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ENERGY FLUX FOR PLANE WAVES IN LINEAR
CONSERVATIVE SYSTEMS
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Abstract
The point form of the conservation of energy equation is used to give simple
and direct proof of results concerning the mean energy flux vector for
systems of sinusoidal small amplitude waves in linear conservative systems.
No constitutive equation is used explicitly.

1. Introduction

This note deals with the propagation of infinitesimal plane sinusoidal waves in
linear conservative systems. A key element in the study of such waves is the mean
energy flux vector, where the mean is taken over a cycle. The basic idea here is that
some results concerning the mean energy flux vector for such systems may be
deduced directly from the point form of the conservation of energy equation.
Apart from one specific example in Section 4, no constitutive equation is used
explicitly. The system may or may not be subject to internal constraints such, for
example, as the constraint of incompressibility in the case of elastic bodies.

What follows rests upon the following three assumptions.
(i) The energy flux vector is a product of two field quantities.
For example, in the case of a mechanical system in which the Cauchy stress is

denoted by tti and the particle velocity by vt the energy flux vector is 1^ given
[4] byf

Rt = -tjivi. (1.1)

Similarly, in an electromagnetic system in which the electric field is denoted by E
and the magnetic field is denoted by H, the energy flux (Poynting) vector is [2]

R = E A H . (1.2)

(ii) There is neither internal energy supply nor dissipation.

t The summation convention is used throughout. Repeated Latin subscripts are summed
over 1, 2, 3.
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[2] Energy flux for plane waves 107

If the internal energy is denoted by $ then the point form of the conservation of

energy equation is

(iii) The systems are linear in the sense that if one field quantity such as dis-
placement, velocity, stress, electric field or magnetic field, for example, is of the
form

Aexpio>(S.x-0, (1.4)

where o> is real, S is a complex vector and A may be a scalar, vector or tensor, then
every other field quantity is of the similar form:

Bexpia>(S.x-0, (1.5)

where B may be a scalar, vector or tensor. The form of the constitutive equation is
implicit in this assumption.

It may be noted that since the energy flux vector arises as a product of two field
quantities it follows that the energy flux vector for two fields is not equal, in
general, to the vector sum of the energy flux vectors for the individual fields.

2. Plane surface waves

Consider first an infinite train of sinusoidal small amplitude waves propagating
along a plane surface m.x = 0. The train may be represented by

Aexpiw(S(1).x—Oexp—c^m.x, (2.1)

where A is a complex scalar, vector or tensor, and o>, S(1) and al5 are real. In linear
conservative systems, for such a train, the mean energy flux vector is parallel to the
surface ([1]; [5] for the elastic case).

Suppose now that there are two such trains. Let the second be represented by

Bexpia)(S<2>.x-0exp-a2m.x, (2.2)

where B is a complex scalar, vector or tensor, and S(2>, Og are real.
Now, of course, some boundary condition or conditions will have to be satisfied

on the surface m. x = 0. In the case of an elastic body the boundary conditions
could, for example, be that the surface be free, or held fixed, or that the surface be
stroked. Whatever the conditions, whether or not they involve products or sums of
two or more field quantities, it follows from the assumed linearity of the system
that the wave trains must have the same frequency and that the slownesses must
satisfy

S<« - S<2> = (S<«. m - S<2>. m) m. (2.3)
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108 M. Hayes [3]

The form of the energy flux vector for the combined motion isf

R = [X+ cos 2o>(S<1». x - /) - X- sin 2OJ(S<1> . x -1)] exp - 2 ^ ^ m. x

+ [(Ji+ cos 2co(S(2>. x - /) - p- sin 2OJ(S(2) . x -1)] exp - 2wa2 m. x

+ 6*1' exp - 2wax m. x + 6<2> exp - 2coa2 m. x

+ {<}>+ cos cuKS'1' + S<2>). x - 2t]

- <j>- sin ^ [ (S ' 1 ' 4- S<2>). x - 2t]} exp - w ( a i + og) m. x

+ [i|/+cosco(S(1>-S<2>).x

- \\i~ sin ^(S'1* - S<2>). x] exp - w(ax + oc2)m.x. (2.4)

This expression has been written down by considering the sum of the real parts of
terms (2.1) and (2.2) and multiplying by a similar sum. The coefficient vectors
X, [i, et cetera, are independent of x and /. For the purpose in hand it is not
necessary to know X, (JL, et cetera, explicitly.

$ will have a form similar to that of R, the only difference being that the vectors
X, (j. et cetera, will be replaced by scalars.

If R and $ are now inserted into (1.3) and coefficients compared, it is found
that

6<1>.m = 0, e<2>.m = 0, \
|/+ = 0, (2.5)
i J

There are other results but they are not germane to our purpose here.
In view of (2.3), the equations (2.5) may be written

e(1).m = e<2>.m = i^+.in = \J/-.m = 0. (2.6)

If the mean energy flux vector is denoted by R, then

R = (W/2TT) R * . (2.7)

Jo
From (2.4),

R = e<1>exp-2a1m.x+8<2)exp-2a2m.x

- vj/- sin ̂ (S*1' - S<2>). x] exp - (ax + <xj m. x. (2.8)

The \|/+, *|/~ terms represent the cross terms due to the superposition of the two
fields.

t The real and imaginary parts of a complex quantity AT are denoted by K+ and K~ respectively.
Thus K = K++iK~.
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[4] Energy flux for plane waves 109

From (2.6) it now follows that

R.m = 0. (2.9)

Thus the mean energy flux vector for the combined fields is also parallel to the
boundary. The result is valid for any number of surface waves since in forming R
the individual fields combine in pairs.

3. Reflection and refraction of linearly polarized waves

Reflection and refraction of linearly polarized waves at a plane boundary is now
considered.

Suppose an infinite train of linearly polarized waves is incident upon a plane
boundary m. x = 0. It is first assumed that there is just one reflected wave train and
that there are no refracted waves. It is also assumed that no energy is supplied at
the boundary. Of course the two wave trains will interfere. The purpose here is to
give a simple proof of the obvious physical fact that the component normal to the
surface of the mean energy flux vector for the combined motion is equal to the sum
of the components normal to the surface of the mean energy flux vectors of the two
individual motions.

Let the incident field be represented by

Hexpia>(,S'n.x--0, n . n = l , (3.1)

where S and o> are real, and let the reflected field be represented by

KexpiwCTp.x-/), P P = 1, (3.2)

where Tis real. The unit vectors n and p give the directions of the planes of constant
phase.

The form of R for the combined field is

R = Ia i+a2 c<>s 2co(5n. x—t) + 0C3 sin 2 w(5n. x—0]

+ [Pi+P2 cos 2w(7>. x - i) + p3 sin 2aj(7]p. x - 0]

+ 8X cos w [(Sn+Tp). x - 2t] + 82 cos w [(Sn - Jp). x]

+ 83sinw[(Sn+rp).x-2f] + 84sinw[(Sn-7p).x], (3.3)

where al5 a2, 03, (S1; (S2, Ps> ^i, ..., ••., 84, are real vectors independent of x and t.
The mean energy flux vector for the resultant motion is

R = a1+p1+82cosw(S'n-rp).x+84sinw(Sn-rp).x. (3.4)

The first term ax may be identified with XR the mean energy flux vector associated
with the incident wave train and similarly the mean energy flux vector associated
with the reflected wave train is px =

 2R. The other terms 82 and 84 represent the
interaction terms. Thus (3.4) may be written

R = 1R + 2R + 82cosoj(S'n-rp).x+84sinaj(Sn-rp).x (3.5)
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The form of <a is similar:

«? = [Ai+A2 cos 2co(5n. x - / ) + A 3 sin 2w(Sn. x - 0]

+ [Bx+B2 cos 2u)(Tp .x-t)+B3 sin 2w(T$ .x-t)]

+ Dx cos co [(Sn+Tp). x - 2t] + 2)2 cos to [(Sn - 7p). x]

(3.6)

where Ait ...,A3> BX,...,BZ, Dx,...,Z>4, Fare real constants independent of x and i.
Insert (3.3) and (3.6) into the conservation equation (1.3) to obtain

(Sn-rP) .82 = 0, (Sn-r P ) .8 4 = 0, (3.7)

together with some other relations not relevant to the present work.
Now since the incident and reflected waves must be in phase on the boundary

m. x = 0 it follows that

(3.8)

where K is some scalar. Thus by (3.7)

m.82 = m.84 = 0, (3.9)

and from (3.5),

R.m = 1R.m+2R.m. (3.10)

This holds at every point of the region in which the waves propagate.
In forming R the fields combine in pairs and hence exactly the same argument

will give a corresponding result for q wave trains incident and reflected from a
boundary:

R .m= fw>R.m. (3.11)

Suppose now that m. x = 0 is the plane interface between two regions. If R(1)

and R(2) are the energy flux vectors in the two regions, then applying an integral
form of the energy conservation equation (1.3) to a "pill box" enclosing part of the
boundary, and then shrinking the height of the pill box to zero, it follows in the
usual way that

{R(1)-R(2)}.m = 0, (3.12)
at the boundary.

Using equation (3.11) for each of the regions separately and equation (3.12), it
follows that if there is any number of waves incident on the surface from either
region with corresponding reflected and refracted waves, then in an obvious
notation,

ft(1). m = S <"R(1). m = R(2) m = ± <fc»fi(2). m, (3.13)
i &
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[6] Energy flux for plane waves 111

where there are q waves in region " 1 " and T waves in region "2", and equation
(3.13) is valid on the interface m.x = 0.

4. Waves in unbounded regions

In Sections 2 and 3 results were deduced for superposed wave trains in regions
with boundaries. The purpose here is to consider the situation when there are no
boundaries involved explicitly.

First consider the situation when a number of trains of linearly polarized waves
all with the same frequency propagate in a direction n. For example, in the case of
an elastic crystal three wave trains may propagate in any direction [3]. Here it is
assumed that there are q wave trains propagating in the direction n. Let the field be
represented by

S A(a) exp iw(San. x - /), n. n = 1. (4.1)
a=l

Here Sa are assumed real and the A(a), which are scalars, vectors or tensors, are
almost completely arbitrary. The qualification "almost completely" arises because
there may be restrictions on the A(a) due to the physics of the situation. For
example, in the case of an elastic crystal, if the three possible A(a), a = 1,2,3, are
the three possible amplitude vectors, these must be mutually orthogonal [3].

The energy flux vector corresponding to (4.1) has the form

a

a=l

g Q

* S f (6(a>7) + e<*a>) cos a>(Sa- Sy) n.x, (4.2)
a=l 7=1

where p i ; P£a), pi,00, fi*"-?' e ^ ' are real vectors independent of x and / and the
asterisk denotes that a should not be equal to y. Note that

R = Pi + *S £ (9(a'r) + 0(r'a)) cos co(Sa-Sv)n. x. (4.3)
a=l 7=1

The first term, pi5 is the vector sum of the mean energy flux vectors (a)R,
a = \,...,q, of the individual motions, and the second term in (4.3) represents the
interaction terms.

$ will have a form similar to (4.2). Inserting R and $ in (1.3) leads to

= 0, oc,y= \,2,...,q, <x^y. (4.4)
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Thus

R.n = px.n= £ «*>R.n. (4.5)

In other words: the component in the direction of n of the mean energy flux of
the resultant motion is equal to the algebraic sum of the components in the direction
of n of the mean energy flux vectors for the individual motions.

Now consider two wave trains propagating in arbitrary directions. In Section 3
for the two trains (3.1) and (3.2), it was seen that

R = XR + 2R + 62 cos o>(5n - 7p). x + S4 sin co(Sn - Tp). x, (4.6)

and from the energy equation it was shown that (Sn—Tp). 82 = 0, (Sn - Tp). 54 = 0.
Hence

R-(S(i,-S(2)) = eft+2R).(S(1)-S(2)), (4.7)

where I have written S(1) = Sn, S{2) = Tp. S(1) and S(2) are then two slownesses [3].
I think that (4.7) is probably the best that can be achieved in general. For the

mean energy flux vector for two wave trains need not even lie in the plane spanned
by the two mean energy flux vectors for the individual wave trains. An example
from the classical linear theory of homogeneous isotropic elastic bodies will
illustrate this.

Let the shear modulus of the material be denoted by /x and the density by p. The
displacement vector % corresponding to a transverse wave propagating in the
direction m may be written

ux = Acosaj(Sm.x-0, A.m = 0. (4.8)

This wave may propagate provided the slowness S is given by

FS2 = p. (4.9)

A is any vector at right angles to m. The corresponding stress ti} is given by

tti = — [i(A{ nij+Aj m{) wS sin co(Sm .x—t), (4.10)

and the mean energy flux vector is

XR = |>w2 5(A. A)/2] m. (4.11)

Similarly, for the transverse wave

u2 = Bcosaj(Sp.x-0, P-P = 0, (4.12)

with £ given by (4.9), and B any vector at right angles to p, the mean energy flux
vector is

(4.13)
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[8] Energy flux for plane waves 113

However, for the combined motion Uj+Ua the energy flux vector is

R = IJLW2 S{[(A. A) sin2 co(Sm .x-t)]m + [(B.B) sin2 a>(Sp. x -1)] p

+ [(A.B)(p+m)+(A.p)B + (B.m)A]xsinw(1Sm.x-/)

xsinwOS'p.x-O}. (4.14)

Thus the mean energy flux for the combined motion is given by

2R = 21ft+22ft+ [(A.B)(p+m) + (A.p)B
+ (B.m)A]coso>S'(iii-p).x. (4.15)

Choose, for example, m = i, p = j , A = j and B = k. Then

2(R-1R-2R) = kcosct>S(i-j).x. (4.16)

It is seen that R.k ^ 0 even though ^ . k = 0 and 2R.k = 0.
From (4.15)

R.(p-m) = eR+2R).(p-m), (4.17)

confirming equation (4.7) in this case.
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