Bull. Austral. Math. Soc. Vol. 75 (2007) [193-210]

SCHUR PROPERTY AND ℓ_P ISOMORPHIC COPIES IN MUSIELAK–ORLICZ SEQUENCE SPACES

B. ZLATANOV

The author shows that if the dual of a Musielak–Orlicz sequence space ℓ_{Φ} is a stabilized asymptotic ℓ_{∞} space with respect to the unit vector basis, then ℓ_{Φ} is saturated with complemented copies of ℓ_1 and has the Schur property. A sufficient condition is found for the isomorphic embedding of ℓ_p spaces into Musielak–Orlicz sequence spaces.

1. INTRODUCTION

The notion of asymptotic ℓ_p spaces first appeared in [14], where the collection of spaces that are now known as stabilised asymptotic ℓ_p spaces were introduced. Later in [13] more general collection of spaces, known as asymptotic ℓ_p spaces, were introduced. Characterisation of the stabilised asymptotic ℓ_{∞} Musielak-Orlicz sequence space was given in [4].

A Banach space X is said to have the Schur property if every weakly null sequence is norm null. It is well known that ℓ_1 has the Schur property and it's dual ℓ_{∞} is obviously a stabilised asymptotic ℓ_{∞} space with respect to the unit vector basis. A characterisation of the Musielak-Orlicz sequence spaces ℓ_{Φ} possessing the Schur property, as well as sufficient conditions for ℓ_{Φ} and weighted Orlicz sequence spaces $\ell_M(w)$ to have the Schur property were found in [8]. Using an idea from [1] we find that if the dual of a Musielak-Orlicz sequence space is a stabilised asymptotic ℓ_{∞} space then it is saturated with complemented copies of ℓ_1 and has the Schur property. While simple necessary conditions for embedding of ℓ_p spaces into Musielak-Orlicz spaces ℓ_{Φ} were found in [16], the problem of finding analogous sufficient conditions, as it is done in [11] for Orlicz ℓ_M , appeared more difficult. We find a sufficient condition for the existence of an ℓ_p copy in ℓ_{Φ} in Paragraph 4.

Received 21st August, 2006

Research is partially supported by National Fund for Scientific Research of the Bulgarian Ministry of Education and Science, Contract MM-1401/04.

The author acknowledges his gratitude to R. Maleev and S. Troyanski for valuable discussions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

2. PRELIMINARIES

We use the standard Banach space terminology from [11]. Let us recall that an Orlicz function M is even, continuous, non-decreasing convex function such that M(0) = 0 and $\lim_{t\to\infty} M(t) = \infty$. We say that M is a non-degenerate Orlicz function if M(t) > 0 for every t > 0. A sequence $\Phi = \{\Phi_i\}_{i=1}^{\infty}$ of Orlicz functions is called a Musielak-Orlicz function.

The Musielak-Orlicz sequence space ℓ_{Φ} , generated by a Musielak-Orlicz function Φ is the set of all real sequences $\{x_i\}_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} \Phi_i(\lambda x_i) < \infty$ for some $\lambda > 0$. The Luxemburg's norm is defined by

$$\|x\|_{\Phi} = \inf \bigg\{ r > 0 : \sum_{i=1}^{\infty} \Phi_i(x_i/r) \leqslant 1 \bigg\}.$$

We denote by h_{Φ} the closed linear subspace of ℓ_{Φ} , generated by all $x \in \ell_{\Phi}$, such that $\sum_{i=1}^{\infty} \Phi_i(\lambda x_i) < \infty$ for every $\lambda > 0$.

If the Musielak-Orlicz function Φ consists of one and the same function M one obtains the Orlicz sequence spaces ℓ_M and h_M .

Let $1 \leq p_i$, $i \in \mathbb{N}$ be a sequence of reals. The Musielak-Orlicz sequence space ℓ_{Φ} , where $\Phi = \{t^{p_i}\}_{i=1}^{\infty}$ is called a Nakano sequence space and is denoted by $\ell_{\{p_i\}}$. In [3] it was proved that two Nakano sequence spaces $\ell_{\{p_i\}}$, $\ell_{\{q_i\}}$ are isomorphic if and only if there exists 0 < C < 1 such that

$$\sum_{i=1}^{\infty} C^{1/|p_i-q_i|} < \infty \, .$$

An extensive study of Orlicz and Musielak-Orlicz spaces can be found in [11, 15, 6, 9].

DEFINITION 2.1: We say that the Musielak-Orlicz function Φ satisfies the δ_2 condition at zero if there exist constants $K, \beta > 0$ and a non-negative sequence $\{c_n\}_{n=1}^{\infty} \in \ell_1$ such that for every $n \in \mathbb{N}$

$$\Phi_n(2t) \leqslant K\Phi_n(t) + c_n$$

provided $t \in [0, \Phi_n^{-1}(\beta)].$

The spaces ℓ_{Φ} and h_{Φ} coincide if and only if Φ has the δ_2 condition at zero.

Recall that given Musielak-Orlicz functions Φ and Ψ the spaces ℓ_{Φ} and ℓ_{Ψ} coincide with equivalence of norms if and only if Φ is equivalent to Ψ , that is there exist constants $K, \beta > 0$ and a non-negative sequence $\{c_n\}_{n=1}^{\infty} \in \ell_1$, such that for every $n \in \mathbb{N}$ the inequalities

$$\Phi_n(Kt) \leqslant \Psi_n(t) + c_n \text{ and } \Psi_n(Kt) \leqslant \Phi_n(t) + c_n$$

hold for every $t \in \left[0, \min\left(\Phi_n^{-1}(\beta), \Psi_n^{-1}(\beta)\right)\right].$

195

Throughout this paper M will always denote an Orlicz function while Φ is an Musielak-Orlicz function. As the properties we are dealing with are preserved by isomorphisms without loss of generality we may assume that Φ consists entirely of non-degenerate Orlicz functions, such that for every $i \in \mathbb{N}$ the Orlicz function Φ_i is differentiable, $\Phi'_i(0) = 0$ and $\Phi_i(1) = 1$. Indeed, we can always choose a sequence $\{\alpha_i\}$, such that $\alpha_i \leq 1/2, i \in \mathbb{N}$, $\sum_{i=1}^{\infty} \Phi_i(\alpha_i) < \infty$ and consider the sequence of functions $\varphi_i(t) = \int_0^t (\psi_i(s)/s) \, ds$, where

$$\psi_i(t) = \left\{ egin{array}{c} rac{\Phi_i(lpha_i)}{lpha_i^2} t^2, & 0\leqslant t\leqslant lpha_i \ \Phi_i(t), & t\geqslant lpha_i \end{array}
ight.$$

Obviously the Musielak-Orlicz function $\varphi = \{\varphi_i\}_{i=1}^{\infty}$ consists of differentiable functions and $\varphi'_i(0) = 0$ for every $i \in \mathbb{N}$.

For every $t \in [0, \alpha_i]$ we have $\varphi_i(\alpha_i) = (\Phi_i(\alpha_i))/2$ and

$$\varphi_i(t) = \int_0^t \frac{\psi_i(s)}{s} \, ds = \int_0^t \frac{\Phi_i(\alpha_i)}{\alpha_i^2} \, s ds = \frac{\Phi_i(\alpha_i)}{2\alpha_i^2} t^2 \, .$$

For every $t \ge \alpha_i$ we have

$$\varphi_i(t) = \int_0^{\alpha_i} \frac{\Phi_i(\alpha_i)}{\alpha_i^2} s ds + \int_{\alpha_i}^t \frac{\Phi_i(s)}{s} ds = \frac{\Phi_i(\alpha_i)}{2} + \int_{\alpha_i}^t \frac{\Phi_i(s)}{s} ds.$$

By the convexity of Φ_i follows that

(1)
$$\varphi_i(t) \leqslant \frac{\Phi_i(\alpha_i)}{2} + \Phi_i(t)$$

for every $t \ge 0$.

In order to get the opposite inequality we consider separately three cases:

(I) Let $\alpha_i \leq t/2$ then

$$\begin{aligned} \varphi_i(t) &= \int_0^{\alpha_i} \frac{\psi_i(s)}{s} ds + \int_{\alpha_i}^{t/2} \frac{\psi_i(s)}{s} ds + \int_{t/2}^t \frac{\psi_i(s)}{s} ds \\ &\geqslant \frac{\Phi_i(\alpha_i)}{2} + \int_{t/2}^t \frac{\Phi_i(s)}{s} ds \geqslant \frac{\Phi_i(\alpha_i)}{2} + \Phi_i(t/2) \,. \end{aligned}$$

(II) Let $t/2 \leq \alpha_i \leq t$ then

$$\varphi_i(t) = \frac{\Phi_i(\alpha_i)}{2} + \int_{t/2}^t \frac{\Phi_i(s)}{s} ds - \int_{t/2}^{\alpha_i} \frac{\Phi_i(s)}{s} ds$$

$$\geqslant \frac{\Phi_i(\alpha_i)}{2} + \Phi_i(t/2) - \Phi_i(\alpha_i) = \Phi_i(t/2) - \frac{\Phi_i(\alpha_i)}{2}$$

(III) Let $t \leq \alpha_i$ then

$$\frac{\Phi_i(t)}{2} \leqslant \varphi_i(t) + \frac{\Phi_i(\alpha_i)}{2} \, .$$

Thus

(2)
$$\frac{\Phi_i(t/2)}{2} \leqslant \varphi_i(t) + \frac{\Phi_i(\alpha_i)}{2}$$

for every $t \ge 0$. By (1) and (2) it follows that $\varphi \sim \Phi$ and thus $\ell_{\varphi} \cong \ell_{\Phi}$. To complete the proof, it is enough to normalise the functions φ_i by considering $\tilde{\varphi} = \{\varphi_i / \varphi_i(1)\}_{i=0}^{\infty}$.

DEFINITION 2.2: For an Orlicz function M, such that $\lim_{t\to 0} M(t)/t = 0$ the function

$$N(x) = \sup \{ t | x | - M(t) : t \ge 0 \},$$

is called the function complementary to M.

DEFINITION 2.3: The Musielak-Orlicz function $\Psi = {\{\Psi_j\}_{j=1}^{\infty}}$, defined by

$$\Psi_j(x) = \sup\{t|x| - \Phi_j(t) : t \ge 0\}, j = 1, 2, \dots, n, \dots$$

is called complementary to Φ .

Let us note that the condition $\lim_{t\to 0} M(t)/t = 0$ ensures that the complementary function N is always non-degenerate. Observe that if N is function complementary to M, then M is complementary to N and if the Musielak-Orlicz function Ψ is complementary to the Musielak-Orlicz function Φ , then Φ is function complementary to Ψ . Throughout this paper the function complementary to the Musielak-Orlicz function Φ is denoted by Ψ .

It is well known that $h_M^* \cong \ell_N$ and $h_{\Phi}^* \cong \ell_{\Psi}$. The equivalent norm in ℓ_{Φ} is the Orlicz norm

$$\|x\|_{\Phi}^{O} = \sup\left\{\sum_{j=1}^{\infty} x_j y_j : \sum_{j=1}^{\infty} \Psi_j(y_j) \leq 1\right\},\$$

which satisfies the inequalities (see for example,[7])

$$\|\cdot\|_{\Phi} \leq \|\cdot\|_{\Phi}^{O} \leq 2\|\cdot\|_{\Phi}.$$

We shall use the Hölder's inequality: $\sum_{j=1}^{\infty} |x_j y_j| \leq ||x||_{\Phi}^{O} ||y||_{\Psi}$, which holds for every $x = \{x_j\}_{j=1}^{\infty} \in \ell_{\Phi}$ and $y = \{y_j\}_{j=1}^{\infty} \in \ell_{\Psi}$, where Φ and Ψ are complementary Musielak-Orlicz functions.

By $\{e_j\}_{j=1}^{\infty}$ and $\{e_j^*\}_{j=1}^{\infty}$ we denote the unit vector basis in h_{Φ} and h_{Ψ} respectively. For a Banach space X with a basis $\{v_i\}_{i=1}^{\infty}$ and element $x \in X$, $x = \sum_{i=1}^{\infty} x_i v_i$ we define supp x $= \{i \in \mathbb{N} : x_i \neq 0\}$. We write $n \leq x$ if $n \leq \min\{\operatorname{supp} x\}$ and x < y if $\max\{\operatorname{supp} x\}$ $< \min\{\operatorname{supp} y\}$. We say that x is a block vector with respect to the basis $\{v_i\}_{i=1}^{\infty}$ if $x = \sum_{i=p}^{q} x_i v_i$ for some finite p and q and we say that x is a normalised block vector if it is a block vector and ||x|| = 1. DEFINITION 2.4: A Banach space X is said to be stabilised asymptotic ℓ_{∞} with respect to a basis $\{v_i\}_{i=1}^{\infty}$, if there exists a constant $C \ge 1$, such that for every $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$, so that whenever $N \le x_1 < \cdots < x_n$ are successive normalised block vectors, then $\{x_i\}_{i=1}^n$ are C-equivalent to the unit vector basis of ℓ_{∞}^n ; that is,

$$\frac{1}{C} \max_{1 \leq i \leq n} |a_i| \leq \left\| \sum_{i=1}^n a_i x_i \right\| \leq C \max_{1 \leq i \leq n} |a_i|.$$

The following characterisation of the stabilised asymptotic ℓ_{∞} Musielak–Orlicz sequence spaces is due to Dew:

PROPOSITION 2.1. ([4, Proposition 4.5.1]) Let $\Phi = {\{\Phi_j\}_{j=1}^{\infty}}$ be a Musielak-Orlicz function. Then the following are equivalent:

- (i) h_{Φ} is stabilised asymptotic ℓ_{∞} (with respect to its natural basis $\{e_i\}_{i=1}^{\infty}$);
- (ii) there exists $\lambda > 1$ such that for all $n \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that whenever $N \leq p \leq q$ and $\sum_{j=p}^{q} \Phi_j(a_j) \leq 1$, then

$$\sum_{j=p}^{q} \Phi_j(a_j/\lambda) \leqslant \frac{1}{n}.$$

Let X be a Banach space. By $Y \hookrightarrow X$ we denote that Y is isomorphic to a subspace of X.

3. Musielak-Orlicz spaces with stabilised asymptotic ℓ_{∞} dual with respect to the unit vector basis

We start with the following

LEMMA 3.1. Let Φ have the δ_2 condition at zero and h_{Ψ} , generated by the Musielak-Orlicz function Ψ , complementary to Φ , be stabilised asymptotic ℓ_{∞} with respect to the unit vector basis $\{e_j^*\}_{j=1}^{\infty}$. Then every normalised block basis $\{x^{(n)}\}_{n=1}^{\infty}$ of the unit vector basis in ℓ_{Φ} contains a subsequence $\{x^{(n_i)}\}_{i=1}^{\infty}$ such that:

- (a) $\{x^{(n_i)}\}_{i=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_1 ;
- (b) The closed subspace $[x^{(n_i)}]_{i=1}^{\infty}$ generated by $\{x^{(n_i)}\}_{i=1}^{\infty}$ is complemented in ℓ_{Φ} by means of a projection of norm less then or equal to 4λ , where λ is the constant from Proposition 2.1.

PROOF: (a) Let $\{x^{(n)}\}_{n=1}^{\infty}$ be a normalised block basis of ℓ_{Φ} , where $x^{(n)} = \sum_{j=m_n+1}^{m_{n+1}} x_j^{(n)} e_j$, and $\{m_n\}$ is a strictly increasing sequence of naturals. For every $n \in \mathbb{N}$

there exists $y^{(n)} = \sum\limits_{j=1}^\infty y^{(n)}_j e^*_j \in h_\Psi$ such that

$$\sum_{j=1}^{\infty} \Psi_j(y_j^{(n)}) \leqslant 1 \quad \text{and} \quad \sum_{j=1}^{\infty} y_j^{(n)} x_j^{(n)} \geqslant 1/2.$$

Without loss of generality we may assume that supp $y^{(n)} \equiv \text{supp } x^{(n)}$. We claim that

$$\lim_{n\to\infty}\sum_{j=1}^{\infty}\Psi_j\Big(\frac{y_j^{(n)}}{\lambda}\Big)=\lim_{n\to\infty}\sum_{j=m_n+1}^{m_{n+1}}\Psi_j\Big(\frac{y_j^{(n)}}{\lambda}\Big)=0,$$

where $\lambda > 1$ is the constant from Proposition 2.1.

Indeed, by assumption h_{Ψ} is stabilised asymptotic ℓ_{∞} space and according to Proposition 2.1 there exists $\lambda > 1$ such that for every $m \in \mathbb{N}$ there is $N \in \mathbb{N}$ so, that whenever $m_n \ge N$ the inequality holds $\sum_{j=m_n+1}^{m_{n+1}} \Psi_j(y_j^{(n)}/\lambda) \le 1/m$. Thus $\lim_{n \to \infty} \sum_{j=m_n+1}^{m_{n+1}} \Psi_j(y_j^{(n)}/\lambda) = 0$.

Now passing to a subsequence we get a sequence $\{y^{(n_k)}\}_{k\in\mathbb{N}}, y^{(n_k)} = \sum_{j=p_{n_k}}^{q_{n_k}} y_j^{(n_k)} e_j^*$ such that

$$\sum_{k=1}^{\infty} \sum_{j=p_{n_k}}^{q_{n_k}} \Psi_j\left(\frac{y_j^{(n_k)}}{\lambda}\right) \leqslant 1.$$

Denote $y = \sum_{k=1}^{\infty} y^{(n_k)} = \sum_{k=1}^{\infty} \left(\sum_{j=p_k}^{q_k} y^{(n_k)}_j e_j^* \right)$. Obviously $y \in \ell_{\Psi}$ and $||y||_{\Psi} \leq \lambda$. Thus $||y||_{\Psi}^O \leq 2||y||_{\Psi} \leq 2\lambda$.

Let now $a = \{a_k\}_{k=1}^{\infty} \in \ell_1$. Then

$$\begin{split} \left\|\sum_{k=1}^{\infty} a_k x^{(n_k)}\right\|_{\Phi} & \geqslant \quad \frac{1}{\|y\|_{\Psi}^{O}} \sum_{k=1}^{\infty} \sum_{j=p_{n_k}}^{q_{n_k}} |a_k y_j^{(n_k)} x_j^{(n_k)}| \geqslant \frac{1}{2\lambda} \sum_{k=1}^{\infty} \sum_{j=p_{n_k}}^{q_{n_k}} |a_k y_j^{(n_k)} x_j^{(n_k)}| \\ & \geqslant \quad \frac{1}{2\lambda} \sum_{k=1}^{\infty} |a_k| \sum_{j=p_{n_k}}^{q_{n_k}} y_j^{(n_k)} x_j^{(n_k)} \geqslant \frac{1}{4\lambda} \sum_{k=1}^{\infty} |a_k| = \frac{1}{4\lambda} \|a\|_1. \end{split}$$

Obviously $\left\|\sum_{k=1}^{\infty} a_k x^{(n_k)}\right\|_{\Phi} \leq \|a\|_1$ and thus $\{x^{(n_k)}\}_{k=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_1 .

(b) Define now for each $k \in \mathbb{N}$ the functional $F_k : \ell_{\Phi} \to \mathbb{R}$ by

$$F_k(x) = \frac{1}{\sum_{j=p_{n_k}}^{q_{n_k}} y_j^{(n_k)} x_j^{(n_k)}} \sum_{j=p_{n_k}}^{q_{n_k}} y_j^{(n_k)} x_j$$

and the map $P: \ell_{\Phi} \to \ell_{\Phi}$ by $P(x) = \sum_{k=1}^{\infty} F_k(x) x^{(n_k)}$. Then for every $k \in \mathbb{N}$, $||F_k|| \leq 2||y^{(n_k)}||_{\Psi} \leq 2\left(1 + \sum_{j=p_{n_k}}^{q_{n_k}} \Psi_j(y_j^{(n_k)})\right) \leq 4$. Furthermore P is a projection of ℓ_{Φ} onto

 $[x_{n_k}]_{k=1}^{\infty}$ with

$$\begin{aligned} \|P\| &= \sup_{\||x\||_{\Phi} \leq 1} \left\| \sum_{k=1}^{\infty} \frac{\sum_{j=p_{n_{k}}}^{q_{n_{k}}} y_{j}^{(n_{k})} x_{j}}{\sum_{j=p_{n_{k}}}^{q_{n_{k}}} y_{j}^{(n_{k})} x_{j}^{(n_{k})}} x^{(n_{k})} \right\| &\leq 2 \sup_{\|x\|_{\Phi} \leq 1} \sum_{k=1}^{\infty} \sum_{j=p_{n_{k}}}^{q_{n_{k}}} \left| y_{j}^{(n_{k})} x_{j} \right| \\ &\leq 2 \sup_{\|x\|_{\Phi} \leq 1} \sum_{j=1}^{\infty} |y_{j}x_{j}| \leq 2 \sup_{\|x\|_{\Phi} \leq 1} \|y_{j}\|_{\Psi}^{O} \|x\|_{\Phi} \leq 4\lambda \,. \end{aligned}$$

The following two theorems are simple corollaries of Lemma 3.1.

THEOREM 1. Let Φ have the δ_2 condition at zero and h_{Ψ} , generated by the Musielak-Orlicz function Ψ , complementary to Φ , be stabilised asymptotic ℓ_{∞} with respect to the unit vector basis $\{e_i^*\}_{i=1}^{\infty}$. Then ℓ_{Φ} has the Schur property.

PROOF: The proof is an easy consequence of the Kaminska, Mastylo characterisation of Musielak-Orlicz spaces possessing Schur property ([8, Theorem 4.4]). Consider a Φ convex block of Φ , that is, a sequence of convex functions $\left\{M_i(t) = \sum_{j=n_i+1}^{n_{i+1}} \Phi_j(t\alpha_j)\right\}_{i=1}^{\infty}$, where n_i is a strongly increasing sequence in \mathbb{N} and $\{\alpha_j\}_{j=1}^{\infty}$ is a sequence of positive numbers such that $\sum_{j=n_i+1}^{n_{i+1}} \Phi_j(\alpha_j) = 1$ for each $i \in \mathbb{N}$. It is easy to observe that the sequence $\left\{u_i = \sum_{j=n_i+1}^{n_{i+1}} \alpha_j e_j\right\}_{i=1}^{\infty}$ is a normalised block-basis of the unit vector basis of ℓ_{Φ} . Lemma 3.1 now implies that the closed linear span $[u_{i_k}]_{k=1}^{\infty}$ for appropriate subsequence $\{u_{i_k}\}_{k=1}^{\infty}$ is isomorphic to ℓ_1 . On the other hand $[u_{i_k}]_{k=1}^{\infty}$ is obviously isometrically isomorphic to the Musielak-Orlicz space $\ell_{\{M_{i_k}\}}$, generated by the subsequence $\{M_{i_k}\}$ of the given Φ convex block. Thus every Φ -convex block contains a subsequence equivalent to a linear function and therefore ℓ_{Φ} has the Schur property.

THEOREM 2. Let Φ have the δ_2 condition at zero and h_{Ψ} , generated by the Musielak-Orlicz function Ψ , complementary to Φ , be stabilised asymptotic ℓ_{∞} with respect to the unit vector basis $\{e_j^*\}_{j=1}^{\infty}$. Then every subspace Y of ℓ_{Φ} contains an isomorphic copy of ℓ_1 which is complemented in ℓ_{Φ} .

PROOF: According to a well known result of Bessaga and Pelczinski [2] every infinite dimensional closed subspace Y of ℓ_{Φ} has a subspace Z isomorphic to a subspace of ℓ_{Φ} , generated by a normalised block basis of the unit vector basis of ℓ_{Φ} . Now to finish the proof it is enough to observe that by Lemma 3.1 the space Z contains a complemented subspace of ℓ_{Φ} , which is isomorphic to ℓ_1 .

REMARK. It is well known ([18]) that every subspace of Musielak-Orlicz sequence space ℓ_{Φ} with Φ satisfying the δ_2 condition, contains ℓ_p for some $p \in [1, \infty]$. If ℓ_{Φ} has in addition the Schur property, as no ℓ_p , $p \neq 1$ has the Schur property, it follows that ℓ_{Φ} is ℓ_1 saturated.

Let Φ be a Musielak-Orlicz function consisting of differentiable Orlicz functions. Denote:

$$a(\Phi_n) = \sup\left\{p > 0 : p \leqslant \frac{x\Phi_n(x)}{\Phi_n(x)}, x \in (0,1]\right\};$$

$$b(\Phi_n) = \inf\left\{q > 0 : q \geqslant \frac{x\Phi'_n(x)}{\Phi_n(x)}, x \in (0,1]\right\}.$$

The following indexes, introduced by Yamamuro ([17])

$$a(\Phi) = \liminf_{n \to \infty} a(\Phi_n) \ , \ b(\Phi) = \limsup_{n \to \infty} b(\Phi_n)$$

appear to be useful in the study of Musielak-Orlicz sequence spaces (see for example [11, 16, 8, 12]). Obviously $1 \leq a(\Phi) \leq b(\Phi) \leq \infty$. By the results of Woo ([18]) and Katirtzoglou ([9]) it follows that an Musielak-Orlicz function Φ satisfies the δ_2 condition at zero if and only if $b(\Phi) < \infty$. Analogously to the case of the classical Orlicz sequence spaces if ℓ_p , $p \geq 1$ or c_0 for $p = \infty$ is isomorphic to a subspace of h_{Φ} , then $p \in [a(\Phi), b(\Phi)]$ (see [16, 18]). However, the converse fails to be true in general (see [16]) for Musielak-Orlicz sequence spaces, which confirms their more complex structure. Sufficient conditions for the isomorphical embedding of ℓ_p , $p \geq 1$ in h_{Φ} are given by the following.

THEOREM 3. Let $\Phi = {\Phi_j}_{j=1}^{\infty}$ be a Musielak-Orlicz function and $p \in [a(\Phi), b(\Phi)]$. If there exist sequences ${\tau_j}_{j=1}^{\infty}$, ${\{y_j\}_{j=1}^{\infty}}$, ${\{\varepsilon_j\}_{j=1}^{\infty}}$ and constants 0 < k < 1 < K such that:

(1)
$$\varepsilon_j \ge 0, \ 0 < y_j \le 1 \quad 0 < \tau_j < 1$$
 for every $j \in \mathbb{N}$;
(2) $\lim_{j \to \infty} \tau_j = 0$;
(3) $\sum_{j=1}^{\infty} \Phi_j(y_j) = \infty$;
(4) $kt^{\varepsilon_j} \le (\Phi_j(ty_j))/(t^p \Phi_j(y_j)) \le K(1/t)^{\varepsilon_j}$ for every $t \in [\tau_j, 1]$;
(5) $\sum_{j=1}^{\infty} C^{1/\varepsilon_j} < \infty$ for some $0 < C < 1$,

then $\ell_p \hookrightarrow h_{\Phi}$.

PROOF: The condition (5) obviously implies $\lim_{j \to \infty} \varepsilon_j = 0$.

We may assume that $\tau_j < 1/2$ for every j. Indeed, by (2) we easily get $\tau_j < 1/2$, $j < j_0$ for some j_0 and can consider the Musielak-Orlicz sequence space $h_{\{\Phi_j\}_{j=j_0}^{\infty}} \cong h_{\Phi}$.

Consider first the case: $\#\{j \in \mathbb{N} : \Phi(y_j) \ge 1/2\} < \infty$. For the same reason as above we may assume that $\Phi(y_j) \le 1/2$ for every $j \in \mathbb{N}$.

Find sequence of naturals $\{k_n\}_{n=1}^{\infty}$, $k_1 = 0$, such that for every $n \in \mathbb{N}$:

$$\frac{1}{2} \leq \sum_{j=k_n+1}^{k_{n+1}-1} \Phi_j(y_j) < 1 , \ \Phi_{k_{n+1}}(y_{k_{n+1}}) \geq 1 - \sum_{j=k_n+1}^{k_{n+1}-1} \Phi_j(y_j) .$$

Musielak-Orlicz sequence spaces

Put

[9]

$$\varphi_n(t) = \sum_{j=k_n+1}^{k_{n+1}-1} \Phi_j(y_j t) + \Phi_{k_{n+1}}(\overline{y}_{k_{n+1}} t) ,$$

where

(3)
$$\sum_{j=k_n+1}^{k_{n+1}-1} \Phi_j(y_j) + \Phi_{k_{n+1}}(\overline{y}_{k_{n+1}}) = 1$$

Obviously

(4)
$$\sum_{j=k_n+1}^{k_{n+1}} \Phi(y_j) < \frac{3}{2}$$

and $0 < \overline{y}_{k_{n+1}} \leq y_{k_{n+1}}$. Let us note that $u_n = \sum_{j=k_n+1}^{k_{n+1}-1} y_j e_j + \overline{y}_{k_{n+1}} e_{k_{n+1}}$, $n = 1, 2, \ldots$ represents a normalised block basis of the unit vector basis of h_{Φ} . Obviously the Musielak-Orlicz sequence space $h_{\overline{\Phi}}$, generated by the sequence $\{\varphi_n\}$ is isometrically isomorphic to $[u_n]_{n=1}^{\infty}$, which in turn is isomorphic to a subspace of h_{Φ} . Further we find a sequence of $\{n_m\}_{m=1}^{\infty}$, such that $\tau_j \leq 1/m^2$ for $j > k_{n_m}$. Following [11, 10] we easily check that the functions φ_{n_m} , $m = 1, 2, \ldots$ are equi-continuous in [0, 1/2]. Indeed, from

$$\Phi_j(t) = \int_0^t \Phi'_j(t) dt \ge \int_{t/2}^t \Phi'_j(t) dt \ge \frac{1}{2} t \Phi_j(t/2)$$

it follows immediately

$$\left|\frac{\Phi_{j}(\mu t_{1})}{\Phi_{j}(\mu)} - \frac{\Phi_{j}(\mu t_{2})}{\Phi_{j}(\mu)}\right| \leqslant |t_{1} - t_{2}|\frac{\mu \Phi_{j}'(\mu/2)}{\Phi_{j}(\mu)} \leqslant 2|t_{1} - t_{2}|$$

for every $0 \leq t_1, t_2 \leq 1/2$ and any $\mu > 0$. Now it is enough to apply the last inequality to the functions φ_{n_m} , taking into account (3). The functions φ_{n_m} , $m = 1, 2, \ldots$ are also uniformly bounded in [0, 1/2]. Using the Arzela-Ascoli theorem by passing to a subsequence if necessary, which in order to simplify the notations we denote $\{\varphi_{n_m}\}_{m=1}^{\infty}$ too, we have that $\{\varphi_{n_m}\}_{m=1}^{\infty}$ converges uniformly to a function φ on [0, 1/2], satisfying the inequalities $\|\varphi_{n_m} - \varphi\|_{\infty} \leq 1/2^m$ for every $m \in \mathbb{N}$. Obviously φ is an Orlicz function on [0,1/2] as uniform limit of Orlicz functions and the Musielak–Orlicz sequence space $h_{\{\varphi_{n_m}\}}$ is isomorphic to the Orlicz space h_{φ} , when φ is non-degenerated. If we take into account that $h_{\{\varphi_{n_m}\}}$ is isometrically isomorphic to $[u_{n_m}]_{m=1}^{\infty}$ to finish the proof it is enough to show that h_{φ} and ℓ_p consist of the same sequences. Before starting the last part of the proof we mention that according to the result from [3], mentioned in the preliminaries, the condition (5) implies that the Nakano spaces $\ell_{\{p+\nu_j \epsilon_j\}_{j=1}^{\infty}}$ are isomorphic to ℓ_p for every choice of the sequence of signs $\{\nu_j = \pm 1\}_{j=1}^{\infty}$. Define the sets:

$$A_m = \{ j \in \mathbb{N} : k_{n_m} + 1 \leq j \leq k_{n_{m+1}}, \tau_j \geq \alpha_m \}$$

and

$$B_m = \{j \in \mathbb{N} : k_{n_m} + 1 \leq j \leq k_{n_{m+1}}, \tau_j < \alpha_m\}.$$

It is obvious that $A_m \cap B_m = \emptyset$ and $A_m \cup B_m = \{k_{n_m} + 1, \dots, k_{n_{m+1}}\}$. Let $\delta_m = \max\{\varepsilon_j : k_{n_m} + 1 \leq j \leq k_{n_{m+1}}\}$. Then $\{\delta_m\}_{m=1}^{\infty}$ is a subsequence of $\{\varepsilon_j\}_{j=1}^{\infty}$ and thus by (5) we obtain $\sum_{m=1}^{\infty} C^{1/\delta_m} < \infty$. So the Nakano spaces $\ell_{\{p+\nu_m\delta_m\}}$ consist of the same sequences as ℓ_p for every choice of the signs $\{\nu_m = \pm 1\}$. Let now $\{\alpha_j\}_{j=1}^{\infty} \in \ell_p$ that is, $\sum_{j=1}^{\infty} \alpha_j^p < \infty$. We may assume that $\alpha_j \leq 1/2$ for every $j \in \mathbb{N}$. Now we can write the chain of inequalities.

$$\begin{split} \sum_{m=1}^{\infty} \varphi_{nm}(\alpha_m) &= \sum_{m=1}^{\infty} \left(\sum_{\substack{j=k_{nm}+1 \\ j=k_{nm}+1}}^{k_{nm+1}-1} \Phi_j(\alpha_m y_j) + \Phi_{k_{nm+1}}(\alpha_m \overline{y}_{k_{nm+1}}) \right) \\ &\leqslant \sum_{m=1}^{\infty} \sum_{\substack{j=k_{nm}+1 \\ j\in A_m}} \Phi_j(\alpha_m y_j) \leqslant \sum_{m=1}^{\infty} \sum_{\substack{j\in A_m \\ j\in B_m}} \Phi_j(\alpha_m y_j) + \sum_{m=1}^{\infty} \sum_{\substack{j\in B_m \\ j\in B_m}} K\alpha_m^{p-\delta_m} \Phi_j(y_j) \\ &\leqslant \sum_{m=1}^{\infty} \sum_{\substack{j=k_{nm}+1 \\ j=k_{nm}+1}}^{k_{nm+1}-1} \tau_j \Phi_j(y_j) + K \sum_{m=1}^{\infty} \alpha_m^{p-\delta_m} \sum_{\substack{j=k_{nm}+1 \\ j=k_{nm}+1}}^{k_{nm+1}-1} \Phi_j(y_j) \\ &\leqslant \frac{3K}{2} \left\{ \sum_{m=1}^{\infty} \frac{1}{m^2} + \sum_{m=1}^{\infty} \alpha_m^{p-\delta_m} \right\} < \infty \,, \end{split}$$

where we used that $0 < \overline{y}_{k_{n+1}} \leq y_{k_{n+1}}$ for the second and (4) for the last inequality. Let now $\alpha = \{\alpha_m\}_{m=1}^{\infty} \in \ell_{\{\varphi_{n_m}\}}$, that is,

$$\sum_{m=1}^{\infty} \varphi_{n_m}(\alpha_m) = \sum_{m=1}^{\infty} \left(\sum_{j=k_{n_m}+1}^{k_{n_{m+1}}-1} \Phi_j(\alpha_m y_j) + \Phi_{k_{n_{m+1}}}(\alpha_m \overline{y}_{k_{n_{m+1}}}) \right) < \infty$$

It is not difficult to check that for every $m \in \mathbb{N}$ the estimate holds:

(5)
$$|\alpha_m|^{p+\delta_m} \Phi_{k_{n_{m+1}}}(\overline{y}_{k_{n_{m+1}}}) \leq \frac{1}{m^2} \Phi_{k_{n_{m+1}}}(\overline{y}_{k_{n_{m+1}}}) + \Phi_{k_{n_{m+1}}}(\alpha_m \overline{y}_{k_{n_{m+1}}}).$$

Denote $A'_m = A_m \setminus \{n_{m+1}\}$ and $B'_m = B_m \setminus \{n_{m+1}\}$ Now taking into account (3), (4) and (5) we can write the chain of inequalities:

$$\begin{split} \sum_{m=1}^{\infty} |\alpha_{m}|^{p+\delta_{m}} &= \sum_{m=1}^{\infty} |\alpha_{m}|^{p+\delta_{m}} \left(\sum_{j=k_{n_{m}}+1}^{\kappa_{n_{m+1}}-1} \Phi_{j}(y_{j}) + \Phi_{n_{m+1}}(\bar{y}_{k_{n_{m+1}}}) \right) \\ &\leqslant \sum_{m=1}^{\infty} \left(|\alpha_{m}|^{p+\delta_{m}} \left(\sum_{j\in A'_{m}} \Phi_{j}(y_{j}) + \sum_{j\in B'_{m}} \Phi_{j}(y_{j}) \right) \\ &\quad + \frac{1}{m^{2}} \Phi_{k_{n_{m+1}}}(\bar{y}_{k_{n_{m+1}}}) + \Phi_{n_{m+1}}(\alpha_{m}\bar{y}_{k_{n_{m+1}}}) \right) \\ &\leqslant \sum_{m=1}^{\infty} \left(\sum_{j\in A'_{m}} (\tau_{j})^{p+\delta_{m}} \Phi_{j}(y_{j}) + \sum_{j\in B'_{m}} |\alpha_{m}|^{p+\delta_{m}} \Phi_{j}(y_{j}) \\ &\quad + \frac{1}{m^{2}} \Phi_{k_{n_{m+1}}}(\bar{y}_{k_{n_{m+1}}}) + \Phi_{k_{n_{m+1}}}(\alpha_{m}\bar{y}_{k_{n_{m+1}}}) \right) \\ &\leqslant \sum_{m=1}^{\infty} \frac{1}{m^{2}} \left(\sum_{j\in A'_{m}} \Phi_{j}(y_{j}) + \Phi_{k_{n_{m+1}}}(\alpha_{m}\bar{y}_{k_{n_{m+1}}}) \right) \\ &\quad + \frac{1}{k} \sum_{m=1}^{\infty} \left(\sum_{j\in B'_{m}} \Phi_{j}(\alpha_{m}y_{j}) + \Phi_{k_{n_{m+1}}}(\alpha_{m}\bar{y}_{k_{n_{m+1}}}) \right) \\ &\leqslant \frac{1}{k} \left(\sum_{m=1}^{\infty} \frac{1}{m^{2}} + \sum_{m=1}^{\infty} \varphi_{n_{m}}(\alpha_{m}) \right) < \infty \,, \end{split}$$

which concludes the proof.

Let now $1/2 \leq \Phi(y_{j_k}) \leq 1$ for some increasing sequence of naturals $\{j_k\}_{k=1}^{\infty}$. Passing to a subsequence if necessary we may assume that $\sum_{k=1}^{\infty} \tau_{j_k} < \infty$. Then

$$\Phi_{j_k}(t) \ge \Phi_{j_k}(ty_{j_k}) \ge kt^{p+\varepsilon_{j_k}} \Phi_{j_k}(y_{j_k}) \ge \frac{k}{2} t^{p+\varepsilon_{j_k}}$$

for every $t \in [\tau_{j_k}, 1]$. Consequently

(6)
$$u^{p+\epsilon_{j_k}} \leqslant \frac{2}{k} \Phi_{j_k}(u) + \tau_{j_k}$$

holds for every $u \in [0, 1]$. Similarly

$$\Phi_{j_k}(t/2) \leqslant \Phi_{j_k}(ty_{j_k}) \leqslant 2^{p-\varepsilon_{j_k}} K\left(\frac{t}{2}\right)^{p-\varepsilon_{j_k}} \Phi_{j_k}(y_{j_k})$$

for every $t \in [\tau_{j_k}, 1]$. Thus

$$\Phi_{j_k}(u) \leqslant K_1 u^{p-\epsilon_{j_k}}$$

holds for every $u \in [\tau_{j_k}/2, 1/2]$, where $K_1 = 2^p K$. So

(7)
$$\Phi_{j_k}(u) \leqslant K_1 u^{p-\epsilon_{j_k}} + \tau_{j_k}$$

holds for every $u \in [0, 1/2]$. Consequently by (6) and (7) it follows that $\ell_p \cong \ell_{\{\Phi_{j_k}\}} \hookrightarrow \ell_{\Phi}$.

REMARK. If the conditions in Theorem 3 hold for a subsequence $\{\Phi_{n_k}\}_{k=1}^{\infty}$ then $\ell_p \hookrightarrow \ell_{\{\Phi_{n_k}\}} \hookrightarrow \ell_{\Phi}$.

COROLLARY 4.1. Let $\Phi = {\Phi_j}_{j=1}^{\infty}$ be a Musielak-Orlicz function and $(\Phi_j(ty_j))/(\Phi_j(y_j))$ converge uniformly to t^p on [0,1] for some sequence $\{y_j\}_{j=1}^{\infty}$ such that, $0 < y_j \leq 1$, $\sum_{j=1}^{\infty} \Phi_j(y_j) = \infty$ and $p \in [a(\Phi), b(\Phi)]$. Then $\ell_p \hookrightarrow h_{\Phi}$.

PROOF: Pick a decreasing sequence $\{\delta_k\}_{k=1}^{\infty}$, such that $\lim_{k\to\infty} \delta_k = 0$. There exists j(k) such that for every $j \ge j(k)$ the inequalities hold.

(8)
$$t^{p} - \delta_{k} < \frac{\Phi_{j}(ty_{j})}{\Phi_{j}(y_{j})} < t^{p} + \delta_{k}$$

for every $t \in [0, 1]$. Thus (8) implies

$$(1/2)t^{0} \leq 1 - \delta_{k}/t^{p} < \frac{\Phi_{j}(ty_{j})}{t^{p}\Phi_{j}(y_{j})} < 1 + \delta_{k}/t^{p} \leq 2(1/t)^{0}$$

for every $t \in [(2\delta_k)^{1/p}, 1]$ and for every $j \ge j(k)$. We define inductively sequences $\{r(k)\}$ and $\{s(k)\}$ in the following way. We put r(1) = j(1) and choose s(1) with $\sum_{j=r(1)}^{r(1)+s(1)} \Phi_j(y_j) > 1/2$. If r(k), s(k) are already chosen we put $r(k+1) = \max(r(k) + s(k), j(k+1))$ and choose s(k+1) such that $\sum_{j=r(k+1)}^{r(k+1)+s(k+1)} \Phi_j(y_j) > 1/2$. Now we can apply Theorem 3 for the subsequence $\{\Phi_{j_m}\}_{m=1}^{\infty}$ and the sequences $\{\varepsilon_m = 0\}, \{\tau_m = (2\delta_m)^{1/p}\}, m \in \mathbb{N}$, where for every m the index j_m is of the form $j_m = \sum_{i=1}^{k-1} s(i) + p$ for some $k \in \mathbb{N}$ and p with $1 \le p \le s(k)$, while $\varepsilon_m = 0, \ \delta_m = \delta_k$.

An easy to apply form of Theorem 3 is given by the following

COROLLARY 4.2. Let $\Phi = {\Phi_j}_{j=1}^{\infty}$ be a Musielak-Orlicz function and $p \in [a(\Phi), b(\Phi)]$. If there exist sequences ${x_j}_{j=1}^{\infty}, {y_j}_{j=1}^{\infty}, {\varepsilon_j}_{j=1}^{\infty}$ such that:

(1)
$$\varepsilon_j \ge 0$$
, $0 < x_j \le y_j \le 1$ for every $j \in \mathbb{N}$;

(2)
$$\lim_{j \to \infty} x_j/y_j = 0;$$

(3)
$$\sum_{j=1}^{\infty} \Phi_j(y_j) = \infty;$$

(4) $p - \varepsilon_j \leq (u \Phi'_j(u)) / (\Phi_j(u)) \leq p + \varepsilon_j \text{ for every } u \in [x_j, y_j]$
(5)
$$\sum_{i=1}^{\infty} C^{1/\varepsilon_i} < \infty \text{ for some } 0 < C < 1,$$

i

then $\ell_p \hookrightarrow h_{\Phi}$.

For the proof it is enough to rewrite the inequalities from (4) in the form:

(9)
$$p - \varepsilon_j \leq \frac{ty_j \Phi'_j(ty_j)}{\Phi_j(ty_j)} \leq p + \varepsilon_j \text{ for every } t \in [x_j/y_j, 1].$$

After integration in (9) we easily get for every $n \in \mathbb{N}$:

(10)
$$t^{p+\epsilon_j}\Phi_j(y_j) \leqslant \Phi_j(ty_j) \leqslant t^{p-\epsilon_j}\Phi_j(y_j)$$

for every $t \in [x_j/y_j, 1]$. Now we can apply Theorem 3 with $\tau_j = x_j/y_j$.

We shall illustrate some applications of Theorem 3 and the necessity of some of the conditions in it by the following four examples. By examples (1) and (2) we show that conditions (2) and (3) in Theorem 3 could not be omitted.

The next example represents a convex analog to an example from [16] EXAMPLE 1. Let

$$f_n(x) = \begin{cases} x & if \quad x \ge 1/n^2 \\ n^2 x^2 & if \quad x \in [0, 1/n^2]. \end{cases}$$

Obviously

$$\frac{f_n(x)}{x} = \begin{cases} 1 & if \quad x \ge 1/n^2\\ n^2x & if \quad x \in [0, 1/n^2] \end{cases}$$

is an increasing function and therefore

$$\Phi_n(x) = \int_0^x \frac{f_n(t)}{t} dt = \begin{cases} x - \frac{1}{2n^2} & \text{if } x \ge 1/n^2 \\ \frac{n^2}{2}x^2 & \text{if } x \in [0, 1/n^2]. \end{cases}$$

is an Orlicz function.

It is easy to check that

$$\frac{\Phi_n(t/n^2)}{t^2\Phi_n(1/n^2)} = 1$$

for every $n \in \mathbb{N}$ and every $t \in [0, 1]$. Therefore for the sequences $\{y_n = 1/n^2\}_{n=1}^{\infty}$, $\{\varepsilon_n = 0\}_{n=1}^{\infty}$ and any arbitrary sequence $\{\tau_n\}_{n=1}^{\infty}$ such that $\tau_n \searrow 0$ all the conditions of Theorem 3 hold except for the condition (3) $\left(\sum_{n=1}^{\infty} y_n = \sum_{n=1}^{\infty} 1/n^2 < \infty\right)$. Nonetheless $\ell_2 \not \to \ell_{\Phi_n}$ because the inequalities

$$\Phi_n(x) \leqslant x$$
 and $x \leqslant \Phi_n(x) + \frac{1}{2n^2}$, for every $x \in [0, +\infty)$.

imply $\ell_1 \cong \ell_{\Phi}$.

Then for the next two examples $k_n = 2n(1 - \sqrt{1 - (1/n)})$, $b_n = 1 - k_n$, $\alpha_n = 1 - \sqrt{1 - (1/n)}$, $n \in \mathbb{N}$. It is easy to see that $1/2n \leq \alpha_n \leq 1/n$.

0

EXAMPLE 2. Consider the functions

$$\Phi_n(x) = \begin{cases} k_n x + b_n & \text{if } x \ge \alpha_n \\ n x^2 & \text{if } x \in [(\alpha_n/2), \alpha_n] \\ \frac{n \alpha_n}{2} x & \text{if } x \in [0, (\alpha_n/2)]. \end{cases}$$

Obviously by the choice of the sequences k_n , b_n and α_n it follows that Φ_n are Orlicz functions.

It is easily to check that

$$\frac{\Phi_n(t\alpha_n)}{t^2\Phi_n(\alpha_n)} = 1$$

for every $n \in \mathbb{N}$ and for every $t \in [1/2, 1]$. Obviously $\sum_{n=1}^{\infty} \Phi_n(\alpha_n) = \sum_{n=1}^{\infty} n \cdot \alpha_n^2 = \infty$. Therefore for the sequences $\{y_n = \alpha_n\}_{n=1}^{\infty}, \{\varepsilon_n = 0\}_{n=1}^{\infty}$ and $\{\tau_n = 1/2\}_{n=1}^{\infty}$ all the conditions of Theorem3 hold except for the condition (2) $(\lim_{n \to \infty} \tau_n = 0)$. Nonetheless $\ell_2 \not \to \ell_{\Phi_n}$ because $\ell_1 \cong \ell_{\Phi}$.

Indeed consider now the Nakano sequence space $\ell_{\{p_n\}}$, where $p_n = 1 + (1/\ln n^2)$. According to [3] $\ell_1 \cong \ell_{\{p_n\}}$. It is easy to check that $x^{p_n} \leqslant \Phi_n(x) \leqslant x$, for every $x \in [0, 1]$, because the solutions of the equation: $nx^2 = x^{p_n}$ are $x_1 = 0$ and $x_2 = (1/n)^{1/(2-p_n)}$ and $x_2 < 1/(4n) < \alpha_n/2$. Thus $\ell_1 \cong \ell_{\Phi}$ which in turn implies $\ell_2 \not \to \ell_{\Phi_n}$.

Similar calculations can be done in Examples (1) and (2) to show that conditions (2) and (3) in Corollary 4.2 do not hold.

The next example shows that the indexes

$$\alpha_{\Phi} = \liminf_{n \to \infty} \alpha_{\Phi_n}, \quad \beta_{\Phi} = \limsup_{n \to \infty} \beta_{\Phi_n},$$

where α_{Φ_n} and β_{Φ_n} are the Boyd indexes of Φ_n (see for example, [11, p. 143]) are irrelevant when embedding of ℓ_p – spaces into ℓ_{Φ} is investigated. This fact is not surprising taking into account that among the Musielak–Orlicz functions Ψ equivalent to a given Musielak– Orlicz function Φ there exist such with $\alpha_{\Psi} = \beta_{\Psi} = 1$ ([18]).

EXAMPLE 3. Let $\{t_n\}_{n=1}^{\infty}$ be a sequence such that $\lim_{n\to\infty} t_n = 0$ and $t_n < 1/2$ for every $n \in \mathbb{N}$. Define the functions

$$\Phi_n(x) = \begin{cases} k_n x + b_n & \text{if } x \ge \alpha_n \\ n x^2 & \text{if } x \in \left[(t_n/n), \alpha_n \right] \\ t_n x & \text{if } x \in \left[0, (t_n/n) \right], \end{cases}$$

Obviously by the choice of the sequences k_n , b_n and α_n follows that Φ_n are Orlicz functions which are differentiable for every $x \in [0, 1]$ except for $x = t_n/n$ and $x = \alpha_n$.

It easy to see that $\ell_1 \cong \ell_{\{\Phi_{2^n}\}} \hookrightarrow \ell_{\Phi}$ because $\Phi_{2^n}(x) \leqslant x \leqslant \Phi_{2^n}(x) + \alpha_{2^n}$ and $\sum_{n=1}^{\infty} \alpha_{2^n} < \infty$.

The conditions $(u\Phi'_n(u))/(\Phi_n(u)) = 2$ for every $u \in [(t_n/n), \alpha_n]$, $\sum_{n=1}^{\infty} \Phi_n(\alpha_n) = \infty$ and $\lim_{n \to \infty} (t_n)/(n\alpha_n) = 0$ ensure that by Corollary 4.2 $\ell_2 \hookrightarrow \ell_{\Phi}$.

To calculate the Boyd indexes we have to observe that the functions Φ_n are linear for $t \in [0, t_n/n]$ and thus $1 = \alpha_{\Phi} = \beta_{\Phi}$.

We have that $(u\Phi'_n(u))/(\Phi_n(u)) = 1$ for every $u \in [0, t_n/n]$. So we obtain that $1 = a(\Phi) < b(\Phi) = 2$. Thus there exists a Musielak-Orlicz sequence space ℓ_{Φ} such that $\ell_2 \hookrightarrow \ell_{\Phi}$ and $2 \notin [\alpha_{\Phi}, \beta_{\Phi}]$.

Following [5] we shall construct an example of a weighted Orlicz sequence space which contains an isomorphic copy of ℓ_1 .

EXAMPLE 4. Let the sequences $\{d_n\}_{n=1}^{\infty}$ and $\{a_n\}_{n=1}^{\infty}$ be such that $d_n \leq d_{n+1}$, $a_n \leq a_{n+1}$, $\lim_{n \to \infty} d_n/d_{n+1} = 0$, $\lim_{n \to \infty} a_n = \infty$, $\lim_{n \to \infty} a_n(d_n/d_{n+1}) = 0$ and $\sum_{n=1}^{\infty} C^{a_n} < \infty$ for some 0 < C < 1. Define the Orlicz function

$$M(x) = \begin{cases} x^2 & \text{if } 0 \leq x \leq 1\\ A_n x + B_n & \text{if } d_n \leq x \leq d_{n+1} \end{cases}$$

where $A_n = d_{n+1} + d_n$, $B_n = -d_{n+1}d_n$.

Let the sequence $w = \{w_n\}_{n=1}^{\infty}$ be defined by $w_n = 1/(\Phi(d_{n+1})) = 1/(d_{n+1}^2)$. Then $\ell_{\Phi}(w) \cong \ell_{\{\Phi_n\}}$, where $\Phi_n(x) = (\Phi(d_{n+1}x))/(\Phi(d_{n+1}))$.

Thus

$$\frac{x\Phi_n'(x)}{\Phi_n(x)} = \frac{xd_{n+1}(\Phi_n'(d_{n+1}x))/(\Phi_n(d_{n+1})))}{(\Phi_n(d_{n+1}x))/(\Phi_n(d_{n+1}))} = \frac{xd_{n+1}A_n}{xd_{n+1}A_n + B_n}$$

for $d_n/d_{n+1} \leq s \leq 1$.

After easy calculations we obtain the inequalities:

$$1 - \frac{1}{a_n - 1} < 1 + \frac{d_n}{d_{n+1}} \leqslant \frac{x\Phi'_n(x)}{\Phi_n(x)} \leqslant 1 + \frac{1}{a_n - 1}$$

for every $a_n(d_n/d_{n+1}) \leq x \leq 1$.

Thus $\sum_{n=1}^{\infty} C^{a_n-1} = 1/C \sum_{n=1}^{\infty} C^{a_n} < \infty$ and we can apply Corollary 4.2 with $y_n = 1$, $x_n = a_n(d_n/d_{n+1}), \ \varepsilon_n = 1/(a_n-1)$ to show that $\ell_1 \hookrightarrow \ell_{\Phi}(w) \cong \ell_{\{\Phi_n\}}$. REMARK. If

(11)
$$\sum_{n=1}^{\infty} (d_n)/(d_{n+1}) < 1/2$$

it is proved in [5] that $\ell_1 \cong \ell_M(w)$.

REMARK. By choosing the sequences $\{d_n = n!\}_{n=1}^{\infty}$ and $\{a_n = \log n^2\}_{n=1}^{\infty}$ in Example 4 we get a weighted Orlicz sequence space $\ell_M(w)$ generated by an Orlicz function M which does not satisfy the Δ_2 -condition at infinity and a weight sequence

$$w = \left\{ w_n = \frac{1}{\left((n+1)! \right)^2} \right\}_{n=1}^{\infty},$$

but containing an isomorphic copy of ℓ_1 . Indeed (M(2n!)/M(n!)) = 3 + n and thus M does not satisfy the Δ_2 -condition at ∞ . The sequences $\{d_n\}_{n=1}^{\infty}$ and $\{a_n\}_{n=1}^{\infty}$ satisfy the conditions imposed on them in Example 4 and thus $\ell_1 \hookrightarrow \ell_M(w)$.

Following [4] we define a sequence of real numbers $\left\{\psi_{\lambda}(j)\right\}_{i=1}^{\infty}$ by

$$\psi_{\lambda}(j) = \inf \left\{ \Phi_j(\lambda t) / \Phi_j(t) : t > 0 \right\}.$$

PROPOSITION 4.1. ([4, Proposition 4.5.3]) Let $\Phi = {\{\Phi_j\}_{j=1}^{\infty}}$ be a Musielak-Orlicz function. Suppose that for some $\lambda > 1$, $\lim_{j \to \infty} \psi_{\lambda}(j) = \infty$, then h_{Φ} is stabilised asymptotic ℓ_{∞} .

Let us mention that in the proof of Proposition 4.1, a_j were chosen such that $\sum_{j=p}^{q} \Phi(a_j) \leq 1$. Thus the function $\psi_{\lambda}(j) = \inf \{ \Phi_j(\lambda t) / \Phi_j(t) : t > 0 \}$ can be replaced by

 $\psi_{\lambda}(j) = \inf \left\{ \Phi_j(\lambda t) / \Phi_j(t) : 0 < t \leq 1 \right\}.$

COROLLARY 4.3. Let Φ has δ_2 condition at zero and h_{Ψ} , generated by the Musielak-Orlicz function Ψ , complementary to Φ If there exist sequences: $\{x_j\}_{j=1}^{\infty}$, $\{y_j\}_{j=1}^{\infty}$ and $\{\varepsilon_j\}_{j=1}^{\infty}$ satisfying:

 $\begin{array}{ll} (1') & \varepsilon_j > 0, \ 0 < x_j \leqslant y_j \leqslant 1 \ \text{for every } j \in \mathbb{N}; \\ (2') & \lim_{j \to \infty} (x_j/y_j) = 0; \\ (3') & \sum_{j=1}^{\infty} \Phi_j(y_j) = \infty; \\ (4') & b(\Phi) - \varepsilon_j \leqslant (u\Phi'_j(u))/(\Phi_j(u)) \leqslant b(\Phi) + \varepsilon_j \ \text{for any } u \in [x_j, y_j]; \\ (5') & \sum_{j=1}^{\infty} C^{1/\varepsilon_j} < \infty \ \text{for some } 0 < C < 1. \ \text{and } \ell_{\Phi} \ \text{is } \ell_1 \ \text{saturated, then holds:} \\ & (a) \ a(\Phi) = b(\Phi) = 1; \\ & (b) \ h_{\Psi} \ \text{is stabilised asymptotic } \ell_{\infty} \ \text{respect to the basis } \{e_i^*\}_{i=1}^{\infty}. \end{array}$

PROOF: (a) By [16] it follows that if $\ell_1 \hookrightarrow \ell_{\Phi}$ then $1 \in [a(\Phi), b(\Phi)]$ and thus $a(\Phi) = 1$. Let $a(\Phi) \neq b(\Phi)$. By Corollary 4.2 follows that $\ell_{b(\Phi)} \hookrightarrow \ell_{\Phi}$, which is a contradiction. Thus $1 = a(\Phi) = b(\Phi)$.

(b) By (a) we have $a(\Phi) = b(\Phi) = 1$. So we have $\lim_{j \to \infty} a(\Phi_j) = \lim_{j \to \infty} b(\Phi_j) = 1$. Then using the well known connections $1/a(\Phi_j) + 1/b(\Psi_j) = 1$ and $1/a(\Psi_j) + 1/b(\Phi_j) = 1$ (see

[17]

[8]) it follows that $\lim_{j\to\infty} a(\Psi_j) = \lim_{j\to\infty} b(\Psi_j) = \infty$. Then by the definition of the indices $a(\Psi_j)$ and $b(\Psi_j)$ there is $\varepsilon > 0$, such that for every p_j , q_j : $0 < a(\Psi_j) - \varepsilon < p_j < a(\Psi_j)$ and $b(\Psi_j) < q_j < b(\Psi_j) + \varepsilon$

$$2^{a(\Psi_j)-\epsilon} < 2^{p_j} < \frac{\Psi_j(2t)}{\Psi_j(t)} < 2^{q_j} < 2^{b(\Psi_j)+\epsilon}.$$

Thus

$$\lim_{j\to\infty}\left(\inf\left\{\frac{\Psi_j(2t)}{\Psi_j(t)}:t>0\right\}\right)\geqslant \lim_{j\to\infty}2^{p_j}=\infty,$$

and by Propositon 4.1 it follows that h_{Ψ} is stabilised asymptotic ℓ_{∞} with respect to the basis $\{e_{j}^{*}\}_{j=1}^{\infty}$.

REMARK. Kaminska and Mastylo have given some sufficient and some necessary conditions for the Schur property in terms of the generating Musielak-Orlicz function Φ [8]. Sometimes we know only the complementary function Ψ . For example let the Musielak-Orlicz function $\Psi = {\{\Psi_j\}_{j=1}^{\infty}}$ be defined by $\Psi_j = e^{\alpha_j} e^{-(\alpha_j)/(|x|^{c_j})}$, where $\lim_{j\to\infty} \alpha_j = \infty$ and $0 < c_j$. Then ℓ_{Ψ} is stabilised asymptotic ℓ_{∞} with respect to the unit vector basis $\{e_j^*\}_{j=1}^{\infty}$ because

$$\lim_{j \to \infty} \inf \left\{ \frac{\Psi_j(2x)}{\Psi_j(x)} : 0 \leqslant x \leqslant 1 \right\} = \lim_{j \to \infty} \inf \left\{ e^{\alpha_j (2^{c_j} - 1)/(2^{c_j} |x|^{c_j})} : 0 \leqslant x \leqslant 1 \right\}$$
$$= \lim_{j \to \infty} e^{\alpha_j (2^{c_j} - 1)/(2^{c_j})} = \infty.$$

Thus we conclude that ℓ_{Φ} has the Schur property without considering the functions Φ_n , $n \in \mathbb{N}$.

References

- J. Alexopoulos, 'On subspaces of non-reflexive Orlicz spaces', Quaestiones Math. 21 (1998), 161-175.
- [2] C. Bessaga and A. Pelczynski, 'On bases and unconditional convergence of series in Banach Spaces', Studia Math. 17 (1958), 165-174.
- [3] O. Blasco and P. Gregori, 'Type and cotype in Nakano sequence spaces $\ell_{(\{p_n\})}$ ', (preprint).
- [4] N. Dew, Asymptotic structure of Banach spaces, (Ph.D. Thesis) (St. John's College University of Oxford, Oxford, 2002).
- [5] F. Fuentes and F. Hernandez, 'On weighted Orlicz sequence spaces and their subspaces', Rocky Mountain J. Math. 18 (1988), 585-599.
- [6] H. Hudzik and A. Kaminska, 'On uniformly convex and B-convex Musielak-Orlicz spaces', Comment. Math. Prace Mat. 25 (1985), 59-75.
- H. Hudzik and L. Maligranda, 'Amemiya norm equals Orlicz norm in general', Indag. Math. 11 (2000), 573-585.
- [8] A. Kaminska and M. Mastylo, 'The Schur and (weak) Dunford-Pettis property in Banach lattices', J. Austral. Math. Soc. 73 (2002), 251-278.

- [9] E. Katirtzoglou, 'Type and cotype in Musielak-Orlicz', J. Math. Anal. Appl. 226 (1998), 431-455.
- [10] K. Kircev and S. Troyanski, 'On Orlicz spaces associated to Orlicz functions not satisfying the Δ_2 -condition', Serdica 1 (1975), 88-95.
- [11] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, sequence spaces (Springer-Verlag, Berlin, 1977).
- [12] L. Maligranda, 'Indices and inerpolation', Dissertationes Rozprawy Mat. 234 (1985), 49.
- [13] B. Maurey, V.D. Milman and N. Tomczak-Jaegermann, 'Asymptotic infinite-dimensional theory of Banach spaces', Oper. Theory Adv. Appl. 77 (1995), 149-175.
- [14] V.D. Milman and N. Tomczak-Jaegermann, 'Asymptotic ℓ_p spaces and bounded distortions', Contemp. Math. 144 (1992), 173-195.
- [15] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034 (Springer-Verlag, Berlin, 1983).
- [16] V. Peirats and C. Ruiz, 'On l^p-copies in Musielak-Orlicz sequence spaces', Arch. Math. Basel 58 (1992), 164-173.
- [17] S. Yamamuro, 'Modulared sequence spaces', J. Fasc. Sci. Hokkaido Univ. Ser. I 13 (1954), 1-12.
- [18] J. Woo, 'On modular sequence spaces', Studia Math. 48 (1973), 271-289.

Department of Mathematics and Informatics Plovdiv University 24 "Tzar Assen" str Plovdiv, 4000 Bulgaria