Dietary interventions for weight loss and cardiovascular risk reduction in people of African ancestry (blacks): a systematic review

G Osei-Assibey1,* and C Boachie2
1Abacus International, 4 Market Square, Bicester, Oxfordshire, OX26 6AA, UK: 2Health Services Research Unit, University of Aberdeen, Aberdeen, UK

Submitted 17 August 2010: Accepted 14 April 2011: First published online 1 June 2011

Abstract

Objective: To systematically review weight and cardiovascular risk reduction in blacks by diet and lifestyle changes.

Design: Randomised and non-randomised controlled trials of diet with/without lifestyle changes with duration of intervention ≥3 months, and published between January 1990 and December 2009, were searched in electronic databases including MEDLINE, EMBASE, CINAHL and CCTR (Cochrane Controlled Trials Register). Studies were included if they reported weight/BMI changes with changes in at least one of the following: systolic and diastolic blood pressure, fasting plasma lipids and glucose, and glycated haemoglobin.

Setting: Clinical, community and church-based interventions.

Subjects: Study participants were of African ancestry (blacks).

Results: Eighteen studies met the inclusion criteria. Average mean difference in weight loss was −2.66 kg, with improvements in all outcomes except total cholesterol. No significant difference was observed in outcome measures between all studies and studies that recruited only healthy participants or patients with type 2 diabetes.

Conclusions: Diet and lifestyle changes result in weight loss with improvements in cardiovascular risk factors in blacks. However, more culturally tailored programmes have been suggested to motivate and encourage blacks to participate in intervention trials.

Keywords
Weight loss
Cardiovascular risk reduction
Blacks

Obesity poses a major public health problem worldwide, driving an epidemic of associated complications such as type 2 diabetes mellitus and CVD(1). People of sub-Saharan African ancestry (blacks) in Western countries exhibit higher prevalences of obesity and obesity-related cardiovascular disease risk factors than people of European ancestry (whites).

Surveys in the USA have indicated that the prevalence of obesity is 32.2% in the general population, 30.6% in whites and 45.0% in blacks. Among men, the prevalence is similar in whites (31.1%) and blacks (34.0%). However, black women are more likely to be obese (53.9%) than white women (30.2%) (2). In addition to higher obesity rates, blacks have higher prevalences of CVD risk factors, including higher prevalences of diabetes, hypertension and stroke (3–6), and higher mortality rates from CVD (7) compared with whites.

The higher prevalence of obesity and CVD risk factors in blacks can be ameliorated by effective weight management. However, this is both a clinical and a public health challenge, as evidence from trials indicates that blacks underachieve in weight management programmes compared with whites (8–13). Various reasons have been proposed for this including social and cultural barriers such as differential body-image ideals, cultural food attitudes, fewer models for physical activity, and normative views of overweight and obesity (14,15).

No review has been identified focusing on the effect of weight change by dietary and other lifestyle changes on risk factors in blacks. The present review is therefore opportune, given the higher cardiovascular risk in blacks, exacerbated by limited access to the knowledge or resources required to incorporate dietary and lifestyle changes (16).

Methods

Data sources and study selection

The following sources were searched: MEDLINE, EMBASE, CINAHL and CCTR (Cochrane Controlled Trials Register). Reference lists of original studies and other systematic reviews were also examined. Keywords used included ‘blacks’ or ‘black Africans’ or ‘African Americans’ or ‘Afro-Caribbeans’ or ‘black British’ or ‘black Americans’ and ‘obesity’ or ‘overweight’ or ‘diabetes’ or ‘heart disease’ or ‘cardiovascular disease’ or ‘hypertension’ in combination.
with ‘intervention’ or ‘trial’ using various suffixes. Electronic searches and reviewing of results were performed by one reviewer (G.O.A.).

Another reviewer (C.B.) assessed the relevance of identified studies for inclusion, and disagreements were resolved by consensus. Studies were included on the basis of: (i) dietary intervention with/without lifestyle change (behaviour change and physical activity) v. control; (ii) randomised or non-randomised controlled trials; (iii) black participants (for studies made up of mixed ethnicity, authors were contacted for subgroup results on blacks); (iv) duration of intervention ≥3 months; (v) studies published between January 1990 and December 2009; and (vi) reported weight/BMI change and change in at least one of the following: waist circumference, systolic and diastolic blood pressures, fasting plasma lipids and glucose, and glycated haemoglobin (HbA1c).

Data synthesis

A QUOROM (quality of reporting of meta-analysis) statement was used to describe how studies identified through the searches were processed\(^\text{17}\). Each study was summarized with regard to characteristics of participants and interventions, duration and dropout rate. Because of the various dietary interventions employed, results of included studies were not pooled but rather expressed as the average mean difference between intervention and control using StatsDirect Statistical Software version 2.7.7 (StatsDirect Ltd, Altrincham, UK).

Results

Findings and description of studies

Search results are summarized in the QUOROM flow diagram (Fig. 1). Eighteen studies met the inclusion criteria out of thirty-five potential studies\(^{18–35}\). Seven of the studies recruited healthy obese participants, ten enrolled only participants with diabetes\(^{18,19,21,23,26,30,31,33–35}\), and one study recruited participants with hypertension\(^{32}\). Intervention duration ranged from 3–5 to 12 months (median of 6 months).

All studies took place in the USA, and about 50% of the included trials recruited less than 100 participants in the either intervention or control arm. Furthermore all studies

![QUOROM flowchart](https://www.cambridge.org/core/core/terms.https://doi.org/10.1017/S1368980011001121)
employed dietary interventions/advice with lifestyle modifications (behaviour change and physical activity).

The majority (fifteen of eighteen) of the trials that were described as randomised specified eligibility criteria, but none explicitly stated the method of randomisation and details of allocation concealment in the trials. Incomplete outcome data were addressed in ten of eighteen trials. Six studies recruited only women participants (22,24,26–29) and the rest were of mixed gender. Most of the studies were clinic- or community-based, and only three were church-based (22–24). Attrition rate ranged from 6% to 32%. Table 1 summarises the characteristics of the participants and interventions.

Outcomes

All studies showed a positive treatment effect on weight change between intervention and control except two studies (20,23). Net average weight loss ranged from 5.40 kg in 3–5 months (35) to 2.49 kg in 6 months (18,19,22,26–29,31–33) and 2.91 kg in 12 months (20,21,23–25,30,34). Average mean difference in weight loss was −2.66 kg for all studies, −2.63 kg for studies that recruited healthy participants and −2.76 kg for studies that enrolled only patients with type 2 diabetes. Even though weight loss in type 2 diabetes patients was higher, it was not significantly different from weight loss in all studies or in healthy participants (Table 2).

Weight loss was associated with net improvements in waist circumference (−2.95 cm), fasting blood glucose (−0.82 mmol/l), HbA1c (−0.51 %), systolic (−1.4 mmHg) and diastolic blood pressures (−0.6 mmHg), LDL cholesterol (−0.06 mmol/l), HDL cholesterol (+0.31 mmol/l) and TAG (−0.29 mmol/l), but not in total cholesterol. No significant difference was detected between all studies and the studies of healthy participants or type 2 diabetes patients for any outcome (Table 2).

Discussion

The higher prevalence of cardiovascular risk factors in blacks has been attributed to multiple influences of genetics, socio-economic factors and lifestyle that promote obesity and make weight loss difficult (36–40). Reducing CV risk factors, socio-economic factors and lifestyle that promote obesity in people of African ancestry has been attributed to multiple influences of genetics, sociocultural factors and lifestyle that promote obesity and make weight loss difficult.

The present review has highlighted a serious deficiency of published research in an increasingly important area in people of African ancestry. Although interesting, the studies that have been published have used various approaches which have suggested improvement in weight and cardiovascular risk factor reduction in the medium term (6 months). However, changing attitudes may not by themselves lead to sustained behaviour change if the environment is not supportive of these changes (54). More studies are therefore needed: first to examine the ‘obesogenic’ environment, health beliefs and the social context within which blacks live and work, and second to examine the motivators for behaviour change within this population.
<table>
<thead>
<tr>
<th>Study</th>
<th>Mean age (years)</th>
<th>Mean BMI (kg/m²)</th>
<th>Intervention v. control</th>
<th>Length of intervention (months)</th>
<th>Dropout rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agurs-Collins et al. (1997)</td>
<td>61</td>
<td>33.9</td>
<td>Weekly sessions on dietary advice and exercise (n 30) v. class session and informational mailings (n 25)</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Anderson-Loftin et al. (2005)</td>
<td>57.3</td>
<td>33.1</td>
<td>Low-fat diet advice plus peer group discussions (n 38) v. usual diabetes care class (n 27)</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>Becker et al. (2005)</td>
<td>47.8</td>
<td>31.5</td>
<td>Lifestyle advice to reduce heart disease (n 196) v. enhanced primary care to reduce heart disease (n 168)</td>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>Racette et al. (2001)</td>
<td>47.5</td>
<td>40.0</td>
<td>Diet and activity advice sessions (n 19) v. one diet and activity session (n 17)</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Resnicow et al. (2005)</td>
<td>59.9</td>
<td>32.7</td>
<td>High-intensity behavioural group intervention (n 53) v. moderate-intensity behavioural group intervention (n 70)</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Samuel-Hodge et al. (2009)</td>
<td>59.0</td>
<td>35.0</td>
<td>Individual counselling plus group sessions (n 96) v. standard educational pamphlets by mail (n 72)</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Yanek et al. (2001)</td>
<td>53.1</td>
<td>32.2</td>
<td>Healthy lifestyle sessions plus spiritual components (n 455) v. self-help information (n 74)</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>Zemel et al. (2005)</td>
<td>41.9</td>
<td>34.5</td>
<td>High dairy/calcium plus energy restriction (n 17) v. low dairy/calcium plus energy restriction (n 12)</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>West et al. (2007)</td>
<td>53</td>
<td>36.5</td>
<td>Individual motivational interviewing (n 42) v. attention as adjunct to behavioural weight-control programme (n 41)</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Hall et al. (2003)</td>
<td>59.9</td>
<td>28.9</td>
<td>Reduction in total fat intake to ≤20 % of energy (n 335) v. pamphlet on general dietary guidelines (n 203)</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Samaha et al. (2003)</td>
<td>53.5</td>
<td>42.9</td>
<td>Low-carbohydrate diet (≤30 g/d; n 47) v. low-fat diet (≤30 % of total energy derived from fat; n 36)</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Kennedy et al. (2009)</td>
<td>45.9</td>
<td>33.7</td>
<td>Classroom peer nutrition and physical activity lessons (n 18) v. monthly take home lessons (n 19)</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Mayer-Davis et al. (2004)</td>
<td>61</td>
<td>36.4</td>
<td>Intensive diabetes prevention programme (n 49) v. usual care (one individual session; n 56)</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Ziemer et al. (2003)</td>
<td>52.0</td>
<td>33.5</td>
<td>Healthy food meal plan (n 289) v. exchange-based meal plan (n 359)</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>Elmer et al. (2006)</td>
<td>49.9</td>
<td>33.1</td>
<td>Comprehensive lifestyle modification (n 73) v. advice only (n 100)</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Barnard et al. (2006)</td>
<td>55.6</td>
<td>34.9</td>
<td>Low-fat vegan diet (n 22) v. American Diabetes Association guideline (n 22)</td>
<td>5-5</td>
<td>8</td>
</tr>
<tr>
<td>Look AHEAD Research Group</td>
<td>58.7</td>
<td>36.4</td>
<td>Lifestyle intervention of group and individual meetings (n 399) v. diabetes support and education (n 404)</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>McNabb et al. (1997)</td>
<td>56.6</td>
<td>33.5</td>
<td>PATHWAYS weight-loss programme (n 15) v. wait list control group (n 18)</td>
<td>3-5</td>
<td>6</td>
</tr>
</tbody>
</table>
Cultural adaptations in interventions involving blacks have also been suggested, such as involving black providers, using a community setting, using the group’s preferred language, and incorporating cultural food and activity preferences, traditions and concepts into programme content.

Acknowledgements

This research received no funding or grant from any funding agency in the public, commercial or not-for-profit sector. There is no conflict of interest. G.O.A. did the initial searching in electronic databases and hand searching, and also wrote the first draft of the paper. C.B. did the selection of studies based on the inclusion criteria, and also contributed to the final draft and statistical advice.

References

Table 2 Outcome measures (expressed as average mean difference between intervention and control) of dietary interventions for weight loss and cardiovascular risk reduction in blacks18–35

<table>
<thead>
<tr>
<th>Outcome</th>
<th>All studies</th>
<th>Healthy participants</th>
<th>Patients with type 2 diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>–2.66</td>
<td>–2.63</td>
<td>–2.76</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>–2.95</td>
<td>–2.26</td>
<td>–3.63</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>–1.39</td>
<td>–1.54</td>
<td>0.70</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>–0.61</td>
<td>–0.77</td>
<td>–0.69</td>
</tr>
<tr>
<td>Fasting blood glucose (mmol/l)</td>
<td>–0.82</td>
<td>–0.2</td>
<td>–1.73</td>
</tr>
<tr>
<td>Glycated haemoglobin, HbA1c (%)</td>
<td>–0.51</td>
<td>–0.57</td>
<td>–0.57</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>0.31</td>
<td>0.19</td>
<td>0.38</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/l)</td>
<td>–0.06</td>
<td>–0.11</td>
<td>–0.04</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>0.87</td>
<td>0.27</td>
<td>1.10</td>
</tr>
<tr>
<td>TAG (mmol/l)</td>
<td>–0.29</td>
<td>–0.86</td>
<td>–0.04</td>
</tr>
</tbody>
</table>
Weight and cardiovascular risk reduction in blacks

