ and ly coincide
with equivalence of norms if and only if $ is equivalent to ^ , that is there exist constants
K, ft > 0 and a non-negative sequence {cj,}^ € £i, such that for every n e N the
inequalities

*„( /«) ^ <M0 + c« and ¥n{Kt) < *B(t) + c

hold for every t € [o,
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[3] Musielak-Orlicz sequence spaces 195

Throughout this paper M will always denote an Orlicz function while $ is an
Musielak-Orlicz function. As the properties we are dealing with are preserved by iso-
morphisms without loss of generality we may assume that $ consists entirely of non-
degenerate Orlicz functions, such that for every i £ N the Orlicz function $j is differ-
entiable, <£j(0) = 0 and $<(1) = 1. Indeed, we can always choose a sequence {a*},

oo

such that ai ^ 1/2, i £ N,^<I>i(ai) < oo and consider the sequence of functions

/s) ds, where
— /

Jo

Obviously the Musielak-Orlicz function ip = {fi}i^i consists of differentiable functions
and fp'i{0) = 0 for every i E N.

For every t 6 [0,aj] we have <#(£**) = ($,(aj))/2 and

For every t ^ Qj we have

Jo a? Jai s 2 Ja. s

By the convexity of $* follows that

(i) w ( * K ^ ~ + *.-(*)

for every t ^ 0.
In order to get the opposite inequality we consider separately three cases:
(I) Let a, ^ t/2 then

i{t) = r m d s
JO S a. S Jt/2 S

(II) Let t/2 < a>i s$ t then

-^-ds
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196 B. Zlatanov [4]

(III) Let t < a{ then

Thus

(2) <w(() + 4p
for every t > 0. By (1) and (2) it follows that ip ~ $ and thus ^ = £j>. To complete the
proof, it is enough to normalise the functions y?,- by considering ip — {Vi/v>i(l)}°l0-

DEFINITION 2.2: For an Orlicz function M, such that lim M(t)/t = 0 the function

N(x) = sup{t\x\ - M(t) : t ^ 0},

is called the function complementary to M.

D E F I N I T I O N 2.3: The Musielak-Orlicz function * = {^j}Jl,, denned by

is called complementary to $.

Let us note that the condition limM(£)/£ = 0 ensures that the complementary

function TV is always non-degenerate. Observe that if TV is function complementary to M,

then M is complementary to TV and if the Musielak-Orlicz function \£ is complementary

to the Musielak-Orlicz function $ , then $ is function complementary to ^ . Throughout

this paper the function complementary to the Musielak-Orlicz function $ is denoted by

It is well known that h*M = EN and h% £ £*. The equivalent norm in 1$ is the Orlicz
norm

fj(Vj) ^ l \ >

which satisfies the inequalities (see for example,[7])

II II ^ II IIO ^ oil IIII - I I * ^ II • I I * ^ 2 I I • I I * -
00

We shall use the Holder's inequality: ]£ \xjyj\ ^ INI*IM|*, which holds for every

x — {XJ}^ € E<t, and y = {yj}^ € £*, where $ and ^ are complementary Musielak-
Orlicz functions.

By {ej}^ and {ej}^-! we denote the unit vector basis in /i$ and hq respectively. For
oo

a Banach space X with a basis {t>t}~i and element x £ X, x — Y^, xiVi we define supp x

= {i 6 N : Xi 7̂  0}. We write n ^ x if n ^ min{suppx} and x < y if max{suppx}
< min{supp?/}. We say that a; is a block vector with respect to the basis {wi}?^ if

x = 5Z XiVi for some finite p and q and we say that x is a normalised block vector if it is

a block vector and 11 rzr 11 = 1.
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[5] Musielak-Orlicz sequence spaces 197

D E F I N I T I O N 2.4: A Banach space X is said to be stabilised asymptotic £&, with
respect to a basis {«t}~i, if there exists a constant C ^ 1, such that for every n £ N
there exists N e N, so that whenever N ^ i x < • • • < xn are successive normalised block
vectors, then { i j}" = 1 are C-equivalent to the unit vector basis of ££,; that is,

-r- max lojl ^ > a.iXi\\ ^ C max \aA.

The following characterisation of the stabilised asymptotic £„, Musielak-Orlicz se-
quence spaces is due to Dew:

PROPOSITION 2 . 1 . ([4, Proposition 4.5.1]) Let $ = {$j}JLi be a Musielak-
Orlicz function. Then the following are equivalent:

(i) /i* is stabihsed asymptotic £„ (with respect to its natural basis {ej}^);

(ii) there exists A > 1 such that for all n € N, there exists N e N such that

whenever N ^ p ^ q and J2 ®j(aj) ^ 1> then

i=v
Let X be a Banach space. By 7 <-> I we denote that Y is isomorphic to a subspace

of*.

3. MUSIELAK-ORLICZ SPACES WITH STABILISED ASYMPTOTIC £„ DUAL WITH

RESPECT TO THE UNIT VECTOR BASIS

We start with the following

LEMMA 3 . 1 . Let $ have the <$2 condition at zero and hy, generated by the
Musielak-Orlicz function ty, complementary to $, be stabilised asymptotic £„, with re-
spect to the unit vector basis {e^}^lj. Then every normalised block basis {x^}^ of
the unit vector basis in £9 contains a subsequence {x^}^ such that:

(a) {z(ni)}~i is equivalent to the unit vector basis of £x;

(b) The closed subspace [x(ni)]~i generated by {x^}^ is complemented in
£$ by means of a projection of norm less then or equal to 4A, where A is
the constant from Proposition 2.1.

PROOF: (a) Let {x^n)}^=l be a normalised block basis of lt, where i ( n )

m"+1 (n)
= Yl xj ej> a nd {"in} is a strictly increasing sequence of naturals. For every n G N

j=mn + l
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198 B. Zlatanov [6]

there exists
oo .

'"> = E Vjej s u ch

and
3=1

Without loss of generality we may assume that supp ?/"> = supp x'n'. We claim that

lim
AA / oo

j=mn+l

where A > 1 is the constant from Proposition 2.1.
Indeed, by assumption hy is stabilised asymptotic £,„ space and according to Propo-

sition 2.1 there exists A > 1 such that for every m e N there is N € N so, that whenever
rftn+i mw+i

mn > AT the inequality holds £ ^(y}n)/A) ^ 1/m. Thus lim £) *j(j/}n)/A) = 0.

Now passing to a subsequence we get a sequence {y(nittyketi > y'nfc) = 5Z 2/]"* ej

such that

Denote y = £ 2/<nfc) = E ( £ l/j"*^?) • Obviously y e £* and ||y||, < A. Thus
fc=i fc=i \j=pk J

\%< 2A.

Let now a = {afc}^ € ^ . Then

i
1

y(nt)i(nt)l > — (nib)

Obviously
II

a*a;(n*M ^ INIi and thus
IUbasis of l\.

(b) Define now for each

^ is equivalent to the unit vector

> K by

W = r . t '(nt)x(nt) E ^ i

the functional Fk :

j=Pnk

and the map P : ^* -• £* by P(x) = E-F*^)^"^- Then for every Jfc € N, \\Fk\\

^ 2||y(n*'||* ^ 2 1 1 + E ^jiVj ) ^ 4- Furthermore P is a projection of I* onto
\ J=Pn4 /
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[7] Musielak-Orlicz sequence spaces 199

frnJEa with

||P|| = sup
(»*),

( n t ) /"*)

^ 2 sup J2\vjXj\is2 sup | | « , - | | S N | « ^ 4 A .

The following two theorems are simple corollaries of Lemma 3.1.

THEOREM 1 . Let $ have the S2 condition at zero and hy, generated by the

Musielak-Orlicz function $, complementary to $ , be stabilised asymptotic £x with re-

spect to the unit vector basis {e*}^ij. Then £* has the Schur property.

P R O O F : The proof is an easy consequence of the Kaminska, Mastylo characterisation

of Musielak-Orlicz spaces possessing Schur property ([8, Theorem 4.4]). Consider a $ -
f m+i ) °°

convex block of $ , tha t is, a sequence of convex functions < Mi(t) = £2 $j(tatj)> ,
I j=tU+l ) i-\

where n< is a strongly increasing sequence in N and {aj}^ is a sequence of positive

numbers such that Yl $j{ctj) = 1 for each i € N. It is easy to observe that the sequence

\ Ui = ^2 o.jej \ is a normalised block-basis of the unit vector basis of £$. Lemma

3.1 now implies that the closed linear span [uiJStij for appropriate subsequence { u ^ } ^
is isomorphic to l\. On the other hand [uit]^i1 is obviously isometrically isomorphic to
the Musielak-Orlicz space £{Mik], generated by the subsequence {Mik} of the given $ -
convex block. Thus every ^-convex block contains a subsequence equivalent to a linear
function and therefore &$ has the Schur property. D

THEOREM 2 . Let $ have the <52 condition at zero and /i$, generated by the
Musielak-Orlicz function *, compJementary to $, be stabilised asymptotic 4o with re-
spect to the unit vector basis {e'j } JLX. Then every subspace Y of£$ contains an isomorphic
copy of t\ which is complemented in £$.

PROOF: According to a well known result of Bessaga and Pelczinski [2] every infinite
dimensional closed subspace Y of £$ has a subspace Z isomorphic to a subspace of 1$,
generated by a normalised block basis of the unit vector basis of £$. Now to finish the
proof it is enough to observe that by Lemma 3.1 the space Z contains a complemented
subspace of £$, which is isomorphic to t\. D

REMARK. It is well known ([18]) that every subspace of Musielak-Orlicz sequence space
£$ with $ satisfying the <$2 condition, contains £p for some p e [l,oo]. If £$ has in
addition the Schur property, as no £p, p ^ 1 has the Schur property, it follows that £$ is
£i saturated.
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4. tv COPIES IN M U S I E L A K - O R L I C Z SEQUENCE SPACES

Let $ be a Musielak-Orlicz function consisting of differentiable Orlicz functions.

Denote:

a(*B) = sup{p > 0 : p $ ^ ^ , x G (0,1]} ;

&(«„) = inf{9 > 0 : q > ̂ p * € (0,1]} .

The following indexes, introduced by Yamamuro ([17])

a($) = liminf a(<J>n)

appear to be useful in the study of Musielak-Orlicz sequence spaces (see for example
[11, 16, 8, 12]). Obviously 1 ^ a($) ^ &($) s$ oo. By the results of Woo ([18]) and
Katirtzoglou ([9]) it follows that an Musielak-Orlicz function $ satisfies the 62 condi-
tion at zero if and only if 6($) < oo. Analogously to the case of the classical Orlicz
sequence spaces if Pp, ,p > 1 or Co for p = oo is isomorphic to a subspace of /i*, then
p G [a($),6($)j (see [16, 18]). However, the converse fails to be true in general (see
[16]) for Musielak-Orlicz sequence spaces, which confirms their more complex structure.
Sufficient conditions for the isomorphical embedding of £p, ,p ^ 1 in h$ are given by the
following.

THEOREM 3 . Let $ = {Qj}^ be a Musielak-Orlicz function andp e [a($), &($)].
If there exist sequences {TJ}^.U {yj}JLv {ej}%\ and constants 0 < k < 1 < K such that:

(1) £j ^ 0, 0 < y, ^ 1 0 < Tj < 1 for every j e N;

(2) lim Tj = 0 ;
j KX>

(3) £«>(%)=<»;
(4) * f i £ (*j(*yi))/(f»i(v,-)) < K(l/t)°' for every t G [Tj, 1] ;

(5) £ C"1 '̂ < °° for s o m e 0 < C < 1,

fclien £p •-¥ h<tf.

P R O O F : The condition (5) obviously implies lim e. = 0.
j K»

We may assume that Tj < 1/2 for every j . Indeed, by (2) we easily get r,- < 1/2,

j < jo for some jo and can consider the Musielak-Orlicz sequence space hi$.)«> = /i<j,.

Consider first the case: jt{j G N : $(j/j) ^ 1/2} < oo. For the same reason as above

we may assume that $(y7) ^ 1/2 for every j G N.
Find sequence of naturals {fcn}^Li > &i = 0, such that for every n G N:

\
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[9] Musielak-Orlicz sequence spaces 201

Put

where

(3)

Obviously

(4)

n+l

and 0 < ykn+1 s? ykn+l. Let us note that un = £ Vjei + Vkn+1^n+l ,n = 1 ,2 , . . .

represents a normalised block basis of the unit vector basis of /i$. Obviously the Musielak-
Orlicz sequence space A$, generated by the sequence {<pn} is isometrically isomorphic to
[unj^-i, which in turn is isomorphic to a subspace of /i$. Further we find a sequence of
{nm}m=i> s u c n t n a t Tj ^ l / " i 2 for j > fcnm. Following [11, 10] we easily check that the
functions ipnm , m = 1,2,.. . are equi-continuous in [0,1/2]. Indeed, from

it follows immediately

for every 0 < t\, t^ ^ 1/2 and any fj. > 0. Now it is enough to apply the last inequality
to the functions </?„„,, taking into account (3). The functions ipnm ,m — 1,2,... are
also uniformly bounded in [0,1/2]. Using the Arzela-Ascoli theorem by passing to a
subsequence if necessary, which in order to simplify the notations we denote {<Pnm)m=i

too, we have that {fnm}m=i converges uniformly to a function <p on [0,1/2], satisfying
the inequalities \\(fnm — vlloo ^ l /2 m for every m 6 N. Obviously ip is an Orlicz function
on [0,1/2] as uniform limit of Orlicz functions and the Musielak-Orlicz sequence space
fyvnm} is isomorphic to the Orlicz space hv, when ip is non-degenerated. If we take into
account that h{Vnm) is isometrically isomorphic to [un m]m=it o finish the proof it is enough
to show that h^ and lv consist of the same sequences. Before starting the last part of the
proof we mention that according to the result from [3], mentioned in the preliminaries,
the condition (5) implies that the Nakano spaces ^{p+^ej}^ are isomorphic to £p for every
choice of the sequence of signs {VJ = ± l } j i 1 .
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202 B. Zlatanov [10]

Define the sets:

Am = {j 6 N : fcnm + 1 ̂  j < knm+1,Tj ^ am}

and
B m = {j eN:knm + l^j ^ knm+l,Tj < a m } .

It is obvious that Am n Bm = 0 and Am U Bm = {knm + 1 , . . . , fcnm+1}. Let <5m = maxfe^ :

knm + 1 ^ j ' ̂  ^nm+i}- Then {(Jm}~=1 is a subsequence of {£j}JLi and thus by (5) we
oo

obtain J3 Cl^im < oo. So the Nakano spaces ^{p+i/mim} consist of the same sequences as
m=l

£p for every choice of the signs {vm = ±1} .
oo

Let now { a , } ^ € £p that is, 2D tf < oo. We may assume that a ; ^ 1/2 for every j € N.

Now we can write the chain of inequalities.

OO

I>nm(am) = E E
m=l m=l v>=*nm-t

E E
E E *i(™>) + E E
m=l.j6/lm

E E »•>*>(%•)+^E°«r*" E * ^ )
m=l7=A;nm + l m=l >=fcnm + l

v m = l m=l '

where we used that 0 < Vkn+l ^ J/*n+i for the second and (4) for the last inequality.
Let now a = { a m } ~ = 1 e t{Vnm] , that is,

OO OO / ^ " m + l " ^

fnm\am) = / _, 1 / ^JV^mJ/j) + ^ * n (^mVi, ) | < OO .
m=l m=l \'=fcnm + l

It is not difficult to check that for every m € N the estimate holds:

m " • + ' "m+l 77j2 nra+l " m + l "m+1
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[11] Musielak-Orlicz sequence spaces 203

Denote A'm = Am\ {nm +i} and B'm — Bm\{nm+x} Now taking into account (3), (4) and
(5) we can write the chain of inequalities:

m = l m=l
ooE ( W C

E ( E (̂ )p+<5m (̂̂ ) + E w

1 E ( E *j(«"
m = l

">=1 jeB'm

< rlE^2 + E^(a-))<o°-
^m=l m=l

which concludes the proof.

Let now 1/2 ^ ^(y>t) ^ 1 for some increasing sequence of naturals {jk}^i- Passing
OO

to a subsequence if necessary we may assume that ^2 Tjk < oo. Then

for every t € [T^, 1]. Consequently

(6)

holds for every u € [0,1]. Similarly

for every i 6 [r7t, 1]. Thus

holds for every u 6 [TJJ2, 1/2], where Kx = 7PK. So

(7) iiMaiiTH
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holds for every u G [0,1/2]. Consequently by (6) and (7) it follows that tv = ^{<s>jk}

REMARK. If the conditions in Theorem 3 hold for a subsequence {^nt}fcLi then

COROLLARY 4 . 1 . Let $ = {Qj}^ be a Musielak-Orlicz function and
(®j{tyj))/($j(yj)) converge uniformly to tp on [0,1] for some sequence {yj}jt\ such

that, 0 < yj ^ 1, £ *>(%•) = oo and p G [o($), 6($)]. Tien £p «-»• /i*.

PROOF: Pick a decreasing sequence {5fc}£lj, such that lim 6k = 0. There exists
k—¥OO

j(k) such that for every j ^ j(A;) the inequalities hold.

(8) f-Sk<^l<^ + Sk

for every t G [0,1]. Thus (8) implies

for every t € [(2<5/t)1/J>, l] and for every j ^ j(fc). We define inductively sequences
{r(A;)} and {s(A;)} in the following way. We put r(l) = j(l) and choose s(l) with

)
®j{Vi) > 1/2- If r(fc), s(fc) are already chosen we put r(k + 1) = max(r(A;)

J=»-(l) r(fc+l)+»(*+l)
+s(k),j(k+l)) and choose s(fc+l) such that £ ^j(%) > ^Z2- Now we can apply

i=r(t+i)
Theorem 3 for the subsequence {$jm}m=i an<i t n e sequences {srm = 0}, {rm — (26m)l/p},

*-i
m € N, where for every m the index j>m is of the form j m = £s(») + p for some k G N
and p with 1 ̂  p < s(A), while em = 0, Sm = (5fc.

 t=1 D
REMARK. In particular if the sequence of Orlicz functions $ = {$j}jlj converges uni-
formly on [0,1] to tp for some p G [a($), 6($)] then lp '-*• /i$.

An easy to apply form of Theorem 3 is given by the following

COROLLARY 4 . 2 . Let $ = {Qj}^ be a Musielak-Orlicz function and
p G [a($), &($)]. If there exist sequences {XJ}JLV {yj)f=i, {£j}%i such that:

(1) Ej^O, 0 < Xj ^ y,- ̂  1 for every j G N;

(2) lim Xj/Vj = 0 ;
J K»

(3) £*i(vi)=oo;

(4) p - Ej < ( u ^ C u ) ) / ^ ^ ^ ) ^ p + £j for every u G [xh yj];

(5) £) C1^' < co for some 0 < C < 1,
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[13] Musielak-Orlicz sequence spaces 205

then ip <-> hit.

For the proof it is enough to rewrite the inequalities from (4) in the form:

(9) P-Sj^ g . ( ty* ^ P + £j for every t G [Xj/yit 1].

After integration in (9) we easily get for every n G N:

for every t G [xj/yj, 1]. Now we can apply Theorem 3 with T, = Xj/yj. 0
We shall illustrate some applications of Theorem 3 and the necessity of some of the

conditions in it by the following four examples. By examples (1) and (2) we show that
conditions (2) and (3) in Theorem 3 could not be omitted.

The next example represents a convex analog to an example from [16]

EXAMPLE 1. Let

_ J x if x^ l/n2

" X ~ \ n2x2 if xe [0, l/n2].

Obviously
if x ^

n2x if zG[0,l/n2]
j

\
is an increasing function and therefore

1

n2

y x 2 if xG[0,l/n2].

is an Orlicz function.
It is easy to check that

for every n G N and every t G [0,1]. Therefore for the sequences {yn = l / n 2 } ^ ,
{en = 0}™=1 and any arbitrary sequence { T V , } ^ such that rn \ 0 all the conditions

/ 00 OO \

of Theorem 3 hold except for the condition (3) I Yl Vn = 5Z ^/n 2 < oo I. Nonetheless
\n=l n=l /

li ^> l<in because the inequalities

$n(z) ^ x and x ^ $n(x) + —-j, for every a;G[0,+oo).

imply £i^£t.
Then for the next two examples kn = 2n(l — y/l - (l/n)), bn = 1 - kn,

an = 1 — ^/l - (l/n), n G N. It is easy to see that l/2n ^ an < l/n.
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EXAMPLE 2. Consider the functions

knx + bn if x ^ an

*»(*) = nx2 if i £ [(an/2),an]

if xG[0,(an/2)].

Obviously by the choice of the sequences kn, bn and an it follows that
functions.

It is easily to check that

n are Orlicz

= 1

n.a2 = oo.for every n € N and for every t € [1/2,1]. Obviously £ $n(o;n) =
n=l

Therefore for the sequences {yn = an}~= 1, {en = 0}~=1 and {rn = 1/2}^=1 all the
conditions of Theorem3 hold except for the condition (2) (lim rn = 0). Nonetheless
h *fa Un because tx = i*.

Indeed consider now the Nakano sequence space i{Pn}, where pn = 1 + (1/lnn2).
According to [3] lx = £{Pn}. It is easy to check that x"» ^ $n(z) ^ x, for every x € [0,1],
because the solutions of the equation: nx2 = xPn are xx = 0 and x2 = (l/n)1/(2~Pn) and
x2 < l/(4n) < an/2. Thus £i = t* which in turn implies £2 '/+ ^*n-

Similar calculations can be done in Examples (1) and (2) to show that conditions
(2) and (3) in Corollary 4.2 do not hold.

The next example shows that the indexes

= lim inf «* = limsup/3*,,,

where a*n and /?*„ are the Boyd indexes of <3>n (see for example, [11, p. 143]) are irrelevant
when embedding of £p - spaces into £* is investigated. This fact is not surprising taking
into account that among the Musielak-Orlicz functions * equivalent to a given Musielak-
Orlicz function $ there exist such with a* = fa = 1 ([18]).

EXAMPLE 3. Let {tn}^=x be a sequence such that lim tn = 0 and tn < 1/2 for every
n—foo

n G N. Define the functions

*„(«)=

knx + bn if

nx'

tnx

if xG

if x G

{tn/n),an

0, {tn/

Obviously by the choice of the sequences kn, bn and an follows that $„ are Orlicz
functions which are differentiable for every x £ [0,1] except for x = tn/n and x = an.
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It easy to see that l\ = £^2n} •-* £$ because $2" (ar) ^ x ^ $2» (x) + a2» and

53 2
n=l

0 0

The conditions (u$ n (u)) / ($ n (u)) = 2 for every u 6 [(tn/n),an], J2®n(an) = oo
and lim (tn)/{nan) = 0 ensure that by Corollary 4.2 £2 ^ &*• "= 1

n—*oo

To calculate the Boyd indexes we have to observe that the functions <!>„ are linear
for t € [0, tn/n) and thus 1 — a$ — /3$.

We have that (u$^(u))/($n(u)) = 1 for every u € [0, tn/n). So we obtain that
1 = a($) < &($) = 2. Thus there exists a Musielak-Orlicz sequence space £$ such that
e2 «->• 4 and 2 ^ [a#,/3*].

Following [5] we shall construct an example of a weighted Orlicz sequence space
which contains an isomorphic copy of l\.
EXAMPLE 4. Let the sequences {dn}^=1 and { a , , } ^ be such that dn ^oo

an ^ On+i, lim dn/dn+i = 0, lim an = oo, lim an(dn/dn+i) - 0 and £ Ca" < oo
n—*oo n—>oo n—>oo n = l

for some 0 < C < 1. Define the Orlicz function

( i 2 i / 0 ^ x ^ 1
M(x) = {

L Anx + Bn if dn^x^ dn+i,

where An = dn+i + dn, Bn = -dn+idn.

Let the sequence w = {tun}~=1 be defined by wn = l / ($(d n + 1 ) ) = \/{dPn+l). Then

t*(w) = ^{*n}, where *B(x) = (*(dfl+1a:))/(*(dB+1)).

Thus
dn+1)) = xdn+1An

for dn/dn+i < s ^ 1.

After easy calculations we obtain the inequalities:

an - 1 (

for every an(dn/dn+i) < x < 1.
oo oo

Thus J2 Can~x = l/C X) C°n < oo and we can apply Corollary 4.2 with yn = 1,
n=l n=l

xn = an(dn /dn + i ) , en = l / (an - 1) to show that tx >-+ t9(w) S £{<tn}.

REMARK. If

(11) f>n)/(d»+i) < 1/2
n=l

it is proved in [5] that tx = IM{W).
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REMARK. By choosing the sequences {dn = n ! } ^ and {an = l o g n 2 } ^ in Example 4
we get a weighted Orlicz sequence space IM{W) generated by an Orlicz function M which
does not satisfy the A2-condition at infinity and a weight sequence

but containing an isomorphic copy of l\. Indeed (M(2n!)/M(n!)) — 3 + n and thus M
does not satisfy the A2-condition at oo. The sequences {dn}^Li and {an}'^Ll satisfy the
conditions imposed on them in Example 4 and thus t\ "-* (-M(W)-

Following [4] we define a sequence of real numbers {^)x(j)}°l1 by

PROPOSITION 4 . 1 . ([4, Proposition 4.5.3]) Let $ = {$,-}£! be a Musielak-
Orlicz function. Suppose that for some A > 1, lim ip\(j) = oo, then /i* is stabilised

J-+OO

asymptotic £<».

Let us mention that in the proof of Proposition 4.1, a, were chosen such that

J2 $(aj) < 1. Thus the function VAC?) = inf{$;( At)/$,,•(*) : t > 0} can be replaced
j=p

by t) : 0 < t ^ 1}.

COROLLARY 4 . 3 . Let $ has 62 condition at zero and hy, generated by the
Musielak-Orlicz function <J>, complementary to $ If there exist sequences: {XJ}^LX,

{yj}f=l and {SJ}°°=1 satisfying:

(1;) £j >0,0<Xj^ yj ^ 1 for every j € N;

(2') lun(xj/yj)=0;

(3') E

(4') 6(*) - £7 ^ (u*;(u))/(*,-(u)) ^ 6(4) + e, for any u € [xh Vj];
OO

(5') 52 C1/Ej < °° for s o m e 0 < C < 1. and £* is lx saturated, then holds:
3=1

(a) a(4) = 6(4) = 1;

(b) /i* is stabilised asymptotic £„, respect to the basis {ejjjl j .

P R O O F : (a) By [16] it follows that if ^ <-» 4 then 1 G [a(4),6(4)] and thus
a($) = 1. Let a{$) ^ &(4). By Corollary 4.2 follows that 4 ( $ ) <-• £#, which is a
contradiction. Thus 1 = a($) = 6($).

(b) By (a) we have a($) = &($) = 1. So we have lim a($j) = lim 6(4,-) = 1. Then

using the well known connections l /a(4j) + l/6(*j) = 1 and l/a(^j) + l/6($j) = 1 (see
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[8]) it follows that lim a(*j) = lim 6(1^) = oo. Then by the definition of the indices
j—¥OO j—*O0

a(*j) and b(Vj) there is e > 0, such that for every pj, qf. 0 < a(*j) - e < p, < a(tf,-)
and 6(*3) < g; < 6(*j) + e

Thus

limlim (infj^VV : t > o) ) ^ lim 2P> = oo,

and by Propositon 4.1 it follows that /i* is stabilised asymptotic £<» with respect to the
basis {e'}f=1. D

REMARK. Kaminska and Mastylo have given some sufficient and some necessary condi-
tions for the Schur property in terms of the generating Musielak-Orlicz function $ [8].
Sometimes we know only the complementary function >#. For example let the Musielak-
Orlicz function * = {Vj}^ be defined by *_, = e°'e"(a' ' / ( | l |e 'l, where lim a, = oo and

0 < Cj. Then ly is stabilised asymptotic £«, with respect to the unit vector basis {e'j}^
because

lim i n f { ^ ^
J-+OO I Wj(l)

: 0 ^ x < l ) = lim inf/e«>(2c'-i)/(2''l*m : 0

= lim e0'*2''-1*/'2'') = 00.
j-too

Thus we conclude that £« has the Schur property without considering the functions $„ ,
n € N .
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