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STOCHASTIC BROWNIAN GAME
OF ABSOLUTE DOMINANCE
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Abstract

In this paper we study a reinsurance game between two insurers whose surplus processes
are modeled by arithmetic Brownian motions. We assume a minimax criterion in the
game. One insurer tries to maximize the probability of absolute dominance while the
other tries to minimize it through reinsurance control. Here absolute dominance is defined
as the event that liminf of the difference of the surplus levels tends to −∞. Under suitable
parameter conditions, the game is solved with the value function and the Nash equilibrium
strategy given in explicit form.
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1. Introduction

Game theory is used to model and analyze interactive situations in various environments.
It has been widely applied in economics and insurance. In [3], a finite-horizon stochastic
differential game is considered. It was proved that the sup-value and sub-value functions of the
game are the unique viscosity solutions of the Bellman–Isaacs partial differential equations.
In [1], portfolio games between two investors were considered. Conditions under which a
game, with a general payoff function, has an achievable value were provided, and explicit
representations of the value function and the equilibrium portfolio strategy were given. In [5], a
two-player stochastic differential game was studied in a Lévy market, where Hamilton–Jacobi–
Bellman–Isaacs (HJBI) conditions were proved and the results applied to risk minimization
problems. In [9], a proportional reinsurance game was formulated by maximizing or minimizing
the exit probability of an interval. The value function and Nash equilibrium strategy were
obtained explicitly. In [8], a similar game was studied with consideration of nonproportional
reinsurance.

In this paper we study a game between two insurers with reinsurance control. We apply the
modeling features of [1], [4], and [9], and formulate a competition between the two insurers
using a two-player noncooperative differential game. The surplus processes are modeled by
arithmetic Brownian motions with risk-free investment and Brownian perturbation. In this
game, the insurers can purchase proportional reinsurance to control their risk exposure levels.
That is, the drift and diffusion terms of the arithmetic Brownian motions can be reduced
proportionally at the same time. We consider absolute dominance as the win scenario of the
game. Here absolute dominance is defined as the event that one insurer eventually outperforms
the other in surplus level, i.e. the liminf of the difference of the surplus levels tends to −∞.

Received 6 February 2013; revision received 5 August 2013.
∗ Postal address: Department of Mathematics, University of Northern Iowa, Cedar Falls, IA 50614-0506, USA.
Email address: luos@uni.edu

436

https://doi.org/10.1239/jap/1402578635 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578635


Brownian game of absolute dominance 437

This scenario is motivated by the idea of absolute ruin (see [8]) or infinite time ruin (see [6]). To
define the value function of the game, we use a minimax criterion: one insurer tries to maximize
the probability of its absolute dominance while the other tries to minimize the probability (of
being absolutely dominated) using reinsurance control. The value function is defined as the
probability of absolute dominance under the optimal reinsurance control or play (if it exists for
both players). If the value function is well defined and has proper smoothness conditions, it
can be characterized by Fleming–Bellman–Isaacs (FBI) equations that involve supremum and
infimum operations of a differential operator. Solvability of the game, in the case where the
surplus processes are positively correlated, is studied in detail. We find that, under suitable
parameter conditions, the FBI equations can be solved explicitly. By a verification result, the
solution is shown to coincide with the value function. The saddle-point control strategy (or the
Nash equilibrium strategy) is also found explicitly in these cases.

The rest of the paper is organized as follows. In Section 2 we formulate the problem. In
Section 3 we state the FBI equations and prove the verification theorem. In Section 4 we solve
the FBI equations. We give concluding remarks in Section 5.

2. A noncooperative game and the value function

In this section we formulate the game and define the value function. We begin with the
diffusion approximation model under which the surplus processes are approximated by the
following drifted Brownian motions (see, e.g. [2] and [7]):

dS1 = μ1(a) dt + σ1(a) dw1, dS2 = μ2(b) dt + σ2(b) dw2,

where {wi}t≥0, i = 1, 2, are standard Brownian motions adapted to the information filtration
{Ft }t≥0 in a probability space (�, F , P) with E(dw1 dw2) = ρ dt for some correlation
coefficient ρ, and the drift and diffusion terms are given by

μ1(a) = μ1a − λ1(1 − a) = (μ1 + λ1)a − λ1, σ1(a) = σ1a,

μ2(b) = μ2b − λ2(1 − b) = (μ2 + λ2)b − λ2, σ2(b) = σ2b,

which are based on proportional reinsurance (see [4] and [7]), where, for i = 1, 2, μi (> 0),
are insurance premium rates, λi (≥ 0) are levels of reinsurance safety loading, σi (> 0) are
volatilities of the Brownian motions which represent the risk levels, and 0 ≤ a ≤ 1 and
0 ≤ b ≤ 1 are levels of risk exposure. Write γi = μi + λi, i = 1, 2, which represent the
reinsurance premium rates.

Now we include risk-free investment and Brownian perturbation in the model. That is, the
insurers earn or pay interest at a constant rate when the surplus levels are positive or negative,
respectively, and the surplus levels are perturbed by Brownian noise. Hence, the surplus
processes are governed by the Itô dynamics

dS1 = [rS1 + μ1(a)] dt + σ1(a) dw1 + dZ1,

dS2 = [rS2 + μ2(b)] dt + σ2(b) dw2 + dZ2,

where Zi, i = 1, 2, are zero-mean Brownian motions that model the perturbing terms, and r

is the constant interest rate.
Next we consider stochastic reinsurance control, with which the risk exposure levels can be

changed dynamically over time. We denote by SA
1 the controlled surplus process of the first

insurer under the dynamic reinsurance control with risk exposure process A := {at }t≥0, and

https://doi.org/10.1239/jap/1402578635 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578635


438 S. LUO

by SB
2 the controlled surplus process of the second insurer under the control with risk exposure

process B := {bt }t≥0. The difference in the surplus processes, XA,B := SA
1 − SB

2 , is governed
by the stochastic differential equation

dX
A,B
t = [rXA,B

t + γ1at − γ2bt − (λ1 − λ2)] dt + σ1at dw1 − σ2bt dw2 + σ dZ (2.1)

with X0 = x, where x is the initial difference, Z is a standard Brownian motion independent
of w1 and w2, and σ (> 0) is the volatility of the perturbing Brownian motion.

A control policy with risk exposure process A is said to be admissible if

(i) 0 ≤ at ≤ 1;

(ii) at ∈ Ft for all t > 0; and

(iii) at is square integrable over [0, T ] for all T > 0 almost surely (
∫ T

0 a2
t dt exists).

We denote by π the set of admissible controls.
Now we define the performance function of the game under a paired admissible policy

(A, B) as

V A,B(x) := Px

(
lim inf
t→∞ X

A,B
t = −∞

)
,

where Px(·) = P(· | X0 = x). The performance function is the probability that insurer two
attains absolute dominance, or, in other words, that liminf of the difference in the surplus levels
tends to −∞. We note that policies A and B are adapted to the same information filtration F .
This implies that there is complete observation in the game. That is, insurer one’s strategy is
instantaneously observed by insurer two, and vice versa.

In the following we apply a minimax criterion to define the value function. We first need to
define sub-value and sup-value functions of the game:

V (x) := sup
B∈π

inf
A∈π

V A,B(x), V (x) := inf
A∈π

sup
B∈π

V A,B(x).

The sub-value function is obtained in a way such that insurer one plays first to minimize the
probability of absolute dominance of insurer two and insurer two plays second to maximize it.
The sup-value function is obtained in the opposite way. Obviously, it holds that V (x) ≤ V (x)

for all x ∈ (−∞, ∞). In the case V (x) = V (x) for all x ∈ (−∞, ∞), we define the value
function as

V (x) = V (x) = V (x).

Note that V and V are decreasing functions and V is a decreasing function when it exists.

3. FBI equations and the verification theorem

In this section we give the FBI equations and prove the verification theorem. Suppose that
the value function of the game exists and is a C2(−∞, ∞) function. Furthermore, suppose
that there exists a so-called admissible Nash equilibrium or saddle-point strategy, denoted by
(A∗, B∗), that satisfies

V A∗,B(x) ≤ V A∗,B∗
(x) ≤ V A,B∗

(x)

for any x ∈ (−∞, ∞) and admissible controls A and B. With Markov decision making, the
saddle-point strategy (A∗, B∗) is a feedback strategy determined by a pair of risk exposure
functions (a∗(x), b∗(x)). That is, the reinsurance controls at any time are given by a∗(x)
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and b∗(x) which depend only on the then-current surplus difference x. By a rather standard
procedure, we can show that the value function V solves the FBI equations

sup
b∈[0,1]

La∗(x),bV (x) = 0, inf
a∈[0,1] L

a,b∗(x)V (x) = 0, (3.1)

where the differential operator L is defined by

La,bV (x) = [rx + γ1a − γ2b − (λ1 − λ2)]V ′(x) + 1
2 (σ 2

1 a2 + σ 2
2 b2 − 2ρσ1σ2ab + σ 2)V ′′(x),

and the functions a∗(x) and b∗(x) satisfy

a∗(x) = arg inf
a∈[0,1] L

a,b∗(x)V (x), b∗(x) = arg sup
b∈[0,1]

La∗(x),bV (x). (3.2)

Note that the pair (a∗(x), b∗(x)) is a saddle point of La,bV (x) and it holds that

La∗(x),b∗(x)V (x) = 0.

We skip the derivation of the FBI equations. In the following we prove the verification
theorem, which shows that if a decreasing C2 solution to (3.1) with boundary conditions

V (∞) = 0 and V (−∞) = 1 (3.3)

exists, then the value function exists and coincides with the solution.
First we give the result that the controlled process exits any finite interval with probability 1.

For any M , N with −∞ < M < x < N < ∞ and any admissible controls A and B, define
the first hitting times

τ
A,B
M = inf{t > 0 : XA,B(t) = M}, τ

A,B
N = inf{t > 0 : XA,B(t) = N},

and
τ

A,B
M,N = τ

A,B
M ∧ τ

A,B
N .

Lemma 3.1. For any −∞ < M < x < N < ∞ and any admissible controls A and B, it
holds that Px(τ

A,B
M,N < ∞) = 1.

Proof. For convenience, write τ = τ
A,B
M,N and

ξt = rX
A,B
t + γ1at − γ2bt − (λ1 − λ2), η2

t = σ 2
1 a2

t − 2ρσ1σ2atbt + σ 2
2 b2

t + σ 2.

Applying Itô’s formula to eKX
A,B
t , we obtain

eKX
A,B
τ∧T − eKx =

∫ τ∧T

0
KeKX

A,B
t

(
1

2
Kη2

t + ξt

)
dt + σ1

∫ τ∧T

0
KeKX

A,B
t at dw1

− σ2

∫ τ∧T

0
KeKX

A,B
t bt dw2 + σ

∫ τ∧T

0
KeKX

A,B
t dZt .

Taking the expectation of both sides, we have

Ex[eKX
A,B
τ∧T ] − eKx = Ex

[∫ τ∧T

0
KeKX

A,B
t

(
1

2
Kη2

t + ξt

)
dt

]
. (3.4)
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Since ξt is bounded for t ∈ (0, τ ) and 2σ 2
1 + 2σ 2

2 + σ 2 ≥ η2
t ≥ σ 2, we can choose a negative

K with large |K| such that 1
2Kη2

t +ξt < −1 for all t ∈ (0, τ ). From (3.4), it holds that

eKM ≥ Ex[eKX
A,B
τ∧T ]

≥ KEx

[∫ τ∧T

0
eKX

A,B
t

(
1

2
Kη2

t + ξt

)
dt

]

≥ −KEx

[∫ τ∧T

0
eKX

A,B
t dt

]
.

Thus,

eKM ≥ −KEx

(
1{τ>T }

∫ T

0
eKX

A,B
t dt

)
≥ −KeKNT Px(τ > T ).

Letting T → ∞, we obtain Px(τ = ∞) = 0.

Below we show that certain events (e.g. the controlled process never hits y given it starts
at x) occur with positive probability.

Lemma 3.2. For any −∞ < M < x < N < ∞ and any admissible controls A and B, it
holds that

(i) 0 < Px(X
A,B

τ
A,B
M,N

= M) < 1 and 0 < Px(X
A,B

τ
A,B
M,N

= N) < 1;

(ii) 0 < Px(τ
A,B
M < ∞) < 1 and 0 < Px(τ

A,B
N < ∞) < 1.

Proof. We drop superscripts of the hitting times. We first prove (i). Note that it holds that
K(1/2Kη2

t + ξt ) > 0 for t ∈ (0, τM,N) for both positive and negative values of K when |K|
is large. From (3.4), we have Ex(exp{KX

A,B
τM,N∧T }) − eKx ≥ 0. Since P(τM,N < ∞) = 1

(Lemma 3.1), letting T → ∞, we have

1 ≤ Ex[exp{K(XA,B
τM,N

− x)}] = eK(M−x)
Px(X

A,B
τM,N

= M) + eK(N−x)
Px(X

A,B
τM,N

= N).

Setting K > 0 in the above inequality, we conclude that Px(X
A,B
τM,N

= N) > 0, while setting
K < 0, we have Px(X

A,B
τM,N

= M) > 0. From Lemma 3.1 we have Px(X
A,B
τM,N

= M) +
Px(X

A,B
τM,N

= N) = 1; hence, the results in (i) hold.

Now we prove (ii). Note that Px(τN < ∞) ≥ Px(X
A,B
τM,N

= N) > 0 (i.e. the probability
of hitting N is greater than the probability of hitting N without hitting M). To show that
Px(τN < ∞) < 1, we first consider the case when N is negative and |N | is large such that,
for a fixed K > 0, we have K(1/2Kη2

t + ξt ) < 0 for t ∈ (0, τM,N). From (3.4) we have
Ex(exp{KX

A,B
τM,N∧T })− eKx ≤ 0. Hence,

1 ≥ Ex[exp{K(XA,B
τM,N

− x)}] = eK(M−x)
Px(X

A,B
τM,N

= M) + eK(N−x)
Px(X

A,B
τM,N

= N).

By letting M → −∞ we obtain 1 ≥ eK(N−x)
Px(τN < ∞), which yields Px(τN < ∞) < 1

or Px(τN = ∞) > 0. Now we prove the general case for any x and N with x < N . Take
x0 < N0 < x < N with N0 < 0 and large |N0| such that Px0(τN0 = ∞) > 0. Then

1 − Px(τN < ∞) = Px(τN = ∞) ≥ Px(X
A,B
τx0,N

= x0)Px0(τN0 = ∞) > 0.

The above inequality is due to the fact that the probability of the process never hitting N is
larger than the probability of the process first hitting x0 without hitting N and then never hitting
N0 afterwards. So we have shown that 0 < Px(τN < ∞) < 1. Likewise, we can show that
0 < Px(τM < ∞) < 1.
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We now show an ergodicity result of the controlled process.

Lemma 3.3. The controlled process XA,B governed by (2.1) under any admissible controls A

and B diverges to ∞ or −∞ almost surely.

Proof. In this proof we do not distinguish between sets that differ by a set having probabil-
ity 0. First we note that, for any −∞ < M < N < ∞,

Px

(
lim inf
t→∞ X

A,B
t ≤ M ∩ lim sup

t→∞
X

A,B
t ≥ N

)
= 0. (3.5)

In fact, the event lim inf t→∞ X
A,B
t ≤ M ∩ lim supt→∞ X

A,B
t ≥ N implies that there are

infinitely many crossing times of the interval [M +ε, N −ε] for some ε > 0. From Lemma 3.2,
each time the process hits M +ε, there is a positive probability that the process never hits N −ε.
Thus, the probability of having infinitely many crossing times is 0 and (3.5) holds. Letting
N → M in (3.5), we obtain

Px

(
lim inf
t→∞ X

A,B
t ≤ M ∩ lim sup

t→∞
X

A,B
t > M

)
= 0.

This implies that

Px

(
lim inf
t→∞ X

A,B
t ≤ M ∩ lim sup

t→∞
X

A,B
t ≤ M

)
= Px

(
lim inf
t→∞ X

A,B
t ≤ M

)
. (3.6)

Thus, the events lim inf t→∞ X
A,B
t ≤ M and lim supt→∞ X

A,B
t ≤ M are the same. Similarly,

we can show that the events lim inf t→∞ X
A,B
t ≥ M and lim supt→∞ X

A,B
t ≥ M are the same.

We now show that
Px(M ≤ lim inf X

A,B
t ≤ N) = 0 (3.7)

for any −∞ < M < N < ∞. Note that the event M ≤ lim inf X
A,B
t ≤ N is the same

as M ≤ lim sup X
A,B
t ≤ N . For any ω ∈ {M ≤ lim inf X

A,B
t ≤ N}, we construct a sequence

of hitting times as follows. If x ∈ [M − ε/2, N + ε/2] for a fixed ε > 0 then let h1 = 0;
otherwise, let h1 be the first hitting time of the interval [M − ε/2, N + ε/2] and note that we
have h1 < ∞ by the definition of the event. Now let h2 > h1 be the smallest time that the
process exits [M − ε, N + ε]. From Lemma 3.1 we have h2 < ∞. Now we can define h3 > h2
as the smallest hitting time of the interval [M − ε/2, N + ε/2] after h2, and note that h3 < ∞.
Repeating the procedure, we obtain a sequence of hitting times with infinitely many times at
M − ε or N + ε and also infinitely many times at M − ε/2 or N + ε/2. From Lemma 3.2, this
happens with probability 0 and so (3.7) is proved.

Letting M → −∞ and N → ∞ in (3.7), we have Px(−∞ < lim inf X
A,B
t < ∞) = 0.

Thus,
Px(lim inf X

A,B
t = −∞) + Px(lim inf X

A,B
t = ∞) = 1.

Note that the events lim inf X
A,B
t = ∞ and lim X

A,B
t = ∞ are the same. In addition, letting

M → −∞ in (3.6), we see that the events lim inf X
A,B
t = −∞ and lim X

A,B
t = −∞ are the

same. This completes the proof.

In the following, we prove the verification theorem.

Theorem 3.1. Suppose that W is a decreasing C2(−∞, ∞) solution to FBI equations (3.1)
subject to boundary conditions (3.3) and that W ′ is bounded. Then the function W coincides
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with the value function V . Furthermore, the feedback control strategy (A∗, B∗), determined
by A∗ = {a∗(XA∗,B∗

t )}t≥0 and B∗ = {b∗(XA∗,B∗
t )}t≥0 with a∗(x) and b∗(x) given in (3.2), is

the Nash equilibrium control such that V A∗,B∗
(x) = V (x).

Proof. For any −∞ < M < x < N < ∞, admissible controls A∗ and B, and time T > 0,
by applying Itô’s formula to W(X

A∗,B
t ) we obtain

W(X
A∗,B
τ

A∗,B
M,N ∧T

) − W(x)

=
∫ τ

A∗,B
M,N ∧T

0
La∗(XA∗,B

t ),bt W(X
A∗,B
t ) dt + σ1

∫ τ
A∗,B
M,N ∧T

0
W ′(XA∗,B

t )a∗(XA∗,B
t ) dw1

− σ2

∫ τ
A∗,B
M,N ∧T

0
W ′(XA∗,B

t )bt dw2 + σ

∫ τ
A∗,B
M,N ∧T

0
W ′(XA∗,B

t ) dZt

≤ σ1

∫ τ
A∗,B
M,N ∧T

0
W ′(XA∗,B

t )a∗(XA∗,B
t ) dw1 − σ2

∫ τ
A∗,B
M,N ∧T

0
W ′(XA∗,B

t )bt dw2

+ σ

∫ τ
A∗,B
M,N ∧T

0
W ′(XA∗,B

t ) dZt , (3.8)

where the second line follows because W solves the first equation in (3.1). Taking the
expectation of both sides we obtain

W(x) ≥ Ex[W(X
A∗,B
τ

A∗,B
M,N ∧T

)]

= Px(X
A∗,B
τ

A∗,B
M,N

= M, τ
A∗,B
M,N < T )W(M) + Px(X

A∗,B
τ

A∗,B
M,N

= N, τ
A∗,B
M,N < T )W(N)

+ Ex[W(X
A∗,B
T ) 1{τA∗,B

M,N >T }].

Letting T → ∞, and noting that limT →∞ P(τ
A∗,B
M,N > T ) = 0 by Lemma 3.1, we have

W(x) ≥ Px(X
A∗,B
τ

A∗,B
M,N

= M)W(M) + Px(X
A∗,B
τ

A∗,B
M,N

= N)W(N).

Letting N → ∞, from the boundary conditions, we have

W(x) ≥ Px(X
A∗,B
τ

A∗,B
M

= M, τ
A∗,B
M < ∞)W(M) = Px(τ

A∗,B
M < ∞)W(M). (3.9)

Note that

V A∗,B(x) = Px

(
lim

t→∞ X
A∗,B
t = −∞

)
= lim

M→−∞ Px(τ
A∗,B
M < ∞).

Letting M → −∞ in (3.9), we obtain

W(x) ≥ V A∗,B(x).

Similarly, we can show that
W(x) ≤ V A,B∗

(x).
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Thus,
V (x) ≥ inf

A
V A,B∗

(x) ≥ W(x) ≥ sup
B

V A∗,B(x) ≥ V (x).

From V (x) ≤ V (x), we conclude that V (x) = W(x) = V (x) = V (x).
Furthermore, if we replace B by B∗ in (3.8), noting that

La∗(XA∗,B∗
t ),b∗(XA∗,B∗

t )W(X
A∗,B∗
t ) = 0,

the first integrand on the right-hand side of (3.8) vanishes and the inequality becomes an equality.
Consequently, inequality (3.9) becomes an equality. We then obtain

W(x) = V A∗,B∗
(x).

Thus, the value function equals the performance function under the Nash equilibrium strategy
(A∗, B∗). This completes the proof.

Owing to the verification theorem, we call the game solvable if there exists a decreas-
ing C2 solution to (3.1) subject to boundary conditions (3.3) and the saddle-point strategy
(a∗(x), b∗(x)) given in (3.2).

Remark 3.1. From Lemma 3.3 we see that the definition of absolute dominance can be restated
as the event that the difference in surplus levels tends to −∞. Given any surplus difference x

and any paired admissible strategy (A, B), V A,B(x) is the probability of absolute dominance
of insurer two and 1 − V A,B(x) is the probability of absolute dominance of insurer one.

Remark 3.2. From Lemmas 3.2 and 3.3, for any insurer at an arbitrary surplus difference level,
there is always a positive probability of absolute dominance.

Remark 3.3. The performance function V A,B is a strictly decreasing function for any admis-
sible controls A and B. In fact, for any x < y, there is a positive probability, denoted by p

(0 < p < 1), that the process XA,B , starting at initial difference x, diverges to −∞ without
hitting y. Thus,

V A,B(x) = p + (1 − p)V A,B(y) = V A,B(y) + p[1 − V A,B(y)] > V A,B(y).

When the game is solvable, the value function V is a strictly decreasing function.

4. Solution to the FBI equations

In this section we solve (3.1) and find the value function explicitly for the cases when the
game is solvable. We characterize the solution via different regions where optimal reinsurance
controls vary and the Nash equilibrium strategy takes different forms.

For any C2 function W with W ′′(x) �= 0, write

aW,b(x) = − γ1

σ 2
1

W ′(x)

W ′′(x)
+ ρ

σ2

σ1
b, bW,a(x) = γ2

σ 2
2

W ′(x)

W ′′(x)
+ ρ

σ1

σ2
a,

which satisfy

dLa,bW(x)

da

∣∣∣∣
a=aW,b(x)

= 0,
dLa,bW(x)

db

∣∣∣∣
b=bW,a(x)

= 0.

These expressions are used to determine the minimizer and maximizer in (3.1) upon which
the saddle point can be found. Note that La,bV (x) is a quadratic function of a and b, and the
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second-degree terms (a2 and b2) in the function have the same sign. Thus, the saddle points
of La,bV (x) (if it exists) must occur on the boundary of the control region [0, 1] × [0, 1]. To
characterize the solution of the FBI equations, we first find all possible saddle-point strategies
and identify the corresponding regions (of x values) where these strategies apply. Then a
simplified differential equation is derived in each region for the solution. Finally, a complete
solution is constructed by smooth-fit techniques at the endpoints of the regions.

In this section we study the parameter case of nonnegative correlation. Note that in the case
of negative correlation the game is solvable. The solution can be found by a similar method
to that used in [9] and so we omit it. Now we assume that ρ ≥ 0 and that V solves the FBI
equations. In the following we proceed to find the solution in explicit form.

Note that if V ′′(x) > 0, aV,b(x) ≥ 0 for any 0 ≤ b ≤ 1. So the minimizer in a of La,bV (x)

is aV,b(x) or 1. Obviously, the maximizer in b is 0 or 1. Define the following regions:

R1 = {
x

∣∣ V ′′(x) > 0, 0 < aV,1(x) < 1, bV,aV,1(x)(x) < 1
2

}
, (4.1a)

R2 = {
x

∣∣ V ′′(x) > 0, aV,1(x) ≥ 1, bV,1(x) < 1
2

}
, (4.1b)

R3 = {
x

∣∣ V ′′(x) > 0, 0 < aV,0(x) < 1, bV,aV,0(x)(x) ≥ 1
2

}
, (4.1c)

R4 = {
x

∣∣ V ′′(x) > 0, aV,0(x) ≥ 1, bV,1(x) ≥ 1
2

}
. (4.1d)

Thus, the pair (aV,1(x), 1) is a saddle point of the function L(a,b)V (x) on [0, 1] × [0, 1] for all
x ∈ R1 and it holds that

LaV,1(x),1V (x) = 0. (4.2)

Similarly, we have
L1,1V (x) = 0, (4.3)

and the pair (1, 1) is a saddle point of L(a,b)V (x) for x ∈ R2. Furthermore, V solves

LaV,0(x),0V (x) = 0, (4.4)

and the pair (aV,0(x), 0) is a saddle point of L(a,b)V (x) for x ∈ R3. Similarly, V solves

L1,0V (x) = 0, (4.5)

and the pair (1, 0) is a saddle point of L(a,b)V (x) for x ∈ R4.
For V ′′(x) < 0, we have bV,a(x) > 0. The minimizer of La,bV (x) in a is 0 or 1 and the

maximizer in b is bV,a or 1. Define

R5 = {
x

∣∣ V ′′(x) < 0, aV,bV,1(x)(x) < 1
2 , 0 < bV,1(x) < 1

}
, (4.6a)

R6 = {
x

∣∣ V ′′(x) < 0, aV,1(x) < 1
2 , bV,1(x) ≥ 1

}
, (4.6b)

R7 = {
x

∣∣ V ′′(x) < 0, aV,bV,0(x)(x) ≥ 1
2 , 0 < bV,0(x) < 1

}
, (4.6c)

R8 = {
x

∣∣ V ′′(x) < 0, aV,1(x) ≥ 1
2 , bV,0(x) ≥ 1

}
. (4.6d)

Then it holds that
L1,bV,1(x)V (x) = 0, (4.7)

and the pair (1, bV,1(x)) is a saddle point of the function L(a,b)V (x) for x ∈ R5. Furthermore,
V solves (4.3) and (1, 1) is a saddle point of the function L(a,b)V (x) for x ∈ R6. It holds that

L0,bV,0(x)V (x) = 0, (4.8)
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and the pair (1, bV,1(x)) is a saddle point of L(a,b)V (x) on R7. Finally, V solves

L0,1V (x) = 0, (4.9)

and (0, 1) is a saddle point of L(a,b)V (x) on R8.
Now we identify the sets R1, . . . ,R8. To find R1, we simplify (4.2) to

γ 2
1

2σ 2
1

(
V ′(x)

V ′′(x)

)2

−
[
rx − (μ2 + λ1) + γ1ρ

σ2

σ1

]
V ′(x)

V ′′(x)
− 1

2
[(1 − ρ2)σ 2

2 + σ 2] = 0,

from which V solves

V ′(x)

V ′′(x)
= f1(x)

:=
{
rx − (μ2 + λ1) + γ1ρ

σ2

σ1

−
√[

rx − (μ2 + λ1) + γ1ρ
σ2

σ1

]2

+ γ 2
1

σ 2
1

[(1 − ρ2)σ 2
2 + σ 2]

} /
γ 2

1

σ 2
1

for x ∈ R1. Note that f1 is a negative increasing function. Also, note that

aV,1(x) = − γ1

σ 2
1

f1(x) + ρ
σ2

σ1
, bV,aV,1(x) = κ1f1(x) + ρ2,

where κ1 = γ2/σ
2
2 − ργ1/σ1σ2. From aV,1(x) < 1 and bV,aV,1(x)(x) < 1

2 , we have

R1 =
{
x

∣∣∣∣ −
(

1 − ρ
σ2

σ1

)
σ 2

1

γ1
< f1(x) <

1/2 − ρ2

κ1

}

if κ1 > 0 (or ρ < γ2σ1/γ1σ2), and

R1 =
{
x

∣∣∣∣ max

{
−

(
1 − ρ

σ2

σ1

)
σ 2

1

γ1
,

1/2 − ρ2

κ1

}
< f1(x)

}

if κ1 < 0. The set R1 is degenerate (R1 = ∅) when ρ ≥ σ1/σ2.
To determine R2, we note that (4.3) gives

V ′(x)

V ′′(x)
= f2(x) := −σ 2

1 + σ 2
2 − 2ρσ1σ2 + σ 2

2(rx + μ1 − μ2)
.

Thus, the conditions V ′′(x) > 0, aV,1(x) ≥ 1, and bV,1(x) < 1
2 yield

R2 =
{
x

∣∣∣∣(rx + μ1 − μ2) > 0;
(

1 − ρ
σ2

σ1

)
(rx + μ1 − μ2) ≤ γ1(σ

2
1 + σ 2

2 − 2ρσ1σ2 + σ 2)

2σ 2
1

;
(

1

2
− ρ

σ1

σ2

)
(rx + μ1 − μ2) > −γ2(σ

2
1 + σ 2

2 − 2ρσ1σ2 + σ 2)

2σ 2
2

}
.
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For x ∈ R3, from (4.4), V solves

γ 2
1

2σ 2
1

(
V ′(x)

V ′′(x)

)2

− [rx − (λ1 − λ2)] V ′(x)

V ′′(x)
− 1

2
σ 2 = 0.

This gives

V ′(x)

V ′′(x)
= f3(x) :=

rx − (λ1 − λ2) −
√

[rx − (λ1 − λ2)]2 + γ 2
1 σ 2/σ 2

1

γ 2
1 /σ 2

1

,

where f3 is a negative increasing function. The conditions aV,0(x) < 1 and bV,aV,0(x) ≥ 1
2

give

R3 =
{
x

∣∣∣∣ −σ 2
1

γ1
< f3(x) ≤ 1

2κ1

}
if κ1 < 0 (or ρ > γ2σ1/γ1σ2). We can show that R3 is a nonempty interval if ρ > γ2σ1/γ1σ2 +
1
2σ2/σ1 and degenerate otherwise.

For x ∈ R4, from (4.5), V solves

V ′(x)

V ′′(x)
= f4(x) := − σ 2

1 + σ 2

2(rx + μ1 + λ2)
.

Then the conditions V ′′(x) > 0, aV,0 ≥ 1, and bV,1(x) ≥ 1
2 give

R4 =
{
x

∣∣∣∣ 0 < rx + μ1 + λ2 ≤ γ1

2

(
1 + σ 2

σ 2
1

)
;

(
1

2
− ρ

σ1

σ2

)
(rx + μ1 + λ2) ≤ −γ2

2

σ 2
1 + σ 2

σ 2
2

}
,

which is a nonempty interval if ρ > γ2σ1/γ1σ2 + 1
2σ2/σ1 and degenerate otherwise.

To identify R5, from (4.7), V solves

γ 2
2

2σ 2
2

(
V ′(x)

V ′′(x)

)2

−
(

rx + μ1 + λ2 − γ2ρ
σ1

σ2

)
V ′(x)

V ′′(x)
− 1

2
[(1 − ρ2)σ 2

1 + σ 2] = 0.

Thus,

V ′(x)

V ′′(x)
= f5(x)

:=
{
rx + μ1 + λ2 − γ2ρ

σ1

σ2

+
√(

rx + μ1 + λ2 − γ2ρ
σ1

σ2

)2

+ γ 2
2

σ 2
2

[(1 − ρ2)σ 2
1 + σ 2]

} /
γ 2

2

σ 2
2

,

which is a positive and increasing function. The conditions aV,bV,1(x)(x) < 1
2 and bV,1(x) < 1

give

R5 =
{
x

∣∣∣∣ 1/2 − ρ2

κ2
< f5(x) <

(
1 − ρ

σ1

σ2

)
σ 2

2

γ2

}
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if κ2 < 0 (or ρ < γ1σ2/γ2σ1), where κ2 = −γ1/σ
2
1 + ργ2/σ1σ2, and

R5 =
{
x

∣∣∣∣ f5(x) < min

{
1/2 − ρ2

κ2
,

(
1 − ρ

σ1

σ2

)
σ 2

2

γ2

}}

if κ2 > 0. Note that R5 is degenerate if ρ ≥ σ2/σ1.
For x ∈ R6, V solves (4.3) and it holds that V ′(x)/V ′′(x) = f2(x). Thus, the conditions

V ′′(x) < 0, aV,1(x) < 1
2 , and bV,1(x) ≥ 1 give

R6 :=
{
x

∣∣∣∣ rx + μ1 − μ2 < 0;
(

1

2
− ρ

σ2

σ1

)
(rx + μ1 − μ2) <

γ1(σ
2
1 + σ 2

2 − 2ρσ1σ2 + σ 2)

2σ 2
1

;
(

1 − ρ
σ1

σ2

)
(rx + μ1 − μ2) ≥ −γ2(σ

2
1 + σ 2

2 − 2ρσ1σ2 + σ 2)

2σ 2
2

}
.

For x ∈ R7, from (4.8), V solves

V ′(x)

V ′′(x)
= f7(x) :=

rx − (λ1 − λ2) +
√

[rx − (λ1 − λ2)]2 + γ 2
2 σ 2/σ 2

2

γ 2
2 /σ 2

2

.

The conditions aV,bV,0(x)(x) ≥ 1
2 and bV,0(x) < 1 give

R7 =
{
x

∣∣∣∣ 1

2κ2
≤ f7(x) <

σ 2
2

γ2

}
,

if κ2 > 0 (or ρ > γ1σ2/γ2σ1). Note that R7 is a nonempty interval if ρ > 1
2σ1/σ2 +γ1σ2/γ2σ1

and degenerate otherwise.
For x ∈ R8, from (4.9), V solves

V ′(x)

V ′′(x)
= f8(x) := − σ 2

2 + σ 2

2[rx − (μ2 + λ1)] .

Thus, the conditions V ′′(x) < 0, aV,1(x) ≥ 1
2 , and bV,0(x) ≥ 1 give

R8 =
{
x

∣∣∣∣ rx − (μ2 + λ1) < 0; − (σ 2
2 + σ 2)γ2

2σ 2
2

≤ rx − (μ2 + λ1) ≤ (σ 2
2 + σ 2)γ1/σ

2
1

1 − 2ρσ2/σ1

}
,

when ρ > 1
2σ1/σ2. Note that R8 is a nonempty interval if ρ > 1

2σ1/σ2 + γ1σ2/γ2σ1 and
degenerate otherwise.

We define the threshold points

x1 = x2 + γ1(σ
2
1 + σ 2

2 − 2ρσ1σ2 + σ 2)

2rσ 2
1 (1 − ρσ2/σ1)

, x2 = −μ1 − μ2

r
,

and x3 = x2 − γ2(σ
2
1 + σ 2

2 − 2ρσ1σ2 + σ 2)

2rσ 2
2 (1 − ρσ1/σ2)

,
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and write

ζ1 =
(

1

2
+ γ2

γ1

σ 2
1

σ 2
2

) / (
γ2

γ1

σ1

σ2
+ σ1

σ2

)
, ζ2 =

(
1

2
+ γ1

γ2

σ 2
2

σ 2
1

) / (
γ1

γ2

σ2

σ1
+ σ2

σ1

)
.

We obtain the following properties.

Lemma 4.1. The region R1 defined in (4.1a) is such that R1 = {x | x1 < x < ∞} if and only
if ρ < min{1/

√
2, σ1/σ2, γ2σ1/γ1σ2} or γ2σ1/γ1σ2 < ρ < min{σ1/σ2, ζ1}.

Lemma 4.2. The region R2 defined in (4.1b) is such that R2 = {x | x2 < x ≤ x1} if and only
if ρ < min{σ1/σ2,

1
2σ2/σ1} or 1

2σ2/σ1 ≤ ρ < min{σ1/σ2, ζ1}.
Lemma 4.3. The region R5 defined in (4.6a) is such that R5 = {x | − ∞ < x < x3} if and
only if ρ < min{1/

√
2, σ2/σ1, γ1σ2/γ2σ1} or γ1σ2/γ2σ1 < ρ < min{σ2/σ1, ζ2}.

Lemma 4.4. The region R6 defined in (4.6b) is such that R6 = {x | x3 ≤ x < x2} if and only
if ρ < min{σ2/σ1,

1
2σ1/σ2} or 1

2σ1/σ2 ≤ ρ < min{σ2/σ1, ζ2}.
Define

R0 = {x | V ′′(x) = 0}.
Remark 4.1. If V ′′(x) = 0 and V ′(x) < 0, the saddle point of La,bV (x) is (1, 1). Thus, V

solves L1,1V (x) = 0 and it gives x = x2. Hence,

R0 = {x | V ′′(x) = 0, V ′(x) = 0} ∪ {x2},
from which we see that R0 never contains an interval because V is a strictly decreasing function
(see Remark 3.3).

Next we consider the case with small correlation ρ under which the sets R1, R2, R5, and R6
form a partition of the real line, excluding x2, and an explicit solution of V can be constructed.
Suppose that ρ < min{ 1

2σ1/σ2,
1
2σ2/σ1, γ2σ1/γ1σ2, γ1σ2/γ2σ1}. Note that ρ < 1

2 under the
assumption. From Lemmas 4.1–4.4 we have

R3 = R4 = R7 = R8 = ∅, (4.10a)

R1 = {x | x1 < x < ∞}, R2 = {x | x2 < x ≤ x1}, (4.10b)

R6 = {x | x3 ≤ x < x2}, R5 = {x | − ∞ < x < x3}. (4.10c)

Thus, V solves

V ′(x)

V ′′(x)
=

⎧⎪⎨
⎪⎩

f1(x), {x1 < x < ∞} = R1,

f2(x), {x3 ≤ x ≤ x1} = R2 ∪ R6 ∪ {x2},
f5(x), {−∞ < x < x3} = R5.

By applying the boundary conditions (3.3) and smooth-fit conditions at the threshold points x1
and x3,

V (x1−) = V (x1+), V ′(x1−) = V ′(x1+),

V (x3−) = V (x3+), V ′(x3−) = V ′(x3+),
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we can obtain the explicit representation of V . Write

G1(y, x) =
∫ ∞

x

exp

{∫ u

y

1

f1(v)
dv

}
du, F2(y, x) =

∫ x

y

exp

{∫ u

y

1

f2(v)
dv

}
du,

H5(y, x) =
∫ x

−∞
exp

{∫ u

y

1

f5(v)
dv

}
du.

We obtain the following theorem.

Theorem 4.1. If0 ≤ ρ < min{ 1
2σ1/σ2,

1
2σ2/σ1, γ2σ1/γ1σ2, γ1σ2/γ2σ1}, the value function of

the game is a decreasing C2 function given by

V (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C2G1(x1, x)

C1
, x1 < x < ∞,

1 − H5(x3, x3)

C1
− F2(x3, x)

C1
, x3 < x ≤ x1,

1 − H5(x3, x)

C1
, −∞ < x ≤ x3,

where C1 = C2G1(x1, x1) + F2(x3, x1) + H5(x3, x3), C2 = exp{∫ x1
x3

(1/f2(u)) du}, and the
Nash equilibrium strategy is the feedback control associated with the risk exposure functions

(a∗(x), b∗(x)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
− γ1

σ 2
1

f1(x) + ρ
σ2

σ1
, 1

)
, x1 < x < ∞,

(1, 1), x3 < x ≤ x1,(
1,

γ2

σ 2
2

f5(x) + ρ
σ1

σ2

)
, −∞ < x ≤ x3.

(4.11)

Proof. From the construction of V we can check that V is a decreasing C2 function and it
solves the FBI equations (3.1) subject to boundary conditions (3.3). The saddle-point strategy
given in (4.11) satisfies (3.2) and V ′ is bounded. Thus, the results follow from the verification
theorem, Theorem 3.1.

Remark 4.2. In Theorem 4.1 the risk exposure functions a∗(x) and b∗(x) are continuous and
monotone. The function a∗(x) is decreasing and limx→∞ a∗(x) = ρσ2/σ1. The function b∗(x)

is increasing and limx→−∞ b∗(x) = ρσ1/σ2. This implies that the Nash equilibrium strategy
has the following property. When the surplus difference increases (insurer one is into a better
position), insurer one takes less risk and buys more reinsurance while insurer two takes more
risk and buys less reinsurance.

Remark 4.3. Under the parameter assumption

min

{
γ2

γ1

σ1

σ2
,
γ1

γ2

σ2

σ1

}
< ρ < min

{
1√
2

,
σ1

σ2
,
σ2

σ1
, ζ1, ζ2

}
,

(4.10) holds. In fact, we can identify all of the parameter cases under which (4.10) holds by
Lemmas 4.1–4.4. Consequently, the results in Theorem 4.1 also hold in the following cases.

Lemma 4.5. The region R2 defined in (4.1b) is such that R2 = {x | x2 < x < ∞} if and only
if σ1/σ2 ≤ ρ < 1

2σ2/σ1.

Lemma 4.6. The region R6 defined in (4.6b) is such that R6 = {x | − ∞ < x < x2} if and
only if σ2/σ1 ≤ ρ < 1

2σ1/σ2.
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Now consider the parameter condition σ1/σ2 ≤ ρ < min{1/
√

2, 1
2σ2/σ1, γ1σ2/γ2σ1, ζ2},

under which we see that

R1 = R3 = R4 = R7 = R8 = ∅, (4.12a)

R2 = {x | x2 < x < ∞}, R6 = {x | x3 ≤ x < x2}, (4.12b)

R5 = {x | − ∞ < x < x3}. (4.12c)

Thus, V solves

V ′(x)

V ′′(x)
=

{
f2(x), {x3 ≤ x ≤ ∞} = R2 ∪ R6 ∪ {x2},
f5(x), {−∞ < x < x3} = R5.

Define G2(y, x) = ∫ ∞
x

exp{∫ u

y
(1/f2(v)) dv} du. It holds that

G2(y, x) =
√

2π

K1
exp

{
1

2

(√
K1y + K2√

K1

)2}[
1 − �

(√
K1x + K2√

K1

)]
,

where � is the standard normal distribution function and

K1 = 2r

σ 2
1 + σ 2

2 − 2ρσ1σ2 + σ 2
, K2 = 2(μ1 − μ2)

σ 2
1 + σ 2

2 − 2ρσ1σ2 + σ 2
.

We obtain the following theorem.

Theorem 4.2. If σ1/σ2 ≤ ρ < min{1/
√

2, 1
2σ2/σ1, γ1σ2/γ2σ1, ζ2}, the value function of the

game is a decreasing C2 function given by

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

G2(x3, x)

C3
, x3 < x < ∞,

1 − H5(x3, x)

C3
, −∞ < x ≤ x3,

where C3 = G2(x3, x3)+H5(x3, x3), and the Nash equilibrium strategy is the feedback control
associated with the risk exposure functions

(a∗(x), b∗(x)) =

⎧⎪⎨
⎪⎩

(1, 1), x3 < x < ∞,(
1,

γ2

σ 2
2

f5(x) + ρ
σ1

σ2

)
, −∞ < x ≤ x3.

Remark 4.4. The results in (4.12) and Theorem 4.2 also hold under parameter condition
max{σ1/σ2, γ1σ2/γ2σ1} < ρ < min{ 1

2σ2/σ1, ζ2}. The parameter conditions under which the
results in Theorem 4.2 hold can be found by Lemmas 4.3, 4.4, and 4.5.

In the sequel we solve the game under the parameter conditions that mirror those in Theo-
rem 4.2 and Remark 4.4. If σ2/σ1 ≤ ρ < min{1/

√
2, 1

2σ1/σ2, γ2σ1/γ1σ2, ζ1} then

R3 = R4 = R5 = R7 = R8 = ∅, (4.13a)

R1 = {x | x1 < x < ∞}, R2 = {x | x2 < x ≤ x1}, (4.13b)

R6 = {x | − ∞ < x < x2}. (4.13c)
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Thus, V solves

V ′(x)

V ′′(x)
=

{
f1(x), {x1 < x < ∞} = R1,

f2(x), {x3 ≤ x ≤ x1} = R2 ∪ R6 ∪ {x2}.
Write

H2(y, x) =
∫ x

−∞
exp

{∫ u

y

1

f2(v)
dv

}
du,

and note that

H2(y, x) =
√

2π

K1
exp

{
1

2

(√
K1y + K2√

K1

)2}
�

(√
K1x + K2√

K1

)
.

We have obtained the following theorem.

Theorem 4.3. If σ2/σ1 ≤ ρ < min{1/
√

2, 1
2σ1/σ2, γ2σ1/γ1σ2, ζ1}, the value function of the

game is a decreasing C2 function given by

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

G1(x1, x)

C4
, x1 < x < ∞,

1 − H2(x1, x)

C4
, −∞ < x ≤ x1,

where C4 = H2(x1, x1)+G1(x1, x1), and the Nash equilibrium strategy is the feedback control
associated with the risk exposure functions

(a∗(x), b∗(x)) =
⎧⎨
⎩

(
− γ1

σ 2
1

f1(x) + ρ
σ2

σ1
, 1

)
, x1 < x < ∞,

(1, 1), −∞ < x ≤ x1.

Remark 4.5. The results in (4.13) and Theorem 4.3 also hold if max{σ2/σ1, γ2σ1/γ1σ2} < ρ <

min{ 1
2σ1/σ2, ζ1}. We note that the parameter conditions under which the results in Theorem 4.3

hold can be found by Lemmas 4.1, 4.2, and 4.6.

We have discussed several parameter cases under which the game is solvable with the value
function and Nash equilibrium reinsurance strategy given explicitly. For other parameter cases
with ρ > 0, we observe that the sets R1, . . . ,R8 have endpoints that are not commonly shared.
The sets R0, R1, . . . ,R8 do not connect to form a partition of the real line. Thus, in these
cases, the game is not solvable and the value function may not exist.

5. Conclusion

From the explicit results, we observed that the value function V is z-shaped and has a unique
reflection point at x2 (concave below x2 and convex above) in all of the solvable cases. The risk
exposure functions of the Nash equilibrium strategy are continuous and monotone. From the
optimal play, we showed that insurer one never buys reinsurance when the surplus difference is
below x2 and insurer two never buys reinsurance when the difference is above x2. Also, as the
surplus difference increases, the optimal risk exposure decreases for insurer one and increases
for insurer two. This implies that, when any insurer finds themselves in a better position, the
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insurer takes less risk and buys more reinsurance; if an insurer finds themselves in a more
disadvantaged position, the insurer holds a bolder strategy by taking more risk and buying less
reinsurance. This feature of the optimal reinsurance control has been seen in ruin and absolute
ruin minimization problems (see, e.g. [4] and [7]) and also in the exit probability game of [9].
The relationship between an insurer’s position and their willingness of risk-taking is consistent
with that in the investment game of [1].

We showed that the reinsurance game is solvable when certain parameter conditions are
satisfied (negative correlation, small positive correlation, and some other special cases). The
value function and the Nash equilibrium reinsurance strategy were found by solving the FBI
equations explicitly in these cases. We note that, for the other parameter cases, the game is
not solvable and the value function may not exist. Future studies on sup-value and sub-value
functions might be suited to proving the nonexistence of the value function when the game is
not solvable. However, in this research we focused on only the solvable cases. We also note
that in this paper absolute dominance was introduced for the first time as a win scenario in
insurance game theory. The performance function was defined as the probability of absolute
dominance and only proportional reinsurance control was considered. In future research, one
may apply other scenarios to define the performance function and include investment, dividend,
or nonproportional reinsurance in the game.
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