The Elements of Quaternions (First Paper). By Dr William Peddie.

In this paper the laws of addition and subtraction of vectors were considered, and examples of their extreme usefulness in geometrical applications were given.

Adams's Hexagons and Circles.

By J. S. Mackay, M. A., LL.D.
Figure 24.
In triangle $\mathrm{ABC}, \mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ are concurrent at O ; through O parallels are drawn to EF, FD, DE, meeting the sides of ABC in $\mathrm{L}, \mathrm{M}, \mathrm{P}, \mathrm{Q}, \mathrm{S}, \mathrm{T}$, and the sides of DEF in $\mathrm{L}^{\prime}, \mathrm{M}^{\prime}, \mathrm{P}^{\prime}, \mathrm{Q}^{\prime}, \mathrm{S}^{\prime}, \mathrm{T}^{\prime}$. The two hexagons LMPQST, L'M'P'Q'S'T' thus formed have the following properties:
(1) The sides $L^{\prime} M^{\prime}, P^{\prime} Q^{\prime}, S^{\prime} T^{\prime}$ of the latter are parallel to the sides of ABC.

The complete quadrilateral AFOEBC has its diagonal AO cut harmonically by EF and BC ;
therefore $\quad \mathrm{A}, \mathrm{U}, \mathrm{O}, \mathrm{D}$ is a harmonic range, and $\quad E \cdot A \cup O D$ is a harmonic pencil.

Now OP'EQ' is a parallelogram ;
therefore $P^{\prime} Q^{\prime}$ is bisected by $\mathbf{E O}$;
therefore $P^{\prime} Q^{\prime}$ is parallel to that ray of the harmonic pencil which is conjugate to EO, namely EA.
In like manner $S^{\prime} T^{\prime}$ is parallel to $A B$, and $L^{\prime} \mathrm{M}^{\prime}$ to BC .
(2) The sides QS, TL, MP of the former are parallel to the sides of DEF.

Since $P E Q^{\prime} P^{\prime}$ and $Q E P^{\prime} Q^{\prime}$ are parallelograms,
therefore
Similarly
therefore
Now
therefore

In like manner TL is parallel to FD, and MP to DE.

