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Introduction

This paper will be the first part of our works on differential Galois theory
which we plan to write. Our goal is to establish a Galois Theory of ordinary dif-
ferential equations. The theory is infinite dimensional by nature and has a long
history. The pioneer of this field is S. Lie who tried to apply the idea of Abel and
Galois to differential equations. Picard [P] realized Galois Theory of linear ordin-
ary differential equations, which is called nowadays Picard-Vessiot Theory.
Picard-Vessiot Theory is finite dimensional and the Galois group is a linear algeb-
raic group. The first attempt of Galois theory of a general ordinary differential
equations which is nfinite dimensional, is done by the thesis of Drach [D]. He re-
placed an ordinary differential equation by a linear partial differential equation
satisfied by the first integrals and looked for a Galois Theory of linear partial dif-
ferential equations. It is widely admitted that the work of Drach is full of imcom-
plete definitions and gaps in proofs. In fact in a few months after Drach had got
his degree, Vessiot was aware of the defects of Drach’s thesis. Vessiot took the
matter serious and devoted all his life to make the Drach theory complete. Vessiot
got the grand prix of the academy of Paris in Mathematics in 1903 by a series of
articles. However his theory is not written in a clear language in the modern sense
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of the word so that it is difficult for us to understand what he wrote. So a general
Galois Theory for ordinary differential equations (= an infinite dimensional dif-
ferential Galois Theory) is not yet established at least in our taste.

Kolchin replaced a system of differential equations by a differential field ex-
tension. He introduced the notion of strongly normal extension of differential field
and made finite dimensional differential Galois Theory complete and thus he gener-
alized Picard-Vessiot Theory (cf. [K]). In the preface of [K1], he writes: Indeed,
since as algebraic equation can be considered as a differential equation in which
derivatives do not occur, it is possible to consider algebraic geometry as a special
case of differential algebra. So the notion of strongly normal extension should
generalize that of Galois extension. However we have unpleasant phenomena as
follows:

(i) An extension Q(/— 1)/Q is Galois but not strongly normal;

(ii) A differential field extension Q(z, exp x)/Q(x, exp 3x) with derivation
d/dx is strongly normal but not Galois.

If there does not exist a natural definition unifying strongly normal extension
and Galois extension, the existence of these examples contradicts the spirit of his
words above. In this paper we do not touch general Galois Theory of ordinary dif-
ferential equations but make Galois theory of differential equations satisfying the
finiteness condition as transparent as possible. This is an inevitable task before
we proceed to general Galois Theory. Whereas the Kolchin theory is formulated in
the language of algebraic geometry of Weil working in a universal domain, theory
of schemes seems more natural. In Weil’s language it is not easy to treat algebraic
varieties whose irreducible components are not absolutely irreducible over a field.
This is the reason why Kolchin was obliged to adopt an awkward definition of
algebraic group (cf. Chap. V, [K1]). We try to reduce the theory to a few princi-
ples. Namely Lemma (1.1) and a criterion in terms of Wronskian for functions to
be linearly independent over the field of constants are basic and except for these
two principles which belong to differential algebra, all the results are deduced by
theory of schemes. In this attempt it becomes clear in what categories we have to
work and what functors we have to consider. This process will contribute to clar-
ify the problems in the general theory.

We introduce the notion of quasi-automorphic extension which unifies the
both notions of strongly normal extension and Galois extension (Definition (2.5)).
A differential field extension L/K is strongly normal if and only if it is
quasi-automorphic and the fields of constants of L and K coincide (Theorem
(3.10)). So our notion explains well what strongly normal extension means. We
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prove that a differential field extension L/K is quasi-automorphic if and only if
(i) the constant field extension C,/Cy is finite and (ii) if there exist a model X
with derivation of L/K and an algebraic group scheme G over the field of con-
stants Cg such that X is a principal homogeneous space of G (Theorem (2.13)). In
particular an abstract field extension L/K of characteristic 0 is quasi-
automorphic if and only if the extension is finite and Spec L is a principal
homogeneous space of a finite group scheme over K (Theorem (2.7)). The subtle
point is to find a natural and correct definition of quasi-automorphic extension
which excludes the function fields of arbitrary principal homogeneous spaces. We
introduce an automorphic extension as a quasi-automorphic extension L/ K such
that the morphism ¢y : Q1 ® L, ¢y (1 ® L)1 — AL[A1[¢™"] is injective for every
abstract field extension A of the abstract field structure K' of the differential
field K (Definition (2.23)). We show that a classical Galois extension and a strong-
ly normal extension are automorphic (Propositions (2.25) and (2.27)). There are
automorphic extensions other than these two types. We prove that an almost clas-
sically Galois extension introduced by Greither and Pareigis [G] is automorphic
(Corollary (2.26)).

Unfortunately in general for a quasi-automorphic extension L/K, the auto-
morphy group is not uniquely determined (Examples (4.4), (4.9) and (4.15)) and we
have not Galois correspondence (Remark (4.2)). However we have an injective map
{Cy-algebraic subgroup schemes} — {differential intermediate fields of L/K}
(Proposition (4.5)). This result does not seem very interesting because it holds for
the function field K(V)/K of any principal homogeneous space V over an abstract
field K. For an automorphic extension we have the Galois correspondence. Namely
the above injective map is in fact bijective if L/K is automorphic (Theorem
(4.10)). This result implies in particular that we have the Galois correspondence
for an almost classically Galois extension which is one of the main results of [G].
Even for an automorphic extension the automorphic group is not uniquely deter-
mined (Example (4.15).

We always mean in this paper, by a Galois extension a finite Galois exten-
sion. Throughout the paper we assume that the characteristic of the fields is equal
to 0. However it seems that theory of Okugawa [O] fits well in our frame work. In
that paper he treated Picard-Vessiot theory in char. p > 0, where the correct
generalization in char. p > 0 of a differential ring is a ring with higher derivation.
We can understand in view of the defintion of a quasi-automorphic extension why
we have to introduce the higher derivation if we work in char. p > 0 (Defintion
(2.5)). It is an easy and pleasant task to sketch the proof of principal results of
this paper in char. p > 0. Yet there are subtle points treating eventually
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non-reduced schemes so that we will treat char. p > 0 case in another paper. we
are grateful to Mitsuhiro Takeuchi for teaching us what they are studying in the
Galois theories of inseparable field extensions.

§1. Preliminaries

All the rings in this paper are assumed to be commutative and contain the
field Q of rational numbers. A differential ring (A, d) consists of a ring A and a
derivation 6:A— A: Namely d(a + b) = da + 6b, 6(ab) = (6a)b + a(db) for
all a, b € A. Kolchin calls such a ring an ordinary differential ring (cf. [K1] Chap.
I, 1). We say that an element @ € A is a constant if da = 0. Since 1 = §(1.1) =
(01)1 +1(61) = 261, 61 = 0 so that 6(Z) = 0 and hence 0(Q) = 0. So the
ring C, of constants of A is a Q-algebra. We adopt the following usual notation: @
= a(m, da=a = am, 6(0a) = a” = a® and more generally 6a” = a"" for n
> 0. We use the following convention: We denote the differential ring (4, 8) sim-
ply by A if there is no danger of confusion for the choise of the derivation 4.
Forgetting the derivation J of the differential ring (A, J), we get an abstract ring
A. When it is necessary to emphasize the abstract ring A, we denote it by A '

Let f : A— B be a homomorphism of differential rings, i.e. f is a homomorph-
ism of rings compatible with the derivations so that we can regard f as a homo-
morphism A\I - Bh of abstract rings. We denote this homomorphism of abstract
rings by fq :A' = B Thus we can define a forgetful functor ' (Diff-rng) —
(Rng) of the category (Diff-rng) of differential rings to the category (Rng) of rings.
The set of differential algebra homomorphisms will be denoted by Diff-hom (4, B)
or simply by Hom(A, B) if there is no danger of confusing it with the set
Hom (A h , B ') of abstract algebra homomorphisms.

Let A be a differential ring, B a differential subring of A and S a subset of A.
According to Kolchin, we denote by B{S} a differential subalgebra generated by S
over B : B{S} is the smallest differential subalgebra of A containing B and S.

Let L be a differential field, M a differential subfield of L and S a subset of
A. The differential subfield generated by M and S will be denoted by M<S)>. The
following lemma is well-known but we give a proof due to Bialinicki-Birula be-
cause we use it in a basic way and because we had better understand the princi-
ple on which our theory depends.

LEmMA (1.1) (Kolchin). Let A be a differential ring and K a diffevential subfield
of A. Then the field K and the ring C, of constants of A are linearly disjoint over Cy.
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Proof. 1f the Lemma were false, then there would be # elements ¢, ¢,,. .., ¢,
€ C, such that the ¢; are linearly independent over Cy but are linearly dependent
over K. We chose # = 1 minimum among such integers so that # = 2. Let

(1.1.1) 2ac;=0, a, €K
1=1

be a non-trivial linear relation so that at least one of the a, is not equal to 0. We
may assume @, # 0. Then multiplying a;l to the relation (1.1.1), we may further
assume a, = 1. So the relation (1.1.1) becomes

(1.1.2) ac+ - +a,,c,.,tc,=0.

We notice here at least one of the a; for 1 <7< #xn — 1 is not constant. Dif-
ferentiating (1.1.2), we get ajc, + -+ - + a,_,¢,_; = 0, which is a non-trivial
linear relation over K. So ¢, ¢,,. .., ¢,_, € C, are linearly independent over Cy
but linearly dependent over K. This contradicts the choice of the integer #.

The proof of the lemma is simple but the lemma is fundamental and have ap-

plications.

CorOLLARY (1.2). Let L/ K be a differential field extension such that L is gener-
ated by constants over K. Then there is a 1:1 correspondence between the elements of
the following two sets.

(i) The set S of differential intermediate fields L O M O K.

(ii) The set T of intermediate fields C, © Dy D C.

Here we define a map @ :S—T by M Cy=MN C, for M E S and a map
U:T— S by D~ DK (= a differential subfield of L generated by D and K which
comncides with a subfield of L genevated by D and K) for D € T so that @ ¥ = 1d,,
U@ = Id,.

Proof. For D € T, we have KD N C, = D so that @° ¥ = Id, since C; and
K are linearly disjoint over Cg. In fact the inclusion KD N C, D D being trivial,
we have to show KD N C, C D. Let {f,},; be a basis of a Cx-vector space K. If
¢ € KD N C, C KD, then we can write ¢ = 2i,¢; Qufo/ 2ages bafy With a,, b, €
D, where at least one of the b, # 0 and the a,, b, are equal to 0 except for a fi-
nite number of indices. So we have 2 ,c; €byfy = 2ger @ofy and hence 2 ,¢; (cb,
~ ap) f, = 0. Since the ¢b,, a, € C,, by the Lemma ¢b, — a, = 0 for all a € I.
Since there exists an index o € I such that b, # 0, we get ¢ = a, /b, so that ¢ €
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D. Now we have to show ¥+ @ = Idg or KC,; = M. Since the inclusion KC,, € M
is evident, it is sufficient to show KC,, D M. An element # € M is written as a
quotient u = X ,c; @y fy/ 2ges bafy With 2,c; byf, # 0, where the a,, b, € C,
are equal to O except for a finite number of indices. We get # 2pe; @pfy = Zger
b,f, and hence 2,c; @ uf, — 24c; bofy = 0. This shows that the #f, and f,,
which are elements of M, are linearly dependent over C;. So it follows from the
Lemma applied for L and M that the #f, and f, are linearly dependent over C,, so
that there exist ¢, and b, € C,, for @ € I such that they are equal to O except for
a finite number of indices and such that we have a non-trivial linear relation

(1.2.1) 2 cufy,— 2 dyf, =0
ael ael

among the uf, and f,. If all the d, were equal to 0, then 2 o; c,#tf, = 0 so that
2aer Cafa = 0. Since {f,} <, is the basis of the Cg-vector space K and since C,
and K are linearly disjoint over Cg by Lemma (1.1), all the ¢, would be equal to 0
so that the linear relation (1.2.1) would be trivial. This contradicts the choice of
the ¢, and d, Hence 2,c;dyfy, # 0 so that u = 2,c; Cofy/ 2ger Gufy and
# € KC,,. Thus the inclusion KC, © M is proved.

In the course of the proof of corollary, we proved the following result.

CoROLLARY (1.3). Let E/F be a differential field extension and E D G D F a
differential intermediate field. If theve exists a set W comsisting of constants of E such
that F(W) D G, then G is generated by constants over F: Namely G = FC,.

For a ring B, we denote by BL[f]] the ring of formal power series with
coefficients in B. The ring of formal Laurent series with coefficients in B will be
denoted by BI[f1[¢™']. These rings are differential rings with derivation d/d¢
Let ¢ : B— C be a morphism of rings. Then it induces morphisms BI[[{]] —
CLIAL, BIIAIt ™ — CIIAIE ] of differential rings. We denote the both homo-
morphisms by @[[£1] so that @[[1(Z e, @p t) = 2 _oen 0@ t".

Let A be a differential ring. A morphism f : A— BI[[f]] of differential rings
will be called a Tayloy morphism. Let us define a mapping ¢:A4— A[[f]] by

n

0a
n!

setting i(a) = 2 t" for @ € A. Then ¢ is a morphism of differential rings or a

Taylor morphism. We call ¢ the morphism of the universal Taylor expansion of the
differential ring A or the universal Taylor morphism for short.
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ProrosITION (1.4). (i) The universal Taylor morphism is a monomorphism.
(ii) The universal Taylor morphism is universal among the Taylor morphisms. Namely
let f : A— BIIfl] be a Taylor morphism. Then there exists a unique morphism @ A"
— B of rings such that [[A1°1 = f. In other words we have a bijection

®:Hom(A', B) — Diff-hom(4, BI[A])

sending a morphism ¢:A' — B of rings to a Taylor morphism @[[f]1-i:A—
A’ [[A]— BIIA).

Proof. Let g:A' [[11— A" be a morphism of taking the value at £ = 0 or
the constant term of power series: g(@(®) = a(0) for a(p € A" [[A]. Then g-i
=1Id,. so that the universal Taylor morphism is a monomorphism. Let %:
B[[f]] — B be the morphism of taking the value at #= 0. Then given f €
Diff-hom(A, BI[#]]), we get a morphism A°f : A— B[[t]] — B of rings. Denoting
hef by W(f), we get a map ¥ : Diff-hom (4, B[[#]]) = Hom(A", B). Since ¥~ ®
= Id, @ ¥ = Id, Proposition is proved.

Let L/K be an extension of differential field. We use the following condition
very often

(F.C) The field L is finitely generated over K as an abstract field.
This condition will be called the finiteness condition.

The following lemma is well-known. We give a proof since we use it in an
essential way and maybe algebraic geometer is not familiar with it.

LemMA (1.5). If a differential field extension L/K satisfies the condition (F.C),
then there exists a K-algebra L, finitely generated over K such that L, is closed under
the derivation 0 and the quotient field of L, is L.

Proof. Let us observe the following: Let S C L be a subset. For a subring
KIS] of L to be closed under the derivation, it is necessary and sufficient that we
have s” € K[S] for any s € S. Let 2,, 2,,. . ., 2, € L be generators of the ab-
stract field L' over K. Since the 0z; are in L, we can find fi, f5, . . ., fo» &1s &2

e En € K' [z, z,,..., 2,] with g; # 0 such that z;, = f,/g; for 1 < i < m. We
may assume that g, = g, = -+ = g, by replacing the g, by £,&, " &, Let us
put g=g, =g =" -=g,and L, = Klz, 2,,- -, 2, 1/g]. We show that L,
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is closed under the derivation. We have z; = f,/g € L, so that f” € L, for every
f € Klz, z,..., z,]. In particular g € L, so that (1/g)’ = — g’/g” € L, Now
Lemma follows from our observation above.

Let (A, 0) be a differential ring. The derivation d:A— A defines a derivation

rgen n—1,,

af’ —naf"f
on

Oy of a scheme X = Spec A is the sheaf of rings associated with a presheaf

D(f) = A,, we get a derivation 8 : 0, — 0,. Here D(f) = {x € Spec A|f € i, or

f(x) # 0} in accordance with E.G.A. It is therefore convenient to adopt the follow-

a
A;,— A, for any f € A since 5[]7;} = . Since the structure sheaf

ing

DEFINITION (1.6). A scheme with derivation consists of a scheme X and a
derivation 0 : 0y — 0. Namely I'(U, Oy) is a differential algebra with derivation
J for every open set U of X and the restriction morphism pyp: I (U, 6y) —
I'(V, 0, is a morphism of differential algebras for every pair of open sets VC U
of X. We denote the scheme with derivation by (x, §) or simply by X if there is
no danger of confusion of the choice of the derivation. A morphism f : (X, §,) —
(X, 0,) of schemes with derivation is a morphism of schemes f : X — Y commut-
ing with the derivations. More precisely if we use the notation of E.G.A. Chap. I,
§1, 2.3.1 so that the morphism f consists of a continous map ¢: X— Y and a
¢-morphism 6 :0,— Oy, then 6 :0,— Oy is a morphism of the sheaves of dif-
ferential rings.

So we can speak of the category of schemes with derivation. Let (4, d) be a
differential ring. Then Spec A has a structure of a scheme with derivation and the
differential ring (A, 0) is recovered from the scheme Spec A with derivation. Let
f :A— B be a homomorphism of differential rings. The associated morphism with
f will be denoted by “f : Spec B— Spec A. This is a morphism of schemes with
derivation. It follows from E.G.A. Chap. I, Proposition (2.3.2) that we have a bijec-
tion Diff-hom(4, B) = Diff-hom(Spec B, Spec 4), f — °f.

THEOREM (1.7). In the category of schemes with derivation, the fibre product ex-
ists.

Proof. Let S be a scheme with derivation and X, Y be two S-schemes with

derivation. We show that the fibre product X Xg Y exists in the category of
schemes with derivation. As in the case of usual schemes, we may assume that X,
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Y, S are affine: There exist a differential algebra C and differential C-algebras
A, B such that X = Spec A, Y = Spec B and S = Spec C. Then the theorem fol-
lows from the following

ProposITION (1.8).  Let C be a differential ring and A, B differential C-algebras.
Then there exists a differential C-algebra D with the following properties :

(i) There exist a differential C-algebra morphism ¢, :A— D, ¢,: B— D ;

(i) For any differential C-algebra E and differential C-morphisms ¢,:A— E,
¢,: B— E, there exists a unique differential C-morphism f : D— E such that f° ¢,
= ¢y, fop, = ¢, Namely we have a bijection

Diff-hom, (D, E) = Diff-hom.(A, E) x Diff-hom,(B, E)
sending f € Diff-hom.(D, E) to (f-¢,, f*¢,)

Proof. To be more precise let (A4, §,) and (B, d,) be the differential
C-algebras in question. We define a derivation d on the tensor product Ah @c.
B' of the abstract algebras as follows: 6(a ® b) = §,(a) ® b + a ® 5,(b) for a
€ A and b € B. We can check that § is well-defined and is in fact a derivation
on A' ®;. B"'. The canonical morphisms ¢,:A— A ® B, a—a®1 for a € A
and ¢, B—A®:.B,b—1Q®b for b € B are C-morphisms of differential
algebras. The morphisms ¢, and ¢, satisfies the condition (ii).

A rational map of a scheme X to a scheme Y is an equivalence class of
morphisms of dense open sets of X to Y. Two morphisms are considered to be
equivalent if they coincide on a dense open sets (cf. E.G.A. Chap. I, Définition
(8.1.2)). An S-rational map of an S-scheme to another S-scheme is a rational map
which is an S-morphism. A rational function on X is an X-rational map of X to
X @, Z[T], where T is a variable over Z. All the rational functions on X form a
ring R(X). If X irreducible, then the ring R(X) coincides with the local ring @, at
the generic point x € X. Moreover if X is reduced, then R(X) = 0, is a field (cf.
E.G.A. Chap. I, Proposition (8.1.5)).

Let L/K be a differential field extension satisfying the condition (F.C) and L,
be the differential ring of Lemma (1.5). So Spec L, is a scheme with derivation
over the scheme Spec K with derivation.

DEFINITION (1.9). A model of the differential field extension L/K is a
K-scheme X with derivation such that the underlying scheme X' is reduced, irre-
ducible and of finite type over K' and such that the field K(X) of rational func-
tions of X is K-isomorphic to L as a differential field.
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Remarks (1.9.1). If X is a model of L/K, then there exist two non-empty
open sets UC X, VC Spec L, and a K-morphism f : U— SpecL,, g:V— X
of schemes with derivation such that f-g = 1Id, g<f = Id. Since these open sets
are universally K-scheme theoretically dense respectively in Spec L, and in X,
we can say that there exists a K-pseudo-isomorphism X * - -— Spec L, compati-
ble with derivation. (We recall below the definition of a pseudo-morphism.) This
formulation is not only formal but also useful in our theory since we study not
only models over K but also their various base changes for morphisms S—
Spec K, where the scheme S with derivation is not necessarily reduced.

(1.9.2) A germ of introducing schemes with derivation appeared already in
the 19-th century when the mathematicians of that time studied a condition for an
ordinary differential equation of the first order to be free from movable singular
points.

(1.9.3) In general, we can not find a complete model with derivation of a dif-
ferential field extension L/K : A model X with derivation whose underlying
scheme is proper over K. For an ordinary algebraic differential equation of the
first order or for a differential field extension L/ K satisfying the finiteness condi-
tion (CD) with tr.d [L: K] = 1, the complete model with derivation exists if and
only if the equation is free from the movable singlular points.

We can show that if y satisfies the Painlevé equation y” = 6y2 + x, there is
no complete model of a differential field extension C(x)<y> /C(x), where the de-
rivation is d/dx.

(1.9.4) After we had done our work, we learned that in recent monograph
[Bu], the scheme with derivation plays an important role.

Let us recall the notion of pseudo-morphism of E.G.A. Chap. IV, §20. Let X
be a scheme. An open set U of X is scheme theoretically dense by defintion if the
restriction map I'(V, 0,) — I'(VN U, 0,) is a monomorphism for every open
set V of X (cf. E.G.A. Chap. IV, (20.2.1)). When X is an S-scheme, we say that an
open set U of X is umniversally scheme theoretically dense over S or universally
S-scheme theoretically dense if for every morphism S”— S of schemes, the base
change Us, is scheme theoretically dense in Xg,. Let ¥ be another S-scheme. An
S-pseudo-morphism of X to Y is an S-morphism f : U— Y of S-schemes where U
is an open set of X scheme theoretically dense over S modulo the following
equivalence relation: We identify two such morphisms f :U— Y and f': U — Y
if they coincide on the intersection U N U’. We say that the couple (U, f) repre-
sents its equivalence class.

We define a pseudo-function on a scheme X as we introduced a rational func-
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tion on X. Namely a pseudo-function is an X-pseudo-morphism of X to
X ®, ZIT], where T is a variable over Z. The notion of pseudo-function is finer
and hence more useful than that of rational function. In our theory we should deal
with pseudo-functions rather than rational functions as natural objects because as
we said above, we have to study the base changes X @ S/S of a model X which
is a K-scheme with derivation. But in our analysis only rational functions appear
and pseudo-functions are hidded by virtue of the following result (E.G.A., Chap.
IV, Remarque (20.2.9)).

If X is a reduced scheme, then the following conditions on an open set U of X
are equivalent:

(i) Then open set U is dense;

(ii) Then open set U is scheme theoretically dense.

So the notion of pseudo-morphism (resp. pseudo-function) on a reduced
scheme coincides with that of rational map (resp. rational function).

A morphism f :X— Y of schemes is scheme theoretically dominant if the
morphism I'(U, 6,) — I'(f (1), 6,) is a monomorphism for every open set U
of Y. Let f : X— Y be morphism of schemes. We say that the morphism f is uni-
versally scheme theoretically dominant if the base change fg : Xy — Y is scheme
theoretically dominant for every morphism S”— S of schemes.

Let us notice the follwing fact. Let f : Y— Z be a k-morphism of algebraic
schemes over a field k such that Z is irreducible and reduced. Then the morphism
f :Y— Z is universally scheme theoretically dominant over k if and only if the
image f(Y) contains the genbric point of Z.

We say that an S-pseudo-morphism f : X - - -— Y is universally scheme
theoretically dominant if it is represented by a couple (f, U) such that the
S-morphism f : U— X is universally scheme theoretically dominant over S. Let Z
be a third S-scheme and g:Y - -— Z be an S-pseudo-morphism. According to
E.G.A. Chap. IV, (20.3.2) if the S-pseudo-morphism f : X -+ *— Y is universally
scheme theoretically dominant over S, then we can define an S-pseudo-morphism
gof : X+ -—Z We say that a S-pseudo-morphism f : X— Y is an S-pseudo-
isomorphism if f is universally scheme theoretically dominant over S and there
exists an S-pseudo-morphism g: Y+ +— X such that g is universally scheme
theoretically dominant over S with g° f = Idy, f°g = Idy. We denote by Ps.autsX
the group of S-pseudo-automorphisms of X, i.e. the group of S-pseudo-isomor-
phisms of X to X If we set

Ps.aut X (S) = Ps.auty, (X X S,

then Ps.aut: (Sch/S)’— (Grp) is a group functor. The notation Ps.autyX,
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Ps.aut, X is due to E.G.A. but it seems that most authors denote the group
Ps.aut X by BirgX when X is an algebraic variety over a field k so that S =
Spec k. Hence we denote the group Ps.autgX by Bir,X and the group functor
Ps.aut X by BirgX when S is the spectrum of a field.

Let us assume that k is a field and S = Spec k. Let F/k is a field extension
finitely generated over k. A reduced algebraic k-scheme X whose ring of mero-
morphic functions (= rational functions) is k-isomorphic F will be called a model
of F/k. Let X, X’ be models of F/k. Then there exists a k-pseudo-isomorphism
X -+ +— X’ so that the group BirgX(S’) is isomorphic to the group Bir,X"(S")
for any k-scheme S’. So the group functor BirgX is isomorphic to the group func-
tor Bir,X’. In other words the group Bir,X(S) and the group functor Bir, X are
independent of the choice of model X. So we denote Bir, X by Bir,F.

ProposiTioN (1.10) (Demazure [D], 1, Proposition 1). Let X, Y be schemes
smooth and of finite type over a scheme S. The following conditions for an S-pseudo-
morphism f X +*— Y are equivalent.

(i) f is an S-pseudo-isomorphism.

(ii) There exist universally S-scheme theorvetically dense open sets U of X and V
of Y such that f induces an S-isomorphism U— V.

ProposITION (1.11). Let L/K be a differential field extension with C, = Cy =
C satisfying the finiteness condition (F.C). Let X be a model with devivation of L/ K,
A a Cy-algebra and U a universally scheme theoretically dense open set of X @ A. If
feErU, 0y c 4) is constant, then f comes from a global section of Ogpee o= There
exists an element g € I'(Spec A, Ogpee o) = A such that g°p = f, where p denotes
the projection U € X @, A— Spec A.

Remark. A morphism Y— Z of schemes consists of a of a continuous map
g : Y— Z of the underlying topological spaces Y, Z and of a morphism 0,— 0,
of sheaves of rings (cf. E.G.A. Chap. I, 2.3). So in the Proposition we mean by the
notation g°p the image of the section g of the structure sheaf 0, by the projection
morphism p : U— Spec A.

Proof. Since C = Cy, = C, is algebraically closed in L, X is irreducible for
any field extension B/C. In particular for any point z € Spec 4, the fibre
p7(2) = X®.C(2) is irreducible. Therefore if W is an open set of X, such that
W,=W&:C(2) is not empty, then W, is dense in X &@.C(2). Since X, —
Spec A is faithfully flat, it follows from the above investigation that we have to
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prove the following assertion:

(1.11.1) For any ponit £ € U, there exists a neighbourhood V of x depending
on x such that the restriction pg(f) of f comes from a section of the structure
sheaf O, 4 over p(V). Here we notice that since p : X, — Spec A is flat, p is an
open map and hence p(V) is an open sub-set of Spec A. Let x be a point of U. We
can find a neighbourhood D(h) of x in U with h € I'(X,, Oy ) so that

(1.11.2) oo () =k/h

on D(n) with k € I'(X,, Ox,). This is an identity in I'(D(h), Ox) = (L’ ®A),.
Let us set R = I'(D(h), Oy,), then the ring Cy of constants and L° are linearly
disjoint over C by Lemma (1.1).

R= (L' QA,
C
R F(XA) @XA) — LO ®CA
A F(Xs @X) = Lo
C

Let {e,},.,; be a basis of the C-vector space L’. We can write k = 2, ¢, ® b,,
h= 2, e &c, with b;, ¢; € A, where the b, and the ¢, are zero except for a finite
number of indices. Setting f = pp (f), we get by (1.11.2) f=k/h in I'(z,, Ox) i
Therefore fh=k in I'(X,, Ox), and hence 2, (¢, ®1)f(1 Qc) =f(2,e,Rc)
=2,¢,0b,=2,0811Qb). Namely we have 2, (¢, ®1)(f(1Q¢c)
—1®b) =0. Since the f(1 ®¢c) —1RXb, are in C, and the ¢, @1 are
Cg-linearly independent, we conclude f(1 ®¢,) =1 ®b, for all ¢ € I. Since 0 #
h(x) = 22, ¢;(x)c,(x), there exists an index ¢ such that ¢;(x) # 0. Namely in a
neighbourhood V of x, we have oy, (f) = b, /c,.

LeEMMA (1.12). Let R be a differential ving with 1. If R is a direct product of a
finite mumber of ideals R,: R = II,_; R,, then the ideals R, are closed under the de-
rivation so that R is a direct product of the differential ideals R;.

Proof. let1l =¢ + e,+ + -+ + e, be the orthogonal idempotent decomposi-
tion of 1 so that R; = Re; for 1 < i < n. Since e,e, = 0if i # 7, 0 = (e,e,)’ = ele,
+ ee; and e;¢; = —ee; € R, N R; = 0. Thus the j-th component of ¢;= 0 for
¢ # 7 and e; € R, so that the ring R, = Re, is closed under the derivation. In fact
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(ae,)’ = a’e; + ae € R, since the R, are ideals of R.

COROLLARY (1.12.1). We using the notation of Lemma (1.12) and its proof, the
idempotents e; are constants for 1 < ¢ < m. If we set C; = Cp, for 1 < 1 < n, then the
ring Cy of constants of R is a direct product of the C,: Cy = II,_, C,.

Proof. Differentiating the idempotent decomposition 1 = ¢, +¢,+ -+ + ¢,
we get 0 =¢[+ e, + - - + e, so that ¢, =0 for 1 < i< n since ¢; € R, by
Lemma (1.12). Thus the first assertion is proved. As for the second, it is sufficient
to show that every constant ¢ of R can be written as a sum of an element of the C,
1 <¢<wn In fact ¢ = ce; + ce, + - - - + ce, is the decomposition of the element
¢. As we have just seen, the e; are constants so that ce; € C; so that the second
assertion is proved.

Most of schemes X which arise in this paper are reduced algebraic schemes
over a field k¥ and we study their base changes X for a k-schemes S. Let us re-
call that a k-algebraic scheme is a scheme of finite type over field k (cf. E.G.A.
Chap. I, 6.5.1). We have to consider however some exceptions such as Spec

KLLATLE.

Let L/K be a differential field extension satisfying the finiteness condition
(F.C). Since we are in characteristic 0, the tensor product L @ L is reduced and
the total quotient ring Q(L @ x L) is a direct product of the ideals M;: Q(L
Qi L) =1II'_, M, and the M, are fields (see for example [Z.S] Chap. IV, §3). Then
by Lemma (1.12) the M, are differential fields.

Geometrically let X be a model of L/ K. Since X is noetherian and we are in
characteristic 0, X @, X is noetherian and reduced. There are finitely many irre-
ducible components Y, of X XX :X X, X= U’ Y, The total quotient ring
Q(L, @y Ly) which coincides with Q(L &y L) is isomorphic to the direct product
of the K(Y,) = M,

Anyhow we have the projections f;: Q(L &y L) = M,, 1 <i<#n and two
K-morphisms ¢,, ¢,: L— L ®, L such that ¢, identifies L with L&®1 < Q(L
QL) and ¢, identifies L with 1 @ L € Q(L ®, L). We get two K-morphisms
fil, f,z:L-'M,- by setting fi1 =f° 0, f,-2 = f;° ¢, We set for further purpose
=LY A =LY for 1 <i< .

Let € be a category and X an object of €. Then &y, : €°— (Set) sending Y to
h(Y) = Hom(Y, X) is a functor (8° being the dual category of C). We some-
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times denote A;(Y) by X(Y). Let S = Spec A be an affine scheme and € a categ-
ory of S-schemes. We often denote X(Spec B) by X(B) for an A-algebra B.

Let X;, 1 <7< be objects of a category € such that the product X =
IT;_, X, exists in €. The i-th projection X — X, will be denoted by p, for 1 < ¢
<.

Let us vecall the definition of principal homogeneous space. An operation
(G, X) of a group G on a set X is a principal homogeneous space if the following
condition is satisfied: If x € X, then a map G— X sending g¢ € G to gr € X is
bijective. It is convenient to interpret that (G, ¢) is a principal homogeneous
space for any group G. We often say that the set X is a principal homogeneous
space of the group G without making the operation G X X— X precise. Let F' : €
— (Set) be a functor and G :%€ — (Grp) be a group functor. If the functor G
operates on the functor F in such a way that (G(S), F(S)) is a principal
homogeneous space for every object S € ok €, we say that (G, F) is a principal
homogeneous space or F is principal homogeneous space of G.

Let S be a scheme and % the dual of the category of S-schemes. Let G an
S-group scheme and X an S-scheme such that G operates on X : We have an
S-morphism g¢:G X X— X making the several well-known diagrams com-
mutaitve. We can regard G and X as functors on the category €. Then (G, X) is
a principal homogeneous space if and only if the morphism (g, p,) : G X X— X
X4 X is an isomorphism.

Let G be an S-group scheme and X an S-scheme such that G operates on X
over S. We say that the operation (G, X) is generically transitive if the morphism
(u, py) : G X X— X X, X, (g, 1) — (gx, x) is scheme theoretically dominant.
Let us recall that a morphism % : V— W of schemes is scheme theoretically domi-
nant by definition if the morphism I'(U, @,) — (), 0\) is injective for ev-
ery open set U of V.

The following result which we learned from Miyanishi seems well-known.

LemMmA (1.13). Let k be a field of characteristic 0 and G a k-algebraic group
scheme. Then the irreducible component G, of G containing 1 is absolutely irreducible:

The base change G, g remains irreducible for any field extension K/k

Proof. We have to show that the extension k(G,)/k is regular. Since we are
in characteristic 0, it is sufficient to show that & is algebraically closed in k(G,).
Let f € k(G,) be algebraic over k and let f*+ a,f" '+ -+ +4a,=0,a €
k (1 £ 4 < n) be the minimal polynomial of f over k. Since G, is reduced, G, is
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smooth over k so that the local ring @Gog is regular for any point g € G, Thus
0605 is a unique factorization domain and hence normal so that f € @Gog. In par-
ticular for the point 1 € G, f € 0 ,. Since 1 is a k-rational point of G,, we have
a k-morphism Og , — k so that we have ff+af 4+ + a, = 0 f being the
image of f by the k-morphism O , — k. Hence f € k is a root of the irreducible
polynomial " + a,x" '+ -+ + a, € klx] so that =1 and f = — a, € k. We
have thus proved that k is algebraically closed in k(Go). Hence the Lemma is
proved.

In our papers [Ul], [U2] we defined algebraic group germ as an analogue of
analytic group germ which is formulated in Bourbaki [Bo]. Roughly speaking a
group germ is a local group law consisting of a local composition law, a local in-
verse and a local unit. In algebraic geometry, however rational group law which
was first introduced by Weil [W], seems to arise more naturally than algebraic
group germ.

DEFiNITION (1.14). A rational group law over a field k (of characteristic 0)
consists of a reduced k-algebraic scheme Z, a k-rational map m:2Z X, Z--—Z
satisfying the following conditions:

(i) The map (m, p,) : Z X, Z -++— Z X, Z is dominant;

(i1) The following diagram is commutative;

Z X (ZX2) e ZXZ

Id
I

(ZX2) xZ [ m
mxldl ’
Z X Z i A4

where the products are taken over k.

Remark (1.14.1). If the field k is of characteristic p > 0, then X X, X is not
necessarily reduced so that the condition (1.14.i) should be modified.

ProposITION (1.15). Let Z be a rational group law. Then there exists a k-

algebraic scheme G birationally equivalent to X : i.e. There exists a k-birational map
G- — X compatible with group laws.
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When X is absolutely irreducible over k, Proposition is due to weil [W]. An
extreme generalization of Weil's result is proved in S.G.A.D., Exposé XVIIIL Let us
notice that the algebraic group scheme G is uniquely determined up to isomorph-
isms.

The same remark should be given for law chunk of algebraic operation intro-
duced in [U1].

DErFINITION (1.16). Let G be an algebraic group scheme over a field k of char-
acteristic 0 and X a reduced k-algebraic scheme. We say that a k-rational map
t:G X, X---— X is a rational operation of the algebraic group G on the algeb-
raic scheme X if the following conditions are satisfied:

(i) A rational map (p, ):G xX, X+ -— G %X, X, (g, ) ~ (g, ulg, ) is
dominant;

(i) The diagram

GXx(GXxX) = GXX

Idxu
I :
(Gx 6 xX [
uxld l y
G XX ﬂ—’ X

is commutative, where the products are taken over k.

ProPOSITION (1.17). Let k be a field (of char. 0). For a vational operation (G, X)
of a k-group scheme G on a reduced k-algebraic scheme X, there exists an operation
(G, Y) over k which is birationally equivalent to (G, X).

Proof. When all the irreducible components of G and X are absolutely irre-
ducible, the Proposition is proved Weil [W]. Rosenlicht proved the Proposition
under an additional hypothesis that the variety X and the irreducible components
of G are absolutely irreducible (cf. [R] Theorem 1). His proof works if all the irre-
ducible components of the scheme X and those of G are absolutely irreducible.
Now by Galois descent the Proposition follows from

LEMMA (1.18). Keeping the wnotation of Proposition (1.17), we assume furthermore

that k is algebraically closed. (i) There exists an operation (G, Y) birationally equiva-
lent to (G, X) such that Y is quasi-projective. (ii) Let (G, Y)), (G, Y,) be operations
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birationally equivalent to (G, X). Then there exist G-invariant dense open sets U,
U, such that (G, U)) is isomorphic to (G, U,).

Proof. The second assertion is proved following the Proof of Corollary to
Theorem 1 [R]. There the case where X is absolutely irreducible is treated. It re-
mains to show the first assertion. As we noticed above, there exists an operation
(G, Z) birationally equivalent to (G, X). We show that there exists a variety of
orbits of (G, Z) by Theorem 2 |[R]. There exists a G-invariant dense open set U
of Z and a morphism 7:U— W of of reduced k-algebraic schemes such that a
fibre U, is a G, -homogeneous space for any point § € W. Let us first assume
that W is irreducible. Let n : Spec k(W) — W be the generic point so that U, is
the generic fibre. (G, U,) is a homogeneous space and hence U, is quasi-
projective as is well known. Therefore there exists a non-empty affine open set V
such that the morphism 7 is quasi-projective when restricted over 7~ (V) — V. So
T Wis quasi-projective since V is affine. In general if W is not irreducibe, we
can argue at the generic points of irreducible components of W to conclude that
there exists a G-invariant dense open subset U of Z which is quasi-projective.

§2. Automorphic extensions

Let L/K be a differential field extension satisfying the finiteness condition
(F. C) of §1. Let X be a model with derivation of the extension L/K. We sometimes
denote by C the field Cy of constants of K to simplify the notation. The category of
C-schemes will be denoted by (Sch/C). We define a group functor Diff-bir,L :
(Sch/C)°— (Grp) by setting

Diff-bir,L(S) = {f € Ps.aut X X . S/Spec K X, S|
pseudo-morphism f is compatible with derivation}.

In fact if Diff-bir,L(S), then ¢*f € Diff-bir,L(S") for a morphism ¢ : S’
— S of C-schemes so that Diff-bir,L is a group functor. It is evident that the de-
finition is independent of the choice of model.

ExaMpLe (2.1). We consider a differential field (C[[z]]1[z™'], d/d2) of the
formal Laurent series with coefficients in the complex numer field C. Let us set

oo 1 n -— . . . . .
y =expln) = Zn=0717x € Cllz]1[z™'). The series y satisfies a differential

equation
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(2.1.1) dy/dx=1y.

We also set K= C(z) so that K is a differential subfield of C[[]1[x "], By the
differential equation (2.1.1), L = K(y) is a differential subfield of C[[z1]1[z~'] by
considering the Laurent expansion at x = 0 of rational functions. So we obtained
a differential field extension L/K. Since these fields are subfields of C[[x]1[z ™,
C, = Cy = C. Let us take X = Spec K[y, y~'1 as a model of L/K. Let us deter-
mine Diff-bir L (Spec A) for a C-algebra A. Let f € Diff-bir,L(Spec A) so that
f:X X.SpecA - -— X X SpecA is a K & A-pseudo-automorphism compati-
ble with derivation. By Proposition (1.10), there exist universally K®C A-scheme
theoretic dense ope sets U, V of X, = Spec Kly, y '] ®cA such that the
pseudo-morphism f induces a K &g A-isomorphism f : U— V of schemes com-
patible with derivation. Let us set

# = the restriction to U of y € I'(X,, 6),
v = the restriction to Vof y € I'(X,, 0),
w=f 0.

Since y is invertible on X and hence on X, the functions #, v and hence w are in-
vertible respectively over U or V. It follows from the differential equation (2.1.1)
that we have

(2.1.2) du/dx=u, dv/dr=v and dw/dr= w.

The functions #, w are in a differential algebra I'(U, 0) and invertible in the
algebra. We show that there exists a constant ¢ in the differential algebra
(U, 6) such that w = cu. In fact (wu™") = (wu — wu)/u’ = (wu — uw)/u’
= 0 by the differential equations (2.1.2). It follows from Proposition (1.11) that
any constant of I'(U, 0) comes from I'(Spec A, O, ) through the structure
morphism X, — Spec A. Since ¢ is invertible, we conclude that w = cu with ¢ €
A* = group of the units of A. This shows that the K @ A-isomorphism f : U—
V coincides with ‘g : X, — X, associated with a K ® A-automorphism ¢ : Kly,
41 QA= KRcAly, y " 1= Kly, ¥y 1 Qe A= (K&QcAly, y~'] sending
y to cy of the differential algebra. Conversely every element ¢ € A* defines a
K @ A-automorphism ¢ of the differential algebra Kly, v & A sending y to
¢y and hence K @ A-automorphism “¢ : X, — X, of schemes with derivation. We
have thus proved the functorial isomorphism Diff-bir,L(Spec A) = A" If we
notice that the above argument works not only for affine C-schemes but also for
every C-schemes, we have proved a functorial isomorphism Diff-bir,L(S) =
I(s, @S)* for any C-scheme S. Namely the functor Diff-bir,L(S) is represent-
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able by a group scheme G,,.

We shall recall in §3, Definition (3.2) the notion of strongly normal extension
introduced by Kolchin. The above extension L/K is strongly normal (cf. Example
(3.2)). We shall see later that in general if L/K is a strongly normal extension
with Galois group G so that G is an algebraic group over C, = Cj, then the func-
tor Diff-bir,L is representable by the Galois group G (cf. Theorem (2.22))

Let G be a Cg-group scheme and ¢ : G — Diff-bir,L be a morphism of group
functors. Then taking the value at G EM(Sch/CK), we get a mapping G(G) =
Hom(G, G) — Diff-bir,L(G) C Ps.aut; (X X G¢,). The image of the identity in
G(G) = Hom(G, G) defines a Gg-pseudo morphism X X y Gy ' ~— X X G¢ of
schemes with derivation. By the argument of Demazure [D], p. 514, the group
scheme G, with derivation pseudo-operates on X. Conversely a pseudo-operation
of Gx X X -+ = Gy X X which is a Gg-pseudo-morphism compatible with de-
rivation, defines a morphism G — Diff-bir,L of group functors on the category
(Sch/Cy) of Cgx-schemes. We have proved the following

ProposITION (2.2). Let G be a group scheme over C = Cyg. Then there is a
1:1-correspondence between the elements of the following two sets.

(i) The set of morphisms G— Diff-bir,L of group functors on the dual
(Sch/C)° of the category of C-schemes.

(ii) The set of pseudo-operations Gg X g X + + +— Gg X ¢ X that are Gg-pseundo-
morphisms compatible with derivation.

Let L/K be a differential field extension satisfying the finiteness condition
(F.C) of §1. We define a functor &, of the category (Fld/Kh) of abstract field
extensions of K' to the category (Set) of sets by

F,x(AQ) = {f € Diff-hom(L, AL[A1[¢"'1) | the restriction of f to the sub-
field K of L coincides with the universal Taylor morphism
(2.3) i K— K'[[A]. Namely f makes the diagram

L5 Al
(I
K-> K'[[8]

commutative, where the vertical arrows are the natural inclu-
sion morphisms}.
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for A € od(Fld/K").

Here we regard the field A[[A]][# "] of Laurent series as a differential field
by the derivation d/dt (cf. §1).

In fact #,,; is a functor. For if ¢ :A— B be a morphism in the category
(FId/K") or @ is a K' -morphism of field extensions of K", then it induces a
morphism @[[A]: A[[A1[¢™"1 — BLIA1[t '] of the fields of Laurent series and
hence we get a map F,x(A) = F, (B, ¢ = olltlle f for every f:L—
ALIATIE™ of F, 4(A) so that F,,: (FId/K') — (Set) is a functor.

Remark (2.3.1). For a field extension A of L' (so that A € o4(FId/K")),
the easiest way to get an element of %, ,,(A4) is as follows. By Proposition (1.4) the
inclusion A D L" gives us a Taylor morphism f : L— A[[#]] such that the dia-

gram
L' — Al
1 1
K' — K'[[4]

is commutative, where the vertical arrows are the canonical morphisms. Thus the
morphism f composed with the canonical inclusion A[[A]] C Al[A11t1 gives an
element of &, (A4).

Let X be a differential model of L/K. Then f defines a morphism °f :
Spec A[[#]1[t7] — Spec L of schemes with derivation and we have the morphism
Spec L — X of schemes with derivation giving the generic point of X. So we have

F.,x(A) = {h € Diff-hom (Spec A[[/]1[t™"], X) | A factors through the
generic point Spec L — X making the diagram

Spec ALIAI[t™] = SpecL
| |

Spec K' [[]] = SpecK

commutative, where the vertical arrows are associated with canonical in-
clusion morphisms}.
Since A[[A1[¢ '] is a field, the last condition is equivalent to requiring that
the image of 4 :Spec A[[f11[# '] = X is the generic point and we have conse-
quently
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F,,x(A) = {h € Diff-hom (Spec A[[f]1[t"*], X) | The image of & :
Spec A[[A11[t™'] — X is the generic point of X and A
(2.4) makes the diagram

Spec AL[AI[t™"] = X
| | commutative}.

Spec K' [[A] — SpecK

Here the vertical arrows are canonical morphisms induced by the inclusions.

The field C = Cy of constants of K is a subfield of K so that C C K' and

the category (FId/K") of K" -fields is a subcategory of the category (Fld/C)
of C-fields. Since the category (FId/C) is a sub-category of the dual category
(Sch/C)°, the category (Sch /Kh) is a sub-category of the dual category
(Sch/C)°.

Let G be a group sub-functor of Diff-birgL: (Sch)’— (Grp), and A €
oA (Fld/K"). We can speak of the value G(Spec A) which we sometimes denote
by G(A). Let g € G(A) so that g defines a Spec K & _A-pseudo automorphism
¢ : X, -+ X, of a scheme with derivation. If 2 € % 4(4), as we noticed above
h: Spec A[[A11[t™1 = X is a morphism of schemes with derivation and hence we
get an A-morphism &, : Spec A[[f11[t'] — X, of schemes with derivation. If we
can composite s, and ¢, to get a morphism ¢,°h,: Spec A[[#]] [t — X, we get
pe@.°h,:Spec A[[11[t7"1 — X which is a morphism of schemes with derivation,
where p denotes the canonical projection X, — X.

DEFINITION (2.5). (1) Let G be a group sub-functor of the group functor
Diff-bir,L : (Sch/CK)O—* (Set) satisfying the following conditions: (i) We can
composite ¢, and h,; (i) The image of p° ¢, ° h,:Spec AL[11[t™'] — X is the
generic point of X so that p ° ¢, ° hy € F,x(A) and the group functor
G| (Fid /K") operates on the functor &, 4.

Then we say that G| (Fld/K") naturally operates on %, and the morphism
bpe@g°h, will be denoted by gh. Dually let f : L— A[[{]] [#7" be the morphism of
differential algebras defining 4. The morphism L— A[[A][¢# '] of differential
algebras corresponding to pe¢,°h, will be denoted by gf.

(2) If there exists a group sub-functor of the group functor Diff-bir,L :
(Sch/Cy) — (Grp) representable by an algebraic group scheme G such that
() G| (Fld/K") naturally operates on F,x and (i) (G| Fld/K"), F,,0) is a
principal homogeneous space, then we say that the extension L/K is quasi-

https://doi.org/10.1017/50027763000006012 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006012

GALOIS THEORY OF EQUATIONS 23

automorphic. The group scheme G will be called an automorphy group of the ex-
tension L/ K.

When G| (FId/K') naturally operates on %, by abuse of language we
sometimes say that the group scheme G naturally operates on ¥, .

We notice that in Definition (2.5.1) if the condition is satisfied, then pe¢,°h,
makes the diagram

bovgohy

Spec AllAIlt™] —— X
! }
SpecK' [[fl —— Speck

commutative, the vertical arrows being the canonical morphisms.

The uniqueness of the automorphy group is discussed at the end of this sec-
tion and in §4 (Theorem (2.22) and Example (4.4)). For a quasi-automorphic ex-
tension in general the automorphy group is not uniquely determined.

Let us illustrate the definition by examples.

ExampLE (2.6.1). Let us consider the differential field extension L/K of Ex-
ample (2.1). We proved there

Diff-bir,L(S) = I'(S, 05"

for any C-scheme S. The group functor Diff-birgL is representable by the multi-
plicative group scheme G, . Let us take the functor Diff-birgL itself as the auto-
morphy group scheme G. In particular we have

Diff-bir,L(4) = A*

for any field extension A of K. Since K' is an extension of Cy. the field A is an
extension of Cy. If we take the model X = Spec Kly, y '], an element ¢ € A de-
fines an A®CK K-automorphism ¢, of a differential algebra A®CK Kly, y_l]
sending ¥ to cy and hence an A @;_K-automorphism ¢, of scheme X O, A with
derivation. Let us show that G, o, operates naturally on &, Let h:Spec
A[[A1[t1— X be an element of %,(A). The corresponding morphism K[y,
v '1— AL[f11[t "] of differential algebras is denoted by f Since @, is an auto-
morphism of X, over K &, A, ¢ °h,: Spec AL[A1[t1— X, and hence p° @, hy:
Spec A[[#]1[#] = X are defined. The morphism pe@c°h, : Spec A[[A1[t '] — X
is associated with a morphism k: K[y, y~'1— AL[A11[t™"] sending y to ¢f(y) and
extending the canonical morphism i : K— K' [[f]] € A[[#]1[#"]. Thus it suffices
to check that the morphism k factors through the generic point. Or equivalently k
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can be extended to the quotient field L = K(y) of Kly, y~'1. In a differential
algebra Q(f(L).A), f(L) and Cgqyqya = A are linearly disjoint over f(C,) =
£(O) = C(c K'[[A] € AL[A1(£']) by Lemma (1.1) so that Q(f(L).A) =
Q(f (L) ®CKA)A For a similar reason Q(f(K).A) =~ Q(f(K) &.A). Since 0 # ¢
€ A, there exists a QU(K) &, A)-automorphism &.: Q(f(L) &.A) — Q(f(L)
®.A) of the differential field sending f(y) to ¢f(y) and hence we have an
Q(f(K).A)-automorphism ¢, of the differential field Q(f(L).A) sending f(y) to
cf(y) by the above isomorphisms. Consequently ¢, ° f:L— Q(f(1)A) —
Q(f(L)A) < AL[AL ] is the desired extension of .

Let now A,:Spec A[[AI1[t™1— X (i =0, 1) be elements of %,,(A). The
morphisms %, ki, arise from morphisms f,: Kly, y 1= AllA1[+] (=0, 1) of
differential algebras factorizing through the morphism Kly, y—l] — L which gives
the generic point of X = SpecKly, y '1:h,=°f, for i=0,1. It follows
from the differential equation (2.1.1) that k,(y) = dk(}(ty) = k,(y) so that
dk) "k @) _ k@ 'k®) — b @k®) _ k@@ — k@ k@) _ o

di ko ()" k@)’
ko(y) "'k, (y) is a constant in A[[f]1[£"']: There exists a non-zero element ¢ € A*
such that k,(y) = ck,(y). This shows p° @, *“f, = “f, and F, . is a principal
homogeneous space of G,, ¢,. So L/ K is a quasi-automorphic extension.

(2.6.2) The second example is Galois extension of abstract field. Let L be a
(finite) Galois extension of an abstract field K. They are differential fields with
trivial derivation. Since L/K is finite, Spec L is the unique model of L/K. Since
Cy =K, (Sch/Cy) = (Sch/K) so that the functors Diff-bir,L, Bir L, Aut,L:
(Sch/K)’— (Grp) coincide. Here for a K-scheme X the following notation is em-
ployed: The functors Aut,X and Bir,X are respectively the functor of automor-
phisms of the K-scheme X and the functor of pseudo-automorphisms of the
scheme X

Aut, X (S) = Auty X X, S and BirgX (S) = Ps.auty X X, S

for any K-scheme S. The Galois group G of the extension L/K is a finite group
so that we can regard it as a finite group scheme over K. The finite group scheme
G operates on the scheme Spec L. So G is a representable subgroup functor of
Diff-bir,L. As is well-known (G, Spec L) is a principal homogeneous space,
when we consider G and Spec L as functors on the category (Sch/K)°. For any
field extension A of Cy = K, Diff-hom(L, A[[f11[¢t™*]) = Hom (L, A) so that
F.,x(A) = Homy(L, A) is a principal homogeneous space of G(A) which is no-
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thing but the finite group G. We have proved that every Galois extension of an ab-
stract field with Galois group G is quasi-automorphic with automorphy group G.
We can show the converse of Example (2.6.2).

THEOREM (2.7). Let L/ K be an abstract field extension. Then the following con-
ditions are equivalent.

(1) The extension L/ K is quasi-automorphic.

(2) There exists a finite group scheme G over K which operates on a model X of
L/K such that (G, X) is a principal hemogeneous space, X and G being regarded as
a functor on the category (Sch/K)° of K-schemes.

(3) There exists a finite group scheme G over K which operates on Spec L over K
such that (G, Spec L) is a principal hemogeneous space.

Proof. If the condition (2) is satisfied, then X is finite over K and hence L is
finite over K and X = Spec L so that the condition (3) is satisfied.

If the condition (3) holds, then Spec L is finite over K, hence Spec L is a
model of K and condition (2) is satisfied with X = Spec L. The argument of Ex-
ample (2.6.2) allows us to prove that the condition (3) implies the condition (1)
since L is finite over K if condition (3) is assumed.

Let us now assume the condition (1). We first show that L is finite over K.
Let us examine the conditions (2.5.1), (2.5.2) for an abstract case. First of all
Cy = K and the canonical morphism i:K— K'[[f]]is the identification of K
with the ring of constant series in K" [[A1]. For a field A € o4 (Fld/K), Diff-hom
(L, All4]]) = Hom(L, A) and the diagram (2.3) reduces to

L— A— Al[AFY
1 1 )
K— K— K[[A]

so that F,,x(A) = Homg(L, A). It follows from Proposition (1.17) that we can
find a model X of L/K such that the group scheme G of automorphy operates on
X over K. We need

LemMa (2.8).  The operation (G, X) is generically transitive, i.e. the morphism G
X X=X X, X, (g, )~ (gx, 1) is dominant.

Proof of Lemma. It is sufficient to show that the base changed operation (Gz,
Xz) is generically transitive for an algebraic closure K of K. The total quotient
ring QUL @4 K) is a direct product of fields M,: Q(L @, K) = II_, M,. Let X,
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be a model of M,/K. Then Xz = X ®, K is K-birationally equivalent to disjoint
union of the X,: There exists K-isomorphism between Zariski open sets of Xz
and II'_, X, Let 2 be a field extension of K and p, ¢: II}_, X, be generic points of
Il:'=1 X;, i.e. p and q are respectively a generic point of X; and X for some indices
1 <14,7<n We have possibly ¢ =7 . The morphism p is defined by a K
-morphism M, — £. Composing with the canonical morphisms we get a K-
morphism p*: L— QL ® , K) = M,— Q. Similarly ¢ gives us a K -morphism
q* L— QUK — M;— . Conversely the morphisms p* and q* determine
the points p and ¢. Since p* and q* are in #,,,(8), it follows from condition (1)
that there exists a point g € G(£) such that gp* = ¢  or gp = ¢. g.e.d.

It follows from Lemma (2.8) that we may assume that (G, X)is a
homogeneous space.

LemMA (2.9). We can find a model X of L/K such that (G, X) is a principal
homogeneous space.

Proof of Lemma. In fact in the proof of Lemma (2.8), the choice of g €
G(9) is unique.

Now we come back to the proof of the theorem. We take a model X such that
(G, X) is a principal homogeneous space. We can find a K-valued point of the
K-algebraic scheme X by the Hilbert Nullstellensatz. So there exist a finite exten-
sion N of K and a N-valued point ¢ : Spec N— X. This gives an L-valued point
G:Spec L— X since N € K is contained in an algebraic closure L of L. On the
other hand the inclusion j : L — L or the associated morphism p : Spec L— Spec
L— X lies in %, (L). Denoting the L-rational points of X; corresponding to §:
Spec L— X and p: Spec L— X by the same letter § and p, there exists the uni-
que g € G(L) such that gp = @ since (G, X) is a principal homogeneous space.
Thus ¢ € %,,,(L) by our assumtion of being automorphic so that §: Spec L— X
and consequently also q : Spec N — X factors through the generic point. Thus the
extension L/K is contained in the finite algebraic extension N so That L/ K is fi-
nite, X = Spec L and G is a finite group scheme.

ExampLE (2.10). Let K be an abstract field or a field with trivial derivation
such that #° + # + 1 is irreducible in the polynomial ring K[u], i.e. any primitive
cube root of 1 is not in K. Let @ be an element of K such that a polynomial #° — a
is irreducible in K[u]. Let L = K[ul /(u® — @) and @ the residue class of # so
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that L = K[#]. The field L is an extension of K of degree 3. Let G be the group
scheme of the cube root of 1 or let G be the kernel of the morphism G, x — G,, &,
v’ for v € G,, 4 As a scheme G = Spec K[z] (z° — 1) = Spec K[Z], Z being
the residue class of z and the multiplication G X G— G is given by K[z] —
K[z] @ Klz] sending Z to Z& z. The group scheme G operates on a scheme Spec
L over K by K-morphism K[#] — K[2z] &, K[u] sending # to Z & #. (G, Spec
L) is a principal homogeneous space and hence L/K is quasi-automorphic. But
L/ K is not Galois since any primitive cube root of 1 is not contained in K.

Remark (2.11). Abstract field extensions which are quasi-automorphic were
studied systematically in [G]. Disadvantages of such a Galois theory are that the
automorphy group is not uniquely determined and we do not have Galois corres-
pondence. A detailed discussion will be done in §4.

Let L/K be a quasi-automorphic extension with group G of automorphy. Let
X be a model with derivation of the extension L/K so that the algebraic group Gg
pseudo-operates on X : We have an X-pseudo-morphism (g, p,): GCK Xe X =
Gy Xg X -+ = X X, X sending (g, x) to (gx, 2) of schemes with derivation.
Here two schemes are regarded as X-schemes via the second projections.

Lemma (2.12). If L/K is quasi-automorphic, then (GK,X)h is pseudo-
transitive. Move precisely the pseudo-morphism (, p,) : G X X -+ = X X X is
dominant.

Proof. 1t is sufficient to show that (G, XI—;) is generically transitive for an
algebraic closure K of K. The total quotient ring Q(L ®y K) is a direct product of
differential fields M,: Q(L @, L) =1II,_, M, Let X, be a differential model of
M;/K. Then Xz = X @ K is differentialy K-birationally equivalent to the dis-
joint union II_; X, of the schemes X, : There exists a K-isomorphism of schemes
with derivation between dense Zariski open sets of Xz and II|_, X,. Let 2 be a
field extension of K' and P, q:Spec 2— 17, X: be generic points of II:;IX,-I'
i.e. the images of the morphisms p and ¢ are respectively the generic points of X;
and X for some indices 1 < ¢, j < n. We have possibly ¢ = j. The morphism p is
defined by K ~morphism M,»h — £2. Composing with the canonical morphisms we
get a K' -morphism p*:L" - QUL (K - M: — £ and consequently a
morphism p*[[A] L' [[A1— QIIA) < QLUIAILE] of differential algebras. Com-
posing now p [[#]] with the universal Taylor morphism ¢ : L— L' [[A] we get a
morphism $:L— Q[[A1[¢7'] so that § € F,,(2). Similarly for ¢q, we get a
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morphism ¢*: L' — Q of fields and a morphism §:L— QL[f11[#™"] of differential
fields such that § € %, ,,(2). So there exists g € G(2) such that gh = §. Since p
and § factor through the subring 2[[A] < QI[A)[+ '], g = G implies by a spe-
cialization t =0 gp = ¢q.

THEOREM (2.13). Let L/ K be a differential field extension satisfying the finite-
ness condition (F.C) of §1. Then the following conditions (1) and (2) are equivalent.

(1) The extension L/ K is quasi-automorphic with automorphy group G.

(2) The extension C,/ Cy is finite and we can find a model with derivation X of
L/K such that an algebraic Cy-group scheme G operates on X differentially, i.e. the
morphism g1 : G X o X = Gg Xx X— X, (g, ) = gx of the operation is a morphism
of K-schemes with derivation and such that (Gg, X ") is a principal homogeneous
space.

Remark. (2.13.11). Before we start proof, we notice that the latter condition
in (2) is equivalent to the morphism

(2.13.2) (ty py) 1 Gy Xg X— X X X

is an isomorphism of schemes with derivation (cf. §1).

Proof. 1f the condition (2) is satisfied, then the morphism (g, p,) : G X, X—
X Xg X is a X-isomorphism of schemes with derivation, where the both schemes
are considered as X-schemes via second projections. Let us prove that the group
scheme G naturally operates on the functor %, (cf. Definition (2.3)). Let A €
(Fld/K"), g € G(A) and let p: Spec AL[11[# "1 — X be a point of X giving an
element of #,,,(A). To simplify the notation, we denote the field Cx by C. We de-
note the image of g:Spec A— G by the same letter g. The point g induces a
C(g) ®; K-automorphism ¢,: C(g) &, X— C(g) ®; X of C(g) &, K-scheme
C(g) ® . X with derivation. Here C(g) denotes the residue field Og ,/m, We
have to show that p,°¢,°p: Spec A[[A1[t7'] — C(g) ®; X— C(g) @, X— X is
in #,,4(A). To this end it is sufficient to check that the image of p,°¢,°p is the
generic point of X. We notice here that since the field C is algebraically closed in
K, the extension K/C is regular so that C(g) &, K is a domain. If we regard
C(g) as a subfield of A[[11[# '] by the morphism g :Spec A— G and by the
natural inclusion A © A[[f11[¢ '], then C(g) ®; K = C(g) .p"K by Lemma (1.1).
Since the morphism ¢, is a C(g) ®; K-automorphism, if we can show that the im-
age of p is the generic point of an irreducible component of the generic fibre of the

C(g) ®. K-scheme C(g) @, X, then the image ¢, p: Spec A[[A1[t'1— C(g)
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& X is the generic point of an irreducible component of the generic fibre of the
C(g) ®. K-scheme C(g) ®. X and hence p,°@°p is the generic point of X. So the
question is reduced to proving that the image of p is the generic point of an irre-
ducible component of the generic fibre of the C(g) &, K-scheme Clg] &, X. The
point g :Spec A— G defines a point g = g i : Spec A[[A1[t"'1— G, where i
denotes the natural inclusion map i: A € A[[A1[#']. So we get a point g’ : Spec
Al[A1[t™"] — G and hence a point p" = (g’, p) : Spec AL[AT[t™] — G X . X. The
morphism p’ factors through C(g) &, Spec Oy ,— G X X, where p is the gener-
ic point of X that is the image of the morphism p : Spec AL[f11[¢™'] — X so that
Oy, = L. Namely there exists a morphism p”:Spec Al - Clp) Q.
SpecOy , such that the diagram

Spec A[[A1[tT] — GQ. X
! /
C(g) &, Spec Ox ,

is commutative, where the morphism C(g) ®.X— G &, K is the canonical
morphism. Since the irreducible components of the generic fibre of the scheme
C(g) ®; X over C(g) & K are of dimension tr.d.[L; K], we have to show that
tr.d [ (Clg) ®p0y,) ; Clo) R, Kl = tr.d.IL; K). Tn fact p"*(Clg) ®, Oy ,)
= g™ (C(g) p*(@X 2 C g5 (C@)p™ (L) < ALIAILL . 1t follows from Lemma
(L1) that g’ (). p* (L) = g™ (C(@) Rup™(L) = C(g) ®y L, where C’ =
Cle Np*W). So tr.d.[p"(C(e) ®. 0Oy, ; Clg) ®: Kl =tr.d. [C(g) ® L;
C(g) ®:K]. Since KC' = QK &, C") by Lemma (1.1), Q(C(g) . KC) =
Q(C(g) @ K). Hence tr.d. (C(g) Q. L:C(g) Q; Kl = tr.d.[C(g) ®. L; C(g)
Qo KC'1 =tr.d. [(C(g) @z KC') Qi L; Clg) - KC'] = tr.d. [L; KC’]. Since
the extension field C’ is an intermediate field of the finite field extension
C,/C = Cy, the extension KC’' /K’ is finite. Consequently tr.d. [L; KC'] = tr.d.
[L;K] so that tr.d.[p""(C(g) @0y, ; C(g) ®:K] =tr.d.[L;K]. This is
what we had to prove. So the group scheme G operates naturally on the functor
F k-

Let now A be a field extension of K' and p, g : Spec AL[11[#'1— X be ele-
ments of #,,,(A) so that p, ¢ are morphisms of schemes with derivation making
the diagram (2.4) commutative. So (9, ¢) : Spec A[[f11[t71— X X, X defines a
morphism of schemes with derivation. Thus by the isomorphism (2.13.2), we get a
morphism 7 : SpecA[[t]] (71— G X, . X of schemes with derivation. Since Spec
AlIAIETT S 6 %, XLX is nothmg but the morphlsm g, 7 is determined by a
composite morph1sm s:Spec A[[AF15 G X & X—> G of schemes with deriva-
tion and we have sq¢ = p by the isomorphism (2.13.2). Since G is a scheme with
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trivial derivation, the morphism s factors through the subring A C ALIAE™ of
constants of A[[f11[¢'] so that there exists a point % : Spec A— G such that 7 =
u- ¢, where ¢ :Spec A[[f11[¢ '] — Spec A is the canonical morphism. In other
words #q = p and the u € G(A) with up = ¢ is unique by the isomorphism
(2.13.2). Thus %,,,(A) is a principal homogeneous space of G(A). So the condi-
tion (2) implies the condition (1).

Let us now assume that the L is a quasi-automorphic extension of K. Then it
follows from Propositions (1.15) and (2.2) that we can find a model X of L' /K’
such that G operates on X. Since L has the derivation 0 and the operation of G is
compatible with the derivation, we have a derivation §: 0y — K(X) = L, where
K(X) is the constant sheaf of rational functions on the scheme X such that the op-
eration of G is compatible with 0. So there exists a non-empty G-invariant open
set U of X such that 0 : 0y — K(X) induces a derivation &, — Oy Let us denote
U by X again. The algebraic scheme X has the following properties: The algebraic
scheme X is a scheme with derivation and is a model of L/ K. The algebraic group
scheme Gy operates on X such that the morphism ¢: G X, X = G X X— X is a
K-morphism of schemes with derivation. So the morphism (Id, &) : G X, X— G
Xc K is a G @, K-automorphism of the scheme G X, X with derivation. By Lem-
ma (2.12) we may assume that (G, X) is a homogeneous space. In the argument
of the proof of Lemma (2.12), the element g¢ € G(2) such that gh = ¢ is unique so
that (G,; , X) is a principal homogeneous space. So the second condition of (2) is
satisfied. It remains to show that the extension C,/ Cy is finite. Let us state it in a
form of Lemma.

LEmMA (2.14). If L/K is a quasi-automorphic extension, then the field C, of

constants of L is a finite extension of Cy.

Proof. Let X be the differential model of L/K such that the automorphy
group G operates on X so that (G, X) ' is a principal homogeneous space. It fol-
lows from Lemma (1.2) that the extension C; is finitely generated over Cg. Let ¥
be a model of C,/Cy. Since C; and K are linearly disjoint over Cg, Yy is a model
of KC,/K. So there exists a dominant K-rational map f:X * -+ — Y, of schemes
with derivation. Let U be a Zariski open set of X over which the rational map f is
regular so that f(U) C Y, contains a dense Zariski open set W. Since the field Cg
of constants of K is algebraically closed in K, K is a regular extension of Cg so

that K®CKCK is a domain for an algebraic closure Cy of Cgx and we can consider
the quotient field Q(K ®, Cy).
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SuBLEMMA (2.15).  There exist a Cy-valued point q : Spec Cx— Y such that the
induced Q(K ®CKCK)—valued point g, : Spec Q(K ®cch) — Spec K ®CKC‘K—> Y,
factors through W or the image g (Spec Q(K ®CKC‘ W) € W.

Proof of Sublemma. The complement Z = Y, — Wis a closed set of Y. Since
X and Y are algebraic schemes, we can find a subring R of K of finite type over
Cy such that Z € Yy is defined over R. There exist a closed subscheme Z, C Y,
of X, such that Z, ®,K C Yy coincides with the closed subscheme Z of Y. To
simplify the notation we set Cy = C, Cx = C and R = R @, C. The schemes Yz,
Spec R, and Y5 are C-algebraic and hence Z,z is a closed C-algebraic subscheme
of Yz so that Yz — Z is a C-algebraic scheme. By the Hilbert Nullstellensatz we
can find a C-valued point ¢’ : Spec C — Y5 — Z,z. Thus we get a C-valued point
of Y by composing ¢ with Yz — Z;z € Y3— Y : We denote this point by ¢:
Spec C— Y. Then g satisfies our requirement. In fact since K/C is a regular ex-
tension, R is a domain. g : Spec C— Y defines a section gz : Spec R— Y. Since
the image ¢’(Spec C) is in Y5 — Zgz, ie. ¢ (Spec ) is not in Zz and ¢'(Spec
C) C ¢gz(Spec R), the image gz(Spec R) is not contained in Z,; so that the image
of the generic point of Spec R is not in Z,z Namely the Q(R)-valued point do®:
Spec Q(R) — Y3 induced by g factors through Yz — Z;z. Hence the QK &
) -valued point go .2 : SPec QUK ®; C) = Y o« g5 factors through (Y5 —
Zy@ QKR = (Y~ 2) QK R.0). q.ed.

The quotient field QK &, 0" is a field algebraic over K' and hence we
can find an algebraic closure E'> QK Q. 0" of K' . We denote by ¢z the
Spec K’ “valued point of Y,; arising from ¢ : Spec (K ®, C) " Y,: : The
morphism (]I—(:SpecK|I — Spec (K ®, C) ' Y,: is a composite of g and the
morphism defined by the inclusion K’ D Q(K ®.: ) ' By applying the Hilbert
Nullstellensatz to the fibre of f : U— Y over gz(Spec K"), we can find a K
_valued point §: Spec K' — U" < X" such that f*§ = gz. §: Spec K— X' de-
fines an L' -valued point Specljh — Spec E'— X' which we denote by ¢,
where L' is an algebraic closure of L' suchthat L' D K"

The morphism ¢ : Spec L' — X has the following property.

(2.16.1) The image of the L —valued point ¢ : Spec[ih — X is in U so that
we can define feq : Spec L'— Y,:.

(2.16.2) The morphism fe°q: SpecI—,h - Y,; arises from the Spec Cz-valued
point ¢ : Spec Cz— Y. More precisely the following diagram is commutative.
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SpecL' © vy —v,
N
Spec Cy

where the morphism Y,; — Y is the projection and Specljl| — Spec Cy is the
morphism induced by the inclusion CK o Kh c I_,h . It is convenient to denote the
composite map of the horizontal map by {: Spec L' — Y On the other hand the
inclusion morphism L'—TL' together with the generic point Spec L'—>Xof X
gives a morphism p: SpecI:h — X' and a morphism L— L' [[A]—
L' [[A10t7" of differential fields so that L' [[£1[# *]-valued point p: Spec
L' A1 — X in ?L/K(I:h) (cf. Remark (2.3.1)). By Proposition (1.4), q : Spec
L' — X" defines a morphism 7 : Specl_,h [[£]1 — X of schemes with derivation
and hence a morphism Specl_,h [[A1[# "1 — X of schemes with derivation com-
posing with inclusion L'[[A1— L' IA1[£ 1. We denote this morphism again by
g:Spec L' [[A1[¢t™1 — X. Since (Gg+ X") is a principal homogeneous space,
there exists g € G(L') such that gp = g. Thus gp = Gz so that gz is in
F,«(L"). This implies that the image of §: Spec L" [[A1[+™"1 — X is the gener-
ic point of X. Consequently the image of the morphism gz. : Spec L' (11— X of
schemes with derivation contains the generic point of X or the morphism gz is
dominant. Composing with f : U— Y, we get a morphism 7 : Spec LI[#]] — Yy of
schemes with derivation. Since Y is a scheme with trivial derivation, the morphism
r]:SpecI—,h [[f11 = Y of schemes with derivation factors through the morphism
SpecI:h [[A1— L' induced the inclusion L' < L' [[#] so that there exists a
morphism ¢ : Spec L' — Y of schemes making the diagram

SpecL' [[A] = Y
! /,
Spec L'
commutative. Necessarily by definition of ¢, ¢ coincides with { introduced above.
Since 1 : Spec L' 41— Yis dominant, ¢ = 1 is dominant. It follows from the
definition that 1" comes from gy :Spec K' — Y and hence from q:SpecC—Y
so that ¢ is dominant. Thus Yis finite over Cg and C; is finite over Cyg.

LemMA (2.17). Let L/K be a quasi-automorphic extension with automorphy
group G and M the algebraic closure of K in L so that L D M O K. Then the exten-
sion M/ K is quasi-automorphic with automorphy group G/ G°. In particular if G/ G°
is a finite group, then the extension M/ K is Galois with Galois group G/ G° and
hence the quotient group G/ G’ is uniquely determined by the extension L/ K.
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Proof. We can find a model X of L/K such that (Gg., X")is a principal
. " b .
homogeneous space. In particular X is smooth over K so that the local ring
Oy , is a regular local K' -algebra for every point £ € X. Since the regular local
ring O, is UF.D, Oy , is integrally closed and hence Oy , D M for every
point x € X'. Thus we have the natural K-morphism f : X— Spec M =Y of
K-schemes with derivation. We have a diagram

Gx.X > X
(2.18) s | L
GX,Y Y

We show that in (2.18) feu factors through Id X f. In fact if we go over an algeb-
raic closure K' , then X®K-Kq is a disjoint union of absolutely irreducible com-
ponents of Xz = X®KRH , (Y;()h is a disjoint union of points isomorphic to
Spec K" of which the number is equal to that of the irreducible components of (X
Q K) " and FRId: (Xp) R ) ' is the .mapping of collapsing each compo-
nent to a point. Thus once the base change K/K is done, (G X X),—: EALS Y,—: fac-
tors through (Id X )z : (G X X)z — (G X )z . Then it factors already over K
if we take care of the following trivial fact.

SUBLEMMA (2.19). Let E/F be a field extension, f : C— A an F-algebra morph-
ism and B a F-subalgebra of A. If the image of f @Id: C ®p E— A &, E is con-
tained in the subalgebra B Qg E, then the image f(C) is contained in B.

Thus we have a morphism G X_.Y— Y of the operation of G on Y. This
morphism is a morphism of K-schemes with derivation, where G X . Y is regarded
as a K-scheme by a composite of the projection p,: G X, ¥Y— Y and the structure
morphism Y— Spec K. Hence Gg. operates on Y' and the morphism f is
Gy -equivariant. Since Y is finite over K, the functor Auty. Y' of the group of
automorphisms of Y' /K" is representable by a finite group scheme. We have a
morphism ¢ : Ggr — Auty Y. The kernel N of ¢ is an algebraic K’ -group
scheme. Since G+ = Xz and fgz» : Xz« — Yz is a morphism of collapsing each
component of Xz. to a point, Nz = (Gg)" which coincides with (G")z by Lemma
(1.12). The morphism G X .Y— Y induces the morphism 7 : (G/G°) X, Y— Yof
operation of G/ G’ such that

(2.20) (& p): (G/G°) X Y=Y X, ¥

is a K-morphism of schemes with derivation. The K-morphism (g, p,) is an iso-
morphism since its base change over K is an isomorphism. So by Theorem (2.13)
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M/K is quasi-automorphic with automorphy group G/G’. If G/G° is a finite
group, M /K is Galois such that the Galois group of the extension M /K is isomor-
phic to G/ G’ by the argument of the proof of Theorem (2.7).

We can deduce from Theorem (2.13) the following remarkable result.

THEOREM (2.21). Let L/ K be a quasi-automorphic extension. If C, = Cyg, then
the functor Diff-bir,L: (Sch/Cp)°— (Grp) is representable by the automorphy
group G. In particular under the assumption C, = Cy, the automorphy group is unique-
ly determined (cf. Definition (2.23)).

Proof. In fact, let S be a C= C, = Cg-scheme and f : X XS - -— X X,
S an element of Diff-bir,L(S) so that f is a K &,S-pseudo-automorphism of
X XS compatible with derivation. We can define an K &.S-pseudo-morphism
(f, Id) : X5 - - = X X Xy = (X Xg X)g of schemes with derivation, where the
fiber product X5 X X; is taken over K &, S. Since we have an X-isomorphism
(2.13.1) of schemes with derivation, we get an Xg-pseudo-morphism Xg X Xy =
X X X)g = (G XXy = Gg X4 X, of schemes with derivation and hence a
K X S-pseudo-morphism Xg -+ *— G5 and hence an S-pseudo-morphism Xg
+ +— Gg of schemes with derivation. By Proposition (1.11) the S-pseudo-
morphism X * - *— G, of schemes with derivation factors through the projection
X;— Spec S, we get a morphism ¢ : S— G. In other words, by the isomorphism
(2.13.2) ¢ldx, = f or the S-pseudo-morphism f : Xs— X of schemes with de-
rivation is an S-morphism Xg— X induced by S— G form the operation G X
X—GX . XofG:

SX X—S XX GX X—GX X
N is a pull-back of N
S G

by the morphism S— G.

Remark (2.21.1). We show is §3 that the conditions of Theorem (2.21) are
satisfied if and only if L/K is strongly normal in the sense of Kolchin.

Lemma (2.22). If L/K is a quasi-automorphic extension with automorphy group
G, then K coincides with the field of G-invariants of L. To be wmore precise, if a €
L\ K, then there exists a C = Cy-scheme S and g € G(S) such that g defines a
K Q. S-pseudo-automorphism ¢, : Xs— X5 with gbg*a # a. Here we regard a as a
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rational function on X and we mean by gbg*a the meromorphic function a°p,°¢, on X,
b1: Xg = X X S— X being the projection (cf. §4).

Proof. 1In fact let us take S = Spec (L @, L) ' which is a K" -scheme. Let 1y
L' = (L®L" be the K'-morphism identifying L' with L' ®1 and 7,: L'
— (L®, L) ' the K' -morphism identifying L' with 1 ®L". We get two morph-
isms 7 ,:L— (L® D" A L®L" AN, ;=12 of differential
algebras. So we get two points ¢,:Spec (L ®g L) ' [[11[t71— X which are
morphisms of schemes with derivation. It follows from (2.13.2) there exists ¢ €
G((L ®; L) ") such that ¢g, = g,. Now by definition if we have &,(b) = 7,(b) for
an element b € L, then b &@ 1 = 4,(b) = 1,() = 1 & b and hence b € K. Hence
i,(@) # 1,(a). Now ¢ satisfies our requirement: 7,(¢(a)) = 5,(a@) # i,(a).

Let L/K be a quasi-automorphic extension with automorphy group G. We
take the model X with derivation of L/K as in Theorem (2.13). Since the constant
field extension C;/Cy is finite, as in the Proof of Lemma (2.17), for any
Cg-scheme S the group G(S) operates on the scheme C, ®CK S/ S of constants by
Proposition (1.11). So we have a morphism ¢ : G— Aut.; C; of group functors on
(Sch/Cy)°. Since the extension C,/Cy is finite, the group functor Aut, C, is
representable by a finite group scheme over C, and hence N = Ker ¢ is a closed
subgroup scheme of G such that G/ N is a finite group scheme over Cy.

Let us fix a general notation. Let f :Y—Z be a morphism of reduced
schemes and w a rational function on Z. When we can compose f and w to get a
rational function wef on Y, the composite function w- f will be denoted byf*(w).
Let R be a ring of rational functions on Z such that f*(w) is defined for every
w € R. Then we have a morphism f"< : R — (The ring of rational functions on Y).
If f is a morphism of schemes with derivation and if R is closed under the deriva-
tion, then f* is a morphism of differential algebras.

Let L/ K be a quasi-automorphic extension with automorphy group G. We
can find a model X as in Theorem (2.13). Let A € of (FId/K') and 01, 0, €
F.x(A). So there exists # € G(A) such that the diagram

¢

Spec AL[AI] —5 AQ. X

(2.22.1) \ | o
P24 A ®(;KX

is commutative, where ¢,,:SpecA[[A1[t']1—A &¢, X is a morphism of
schemes induced from ¢, : Spec A[[f11[¢™'] — X so that the diagram
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Spec AL[AIl™] =% A®. X
\ 1 2?2
X

is commutative for ¢ = 1,2 (cf. Definition (2.5)). In diagram (2.22.1) the morphism
¢, is a induced morphism by the A-valued point % : Spec A— G. Namely the dia-
gram

AQ, X — GXx, X

% | l
A®.X — Gxc X

is commutative, where the right vertical arrow sends (g, x) to (g, gr). Since we
are in characteristic 0, the schemes in (2.22.1) are reduced. So the notion of a
pseudo-function coincides with that of a rational function (cf. E.G.A. Chap. IV, Re-
marque (20.2.7)). A field 1 & L is considered as a field of rational functions on
A®,, X. Since ¢, : Spec Al[#]] [#7'1 = X factors through the generic point Spec
L— X of X. So by composition with ¢;, we get a morphism

(2.22.2) er 1 L—AAIE

of differential fields. Here we consider 1 ® L as a field of rational functions on
A, X and A[[#] [£7'] is the field of rational functions on Spec A[[A1[¢ ] :
The ri { iti
e ring o composition The field of

rational functions with ¢, . )
rational functions on

A X ———
o ®UCK / Spec A[[t]] [1 /ﬂ
o = Allt]11/¢
1®L ¢ (1101 /4
By composition with ¢,, ¢y (1 @ L) is a field of rational functions on A R, X. 1t
follows from diagram (2.22.1) that we can compose every element in gb:,k(l &®
L) with ¢, to get a field of rational functions on Spec A[[A1[#7] since the
morphism ¢, factors through the generic point of X: In fact for 1 ® a, a € L, we
define @y (¢F (1 ® @) as ¢y (1 ® @). Namely we have a diagram:
The ri f iti
€ ring o composition The field of

rational functions with @4 . )
rational functions on

on A®UCKX Spec A[[#11[1/4]
SABD) ok = AllA1M1/4
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So we get a morphism QI1 ® L, ¢; (1 ® L)] — A[[f11[t""] of differential rings
induced by composition with (pTA :

The ring of composition .
) ) The field of
rational functions with @, . .
rational functions on
on AQ. X ce—

U Spec A[[411[1 /4]
QIRL, ¢JARL) / = All:]1[1/4
» Pn

DErFINITION (2.23). A quasi-automorphic extension L/K is said to be auto-
morphic if for every A € ¢4(FId/K") and every o, ¢, € F,,x(A), the morphism
0l QII®L, ¢F(1 ®L)1— ALIAI+ '] induced by @y, is injective.

PrROPOSITION (2.24). A Galois extension L of an abstract field K is automorphic.

Proof. Since the automorphic group G is a finite group, every A-valued point
of G arises from a K-valued point of G for any A € A (Fld/K). So in particular
h € G(A) comes from an &' € G(K). Hence QI (1 QL), 1 QL] = Kl¢;1 ®
D,1QL=K[¢,QQ®L),1®L =K[1R®L =1Q®L and the map in De-

finition (2.23) is injective.
We can slightly generalize Proposition (2.24).

PROPOSITION (2.25). Let L be a quasi-automorphic extension of an abstract field
K with automorphy group G.

(i) Let F be an abstract field extension. If L @y F is a field, then L &g F/F is
quasi-automorphic with automorphy group Gp.

(ii) Let F be an abstract field extension of K satisfying the condition (i). The fol-
lowing conditions are equivalent: (a) The extension L Qg F/F is Galois with Galois
group isomorphic to G ; (b) The group scheme G is a finite group.

(iii) If there exists a field extension F /K satisfying these equivalent conditions in
(ii), then the extension L/ K is automorphic.

Proof. (i) follows from Theorem (2.7). The equivalence of the conditions in (ii)
is well-known. Assume that there exists a field extension F/K satisfying the
equivalent conditions of (ii). Let A € o4(FId/K) and ¢, ¢, € F,(A) as in De-
finition (2.23). Since the extenpion L/ K is finite by Theorem (2.7), X = Spec L is
the unique model of L/K. We can find a field A’/K that contains two fields
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K-isomorphic to A and F respectively. We have natural inclusions %,,,(A) C
Fx(A) CF, o, pw(A) so that there correspond to @, ¢, € F,,x(A) elements
0L 0, € FL o pp(A). In fact @7, ¢, € F, o pr(A) are defined as follows. Since
the field A’ contains F, the composite morphism Spec A’[[f1[¢ "1 — Spec
A[[A1t™1 3Spec L = X factors through the first projection p,:Spec L&, F =
X ®, F— X so that we have a morphism ¢: Spec A'[[f11[t"']1 — X, of schemes
with derivation making the following diagram commutative.

Spec A[[A1NHT"] — X,
l 1 =12).

Py

Spec AlIAI:] —

We can regard the A-valued point # € G(A) with ¢, = he, as an A’-valued
point #* € G(A). The point 4’ induces an A’-automorphism ¢, : A &z X— A’
®x X, that is, an A’-automorphism of A" @, X, such that ¢}, = ¢, ° @}. Since L
&y F/F is Galois,

FIlRILR, P, ¢ 1 Q@ LM 2 ara

U Il
K1®L, ¢*(1 QL] S ATATE.

In [G] they introduced the notion of an almost classically Galois extension and
proved the Galois correspondence for a such extension. Namely a quasi-
automorphic extension L of an abstract field K with automorphy group G is
almost classically Galois if there exists a Galois extension F/K such that L @y
F/F is a Galois extension and such that G &y F is its Galois group. So an almost
classically Galois extension is a particular case of the extension in Proposition
(2.25.11i).

COROLLARY (2.26). An almost classically Galois extension in the sense of (G| is
automorphic.

In [G] they proved that the Galois correspondece exists for an almost classi-
cally Galois extension, which is one of their main results (5.2 Theorem in [G]). We
show in 84 Theorem (4.10) that the Galois correspondence exists for an automor-
phic extension. So the result of [G] follows from Corollary (2.26) and Theorem
(4.10).

PROPOSITION (2.27). A quasi-automorphic extension L/ K with C, = Cy is auto-
morphic.
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Proof. let A € o (FId/K") and X be a model on which the automorphy
group G operates. Let ¢,, ¢, € G(A) and # € G(A) as in Definition (2.23). We
have a morphism Spec A[[A11[t™1 = A ®,,_X. Since Cy = C,, L/ Cy is a regu-
lar extension so that A @ L is an integral domain. We have (p;:A(X)CKL—*
A[[AIt™Y. 1t is sufficient to show that this map is injective. The intersection
A ®L) NAin Al T is Cpuen = 051 ®CY = ¢l 1 ® Cp) = C
(c K" < AL[A1[t™"]) since A is the field of constants of A[[A11[#""]. Hence by
Lemma (1.1) ¢}5(1 ® L) and A are linearly disjoint over ¢}3(1 ® Cy). So the
mapping in question induced by ¢,, is injective. This is what we had to show.

§3. Relation with the Kolchin theory

The differential Galois theory of Kolchin depends on the language of algebraic
geometry of Weil. Namely let £ be a differential universal domain so that £ is a
differential field and all the differential fields which he considers are differential
subfields of £. The differential universal domain £ is fixed once for all and he
studies small differential subfields of £2. We mean by a small differential subfield
of 2 a differential subfield K of £ such that for every differentially finitely gener-
ated field extension L of K, there exists a differential K-embedding f : L— 2 : f
is a morphism of differential fields such that f(a) = a for every a € K.

Let L/K be a differential field extension which satisfies the finiteness condi-
tion (CF) of §1. He says that a K-morphism f :L— £ of differential fields is
strong if (i) f(a) = a for every constant @ € L and if (ii) the composite field
f(L). L which is a differential field is generated over L by constants. He says that
the extension L/K is strongly normal if every K-morphism L— £ is strong.

Remark (3.1). It follows from Corollary (1.2) that the following conditions
are equivalent.

(i) The composite field f (L)L is generated over L by constants.

(ii) f(L) is contained in the composite field f(L) C,,.

ExampLE (3.2). Let us analyze Example (2.1): K= C(x), L = C(zr, exp 1)
with derivation d/dx. Any morphism f : L — 2 of differential field is strong. In
fact, since ¥y = exp x is a solution of the differential equation (2.1.1), the image
f(y) = z satisfies the differential equation

(3.2.1) Z =z.

Then it follows from (2.1.1) and (3.2.1) by the argument of Example (2.1) that
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yz~' is a constant so that f(L)L = K(y, z2) = K(y, yz™") is generated over L =
K(y) by the constant yz~" Here we notice that we may replace C by any abstract
field, for example Q.

As is widely recognized, it is more convenient to avoid the universal domain.
We adopt the following

DermNiTION (3.3). Let L/K be a differential field extension satisfying the
finiteness condition (FC) of §1.

(1) Let f, g:L— M be two K-morphisms of differential field extensions of
K. We say that the morphism f is strong over g if (i) f(a) = g(a) for every con-
stant @ of L and if (ii) the composite field f(L). g(L) is generated over g(L) by
constants.

(2) We say that the extension L/K is strongly normal if for every differen-
tial field extension M of K and for arbitrary two K-morphisms f, g :L— M of
differential fields, f is strong over g.

Remark (3.4). As we noticed above, the condition (3.3.2) is satisfied if and
only if the image f(L) is contained in the composite field g(L) C,,.

Kolchin uses the case where M is the universal domain &£ and g:L— Q2 is
the identity map. Evidently our Definition (3.2) of strongly normal extension coin-
cides with Kolchin’s. In fact it is sufficient to notice the following: For every dif-
ferential field extension N, /K satisfying the finiteness condition (CF) of §1, every
differential intermediate field N; © N, D K and for any morphism ¢ : N,— £ of
differential fields, the morphism ¢ can be extended to a morphism @:N,— £ of
differential fields.

Let L/K be a differential field extension satisfying the finiteness condition
(CF) of §1. As is explained in §1, the total quotient ring Q(L &, L), which is a
differential ring, is a direct product of the differential fields M, : Q(L &, L) =
m_, M,

LEMMA (3.5). Let L/ K be a differential field extension satisfying the finiteness
condition (CF) of §1 and a € L\ K. Then there exist K-morphisms f, g : L— M of
K-differential fields such that f(a) #* g(a).

Proof. We use the notation of §1 below Corollary (1.12.1). Since a ® 1 # 1
®ain LR, L < QL QL) =TI, M, there exists a differential field M, such
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that for the i-th projection f;: Q(L &, L) = M, f,(a®1) # /(1 R a).

LEMMA (3.6). If an extension L/ K is strongly normal, then the field of constants
C, of L coincides with the field of constants Cg of K.

Proof. 1f @ € L\K, then by Lemma (3.5) there exist K-morphisms f, g:
L— M of K-differential fields such that f(a) # g(a). Since f is strong over g, a
is not constant by Definition (3.3. i). Namely any constant in L is contained in K
so that C, € Cy. The opposite inclusion being trivial, the Lemma is proved.

DerFiNITION (3.7). Let L/K be a differential field extension satisfying the
finiteness condition (CF) of §1 and f, h,:L— M, g, hy: L— M, four K-
morphisms of K-differential fields. We say that the morphism (g, h,) is a spe-
cialization of (f, h,) or simply g is a specialization of f if there exists a differen-
tial algebra morphism 7 : Qlk,(L), f(L)]1 — Qlh,(L), g(L)] making the diagram
below commutative:

L®, LY Qlh W), FI)] C M,
(3.7.1) AN L

Qlr, (D), g(D)] < M,

where p, ¢ are the natural morphisms induced from f, g respectively: pla @ b) =
f@h,(b), qla®@b) = gla)h,(e) fora € Land b € L.

Remark (3.7.2). 1f we regard the fields M, and M, as over fields of L respec-
tively 4, and A, and L @, L as an L-algebra by a = 1 & @, then the morphisms
p, q are L-morphisms and the commutativity of the diagram (3.7.1) requires that
the morphism # is an L-morphism.

Lemma (3.8). If (f, hy) is a specialization of (g, h,) and f is strong over h,,
then g is strong over h,.

Proof. We need the following well-known fact (see for example [K1], Chap. II,
§1, Theorem 1).

Sublemma (3.8.1). The following two conditions for elements Yy, Yy, . . ., Y, 0f @
differential field K are equivalent.

(1) Yy, Yoy. .., Y, are linearly independent over the field Cy of constants of K ;

(2) The Wronskian W(y,, ¥s, . . ., 4,) F 0 (Let us recall that the Wronskian
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Wy, 4. .., 4, is the determinant of a matrix (yj(’—l))lgi,jgn.)

If we regard L ®, L as an L-algebra by identifying L with 1 @ L € L @, L
and M, M, respectively by h,, h,, then the morphisms in diagram (3.7.1) are
L-morphisms (cf. Remark (3.7.2)). It follows from Remark (3.4) that we have to
show that g(L) C h,(L)C,,,. We show g(a) € h,(L)C,, for a € L. Let {e;} ¢, be
a basis of the C,-vector space L. Since f is strong over k, we have f(L) C
k(L) Cy, so that we can write

(3.8.2) fl@ = 2 ahi(e) /2 bihy(e) with a;, b; € Cyy
for all i € I Here almost all the a, and b, are equal to zero. We get from (3.8.2)

Zbf@h(e) — Zah(e) =0.

In particular a finite number of the f(a)h,(e;) and h,(e;) are linearly dependent
over Cy . Say f(@h(e;), h,(e;) 1 <1 < n are linearly dependent over C,, . By
Sublemma (3.8.1), W(f(@)h,(e,), f(@h,(e,),..., f(@he), hi(e;), he),. ..,
h,(e;)) = 0. Since W is a differential polynomial of the f(@)h,(e,) and h,(e;)
1 <1<, with coefficients in Q, we get 0 = W(r(f(@h,(e,)), r(f(@h,(e)),...,
r(f(@h(e)), r(hy(e,)), r(h(e)),. .., v(h(e)) = W(gl@h,(e,), gla)h,le,),
o 8@hy(e,), hy(e,), hyle,),. .., h(e)). So gla)h,(e;), gl@h,e,),. .., ga
hy(e.), hy(e,), hy(e,),. .., hy(e,) are linearly dependent over C,, by Sublemma
(3.8.1): We can find a non-trivial linear relation

(3.8.3) 2 B.g(@) h,(e) — Z ahy(e) = 0,

where a;, §; are in C,, and equal to O except for a finite number of indices. We
have either (i) every B; is equal to O or (ii) one of the B; is not equal to 0. We
show that the first case never occurs. If the first case happened, it would follow
from (3.8.3)

(3.8.4) > a;h,(e) = 0.

Since ¢;, i € I are linearly independent over C;, the h,(e;), i € I are linearly in-
dependent over h,(C,) = C,_y,. On the other hand C,,, and h,(L) are linearly dis-
joint over h,(C) = C,_y, by Lemma (1.1) so that the &,(e,), i € I are linearly in-
dependent over CMz' Hence (3.8.4) would imply that a; = 0 for every ¢ € I. Con-
sequently a; = 8; = 0 for every ¢ € I. This is a contradiction. So the latter case
always occurs: At least one of the B, is not equal to 0. As we have seen above, the
hy(e;) are linearly independent over C,, so that 2i; Big(@)h,(e;) # 0 and g(a) =
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2 ahy(e) /22, Bhy(e). Thus gla) € h,(L)C,,.

LEMMA (3.9). For a differential field extension L/ K satisfying the finiteness con-
dition (C.F) of 81, the following conditions (1) and (2) are equivalent.

(1) The extension L/ K is strongly normal (cf. Definition (3.3)).

(2) The field of constants C; of L coincides with the field Cy of K. We using the
notation of §1 below Corollary (1.12.1), the composite fields L(,D
ated over L(,Z) by constants for 1 < i < n. Namely the morphisms f il is strong over f iz

forl < i< m.

@ .
, L in M; arve gener-

Proof. If the extension L/K is strongly normal, then C, = Cyx by Lemma
(3.6). Since we have the two K-morphisms fil, f,Z:L—> M, of differential fields
such that £ (L) = LY, fA(L) = L? for 1 < i < n, the condition (1) implies the
condition (2) by definition.

Let us now assume that the condition (2) is satisfied. Let f, g : L— M be two
K-morphisms of differential fields so that we get an L-morphism 4:L @, L— M
of differential L-algebras such that k(e @ b) = f(a)g(b) for a, b € L. Here we
regard L &, L, M as L-algebras respectively by L= 1QLC L@, L, g:L—
M. Then h factors through one of the M, Namely let us regard M, as an
L-algebra by f*: L— M, and set A, = QLf2(L), £} ()] = £,(L @, L) so that A,
is a differential L-subalgebra of M,. Then there exists a differential L-morphism
@:A,— M such that ¢ f;|, o, = h, where f;: L& L C QUL & L) =1I,_, M,
— M, is the projection as in §1. In fact let £ be an abstract K' -subalgebra of L
of finite type over K so that an algebra £ @y L' is of finite type over L' Then
he = h| % Ry L' ¢2® L' - Misan L' -morphism of algebras so that the
image of the morphism “h,, : Spec M - Spec (€ Q. L") lies on an irreducible
component, say the i-th irreducible component X; of the algebraic Lh -scheme
Spec (£ Q. L"). Hence the image point “hy,(Spec M) is a specialization of the
generic point of L' -integral scheme X;. Namely if we set Ay, = QlfrWw),
NPT = f,(£ @, L), then there exists an L' -morphism Qp:Ayp— M" of algeb-
ras making the diagram

hy
¢ QL—— A, C M,

hz)\ | oe

M
commutative, where we set fi, =f;| £ @xL so that we have f,,(a ®b) =
f,.m(a)fi(Z)(b) for a € ¢, b € L. Since the subalgebra A, and the morphisms f;¢,
hy, ¢4 are uniquely determined by the subalgebra ¥, we can glue them: If £ be
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another abstract K" -subalgebra of L' of finite type over K' , then f;, and fi4,
hy and hy/, ¢y and @y coincide when restricted on the subsets where the both
morphisms are defined. In this way the morphisms f;, and A, recover respectively
AR @y and h and the morphism ¢, defines an abstract algebra morphism ¢:

QLFALY, £ W] = A,— Qlg(L), f(L)] making the diagram

LR LS QUfFW), A=A, M,
h\ l 0
Qlg(D), (D)

commutative so that we have
(3.9.1) o (fHa) £ b)) = f@g) fora, b € L.

Here we denote f|; @1 by p. Since the canonical morphisms £.P W) = fW),
2 W — g (f @ ~ f(@), £,% (@) — g(a) for a € L) are differential morphisms,
the morphism ¢ is a differential morphism by (3.9.1). In other words (f, g) is a
specialization of (f %, f®) so that f is strong over g by Lemma (3.8). Hence the
condition (1) is satisfied.

THEOREM (3.10). For a differential field extension L/ K satisfying the finiteness
condition (FC) of 81 the following conditions (1) and (2) are equivalent.

(1) The extension L/ K is quasi-automorphic and the field C, of constants of L
coincides with the field Cy of constants of K (so that L/ K is automorphic by Proposi-
tion (2.27)).

(2) The extension L/ K is strongly normal (cf. Definition (3.2)).

Proof. We use the notation of §1 below Corollary (1.12.1). We assume that
the extension L/ K is quasi-automorphic. We have two K-morphisms f,-1 and fiZ of
differential fields: f;, f2:L— M, for 1 < i < . In particular we have morph-
isms fi”,f,»2I| :L'— M" of fields and hence by Remark (2.3.1) we get two
morphisms £, f7:L— M, [[A] € M, [[A1[t "] of differential algebras which
are in %, (M,). Therefore there exists g, € G(M;") such that g,f; = f7. This
shows in particular that we denoting by N, a composite field of f,l(L) and
FHD) in MILAN™), then N, is generated over f. (L) by constants. Since
L) = FIL) and i(LY?) = fX(L) by definition, we can conclude that
QLY. LY) is generated over L” by constants, where i:M,— M,h (7] <
M, [[A11¢ "] is the universal Taylor morphism and canonical inclusion. It follows
from Lemma (3.9) that the extension L/K is strongly normal.

Let us now assume that the extension is strongly normal. We show that the
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total quotient ring Q(L @, L) = M., M, of L @, L is generated over 1 @ L by
constants. More precisely the ring Q(L ®, L) is a quotient ring of a subring of
Q(L &, L) generated over 1 & L by constants. To this end it is sufficient to
prove that the subring L @1 of Q(L &y L) is contained in the total quotient ring
S of a ring generated by 1 ® L and the constants of Q(L & L), where we consid-
er the ring S as a subring of Q(L ®; L). The idempotents e; giving the decom-
position Q(L &, L) = II_, M, are constants by Corollary (1.11.1) so that

(3.10.1) SO>AQ®Le, =LY for 1<i<n.

Since in M; a composite field L(,-UL(,-Z) is generated over L(,-Z) by constants, it follows

from (3.10.1) SO L(,I)L(,Z) D Li—“ = (L®1e, Hence SO X7 Le,D2LR1,
This is what we wanted to show. It follows from Corollary (1.11.1) that the ring
of constants Cqq ¢, is the direct product of the fields C,, which are finitely
generated over Cx = C,. Let G’ be a model of Cq g,/ C. Namely G’ is a re-
duced and noetherian Cy-scheme over C whose ring C(G’) of rational functions
(or the total quotient ring of the ring CLG’] of regular functions if we choose an
affine model G’) is isomorphic to Cq o, - We notice that C(G") is also isomor-
phic to I, O, ,, where the x are minimal points of G’. It follows from Lemma (1.1)
that in Q(L &y L), the field 1 @ L and Cgq, o, 1 are linearly disjoint over C. So
Q(L ® L) is differentially L-isomorphic to the total quotient ring Q(Cqy o, 1)
®¢ L) : We have a differential isomorphism 6 : Q(L @, L) = Q(Cq o, 1 Oc L)
such that (1 ® L) =1 & L. Composing 6 with the inclusion L— Q(L @, L),
a—~a@1 for a €L we get a differential morphism L— Q(L QL) —
Q(Cqu ey @cL). In the language of schemes, we have a K-birational maps
compatible with derivations G' X X+ =X X X and ¢ : G X, X+ —X
such that the first map G’ X, X - +— X X, X is nothing but (¢, p,). Hence we
have a G’-rational map (Id, ) : G' X X - — G" X . X.

SuBLEmMA (3.10.2). Let S be a reduced noetherian C-scheme and n:S X X

- +— X be a K-pseudo-morphism compatible with devivation such that the rational

map (m, p,) 1S XX+ = X X, X is dominant. Then there exists a C-pseudo-
morphism h : S - — G’ such that the diagram

S XCZ . .?—)X
(h,ﬂz)i .../’u’
G X X

18 commutative.
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Proof of Sublemma. Since we treat reduced noetherian schemes over fields of
characteristic 0, their products are reduced noetherian schemes so that the notion
of pseudo-morphisms coincide with that of rational maps (E.G.A. Chap. 1. §8 and
Chap. IV, §20). We have a K-rational map (¢, p,) o, p) : S X X -+ = X X
X +— G XX since (n, p,) is dominant. So by Proposition (1.11) we have a
C-rational map 42 :S - *— G’ such that the diagram

SX X o XXX > G XX
nol |

h
S LN G
is commutative, where the upper horizontal maps are (%, p,) and {¢’, p,)”". The
assertion of Sublemma follows from the diagram. g.e.d.

In Q(L Qg L), similarly the field L& 1 and Cgqy o, 1) are linearly disjoint over
C. We have a differential isomorphism 6" : Q(L &4 L) = Q(Cq o, 1) ®c L) such
that /(L ®1) =1 ® L. Composing 6’ with the inclusion L— Q(L &4 L), a1
Qa for a € L, we get a differential morphism L— Q(L & L) = Q(Cqu oy n e
L). This means in the language of schemes that we have a K-birational map G’
XcX > X X, X and a K-rational map ¢”: G" X, X - - -— X compatible with
derivation so that we have a G’-rational map (Id, ¢") : G" X X -+ — G X X
It follows from the definition (Id, #")°(Id, ") = (Id, ") > (Id, ) = ldgx x In
particular the rational map (Id, ¢) : G" XX -+ +— G’ X X is birational. (So by
Sublemma we have a rational map (— 1) : G’ - - *— G’ such that the diagram

G XX — X
: /
T

G Xo X

is commutative. Let us write #'(g, £) = gx when p: G X X - -— X is defined at
(g, ©) € G X X Multiplying (¢, p,) : G' X X -+ -— X X X with G’, we get a
birational map

(3.10.3) G X (G X X) = G X (X Xz X),

(g1, &, ©  (g,, g&x, ). We also have a birational map induced by (¢, p) X
XeX o G X X

(3104) G X (XXX = (G X X) Xz X = (X X X)X X

(g, x, y) — (gx, x, y). Composing birational maps (3.10.3), (3.10,4) with the
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projection p;: X X g X X, X— X X x X, we get a dominant rational map G" X
G X X —XxX, (g, &, x) (g(g,x), x). Therefore we get a rational
map m : G’ X G’ -+ -— G’ by Sublemma (3.10.2). We show that (w/, p,) : G" X,
G’ +++— G’ X, G’ is dominant. We have a birational map rational map

(3.10.5) (i, pp) 7 X Idge (s D) : X X X X X o> X X X X X
= (X XgX) X X = (G X X) X X.
On the other hand, we have a birational map
(3.106) G X XX X=G X (X XzX) =G X (G X X)
=G X, G X X.
Composing birational maps (3.10.3), (3.10.4), (3.10.5), (3.10.6), we get a birational
map
G XeG X X=G X G X X, (g, 8, 1) (m'(g8), &, ).

Hence (w/, p,) : G’ X, G' -+ +— G’ X . G’ is dominant. Since the rational map ¢
is defined by composite of birational automorphisms, the following diagram is com-
mutative:

Idxm
GIXG,XG/:G,X(G,XG,) e Glel
Il

(G/ X G/) X G/ l m
l mxId
G’ X G’ . m_> G’

where the products are taken over C. In other words m is a rational group law
over G. Thus we can find a group scheme G defined over C such that G is bira-
tionally equivalent to G’ by Proposition (1.14). The K-rational map p: G X, X =
Gg Xg X - - -— X induced of g is compatible with derivations. We have seen
above that the morphism (p,, m) : G X, X--— G X X is birational and hence
dominant. It follows from the definition that the diagram

Idxm

GX,GX X=GX . (GXX) -— GX.X
Il

(G X0 X X im
iux[d
GX.X Lo X
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is commutative so that the group scheme Gy rationally operates on X. It follows
from Proposition (1.16) and the argument of the proof of Theorem (2.13) that we
can find a model Z with derivation of L/K such that Gy operates on Z and the
morphism g : Gg X ¢ Z— Z is a morphism of schemes with derivation. It follows
from the construction a morphism (g, p,) : G X Z =G Xy Z— Z X Z is bira-
tional so that we may assume (G,:, Zh) is a principal homogeneous space. It fol-
lows from Theorem (2.13) that the extension L/K is quasi-automorphic with
automorphy group G. L/K is quasi-automorphic with automorphy group G.

CoroLLARY (3.11). Let L/ K be a quasi-automorphic extension with C, = Cx (so
that L/ K is automorphic) and M a differential intermediate field. Then the extension
L/ M is automorphic. The automorphy group is Diff-bir, L and is a closed subgroup
of the automorphy group of L/ K.

Proof. By Theorem (3.10) it is sufficient to show that the extension L/M is
strongly normal. Let f, g:L— M’ be two M-morphisms of differential fields. So
in particular f, g are K-morphisms. Since L/K is strongly normal by Theorem
(3.10), f is strong over g. Thus the extension L/M is strongly normal. The last
assertion follows from Theorem (2.21).

Remark (3.12). For general quasi-automorphic extension L/ K, the extension
L/K is not always quasi-automorphic for a differential intermediate field M of
L/K. See Remark (4.2) and Example (4.9).

§4. Galois correspondence

Let L/K be a quasi-automorphic extension with automorphy group G so that
G is a Cg-algebraic group scheme. Let X be a model with derivation of L/ K such
that G operates on X and (g, p,) : G X X— X XX is an isomorphism of
schemes with derivation (cf. Theorem (2.13)). Let H be a Cg-algebraic subgroup
scheme. We say that an element @ € L remains invariant under the operation of H
or a is H-invariant if the following condition is satisfied: For any K' _scheme S
and for any g € H(S) so that g induces an S @, K-automorphism ¢,:S X, X
— § X, X, the meromorphic function a-p, coincides with a°p,°¢,. The meromor-
phic function @ is H-invariant if and only if @°p,° ¢ty = a°p, where py: H X cKX
— X is the morphism of operation of H on X. For a Cg-algebraic subgroup
scheme H, we denote by L the differential intermediate field of L/ K consisting of
elements of L invariant under H. Let now M be an intermediate differential field
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of L/K. We denote by 9(M) : (Sch/Cy) — (Grp) the subgroup functor of G
leaving every element of M fixed.

LEMMA (4.1). Let L/K be a quasi-automorphic extension with automorphy group
G. Then the group functor Y(M) is representable by a closed Cy-algebraic subgroup
scheme of G.

Proof. We denote Cy by C. Let Y be a model with derivation of M /K so that
we have a K-rational map ¢ : X - — Y induced by the inclusion map M C L. We
have to show that for a smooth C-scheme S and an S &, K-pseudo-morphism

¢p:S XX+ - =S X, X compatible with derivation, there exists a closed
C-subscheme S, of S such that for any C-morphism f : S”— S of schemes, the di-
agram

S x X XX
l @op, l @op,
Y = Y
is commutative if and only if the morphism f :S”— S factors through the sub-
scheme S,, where the fibre product is taken over C. Since the question is local, we
may assume that S and X are affine: X = Spec A with a C-algebra A. Let g be a

point of S. Then ¢, : Xc(p) @ .k ** " X o, factors through ¢@<p, if and only if
we have

(4.1.1) (ue@p,) o py = u>°p,

for every u € M, where we regard # as a meromorphic function on Y. The rela-
tions (4.1.1) are reduced to relations with coefficients in K among the coordinates
of the point g of the affine scheme S so that ¢, : X¢(p) .5 ** " X o, & factors
through ¢-°p, if and only if the coordinates of the point g of the affine scheme S
satisfies a certain number of polynomial relations

(4.1.2) F,(9) =0, a€l

with coefficients in K, which is an equality in C(g) &, K. Since C(g) and K are
linearly disjoint over C in C(G) @, K, there exist a certain number of polynomial
relations

(4.1.3) H,(g) =0, BE]

with coefficients in Cy such that g satisfies (4.1.2) if and only if g satisfies
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(4.1.3).

Remark (4.2). Let L/K be a quasi-automorphic extension with automorphy
group G and M a differential intermediate field. In general the algebraic group
%(M) is small so that L/M is not quasi-automorphic with respect to 4(M). Let
us illustrate the situation by an example. We work in the field QILz]1[z™"] of
Laurent series with derivation d/dx. Let K=Q and y = expx. We set L =
Q(w, y), where w is a complex number satisfying @+ w+1=0so0that &’ =
1. We have C, = Q(w) # Q = Cy. Since the extension C,/Cyg is Galois with
group Z/2Z and since Q(w)ly, y~'1 = Q(w) ®eQly, v'1, Spec Q(w) [y, ¥y ']
is a principal homogeneous space of GmQ X Z/2Z. (See also Example (3.2).) To
be precise (g, 0), (g, 1) € G,, X Z/2Z operates on Q(w) [y, v '] over Q by
g 0w =0, g0 =g (=g®y, (g, D =, g Dy =gy
So by Theorem (2.13), the extension L/K is quasi-automorphic. Let now M =
Q(wy®) so that (wy®) = 3wy’ and M is a differential intermediate field of L/K.
Let (g,0) € G, q X Z/2Z. Then (g, 0) is in 9(M) if and only if (g, 0) fixes
a)y3 : wy3 = g3 ®a)y3 or equivalently g3 = 1. Let us look for a condition for an
element (g, 1) to be in (M). Since (g, 1) (wy®) = g° ® 0’y® so that (g, 1) is in
G(M) if and only if £ R 'y’ =wy’=1Qwy’ So (g, 1) is never in (M),
Hence we have 9(M) = {(g, 0) € G, q X Z/2Z| g’ = 1}. Since L/ M is algeb-
raic of degree 6 and 4(M) is a finite group scheme of degree 3, 4(M) can not be
an automorphy group of L/M. We notice here that the extension L/M is
quasi-automorphic with automorphy group (M) X Z/2Z. See example (4.4).

TueoreM (4.3) (Kolchin). Let L/ K be a strongly normal extension or according to
Theorem (3.10) equivalently a quasi-automorphic extension with C, = Cy. Then there
exists an ovder reversing 1:1 correspondence between the elements of the following two
sets.

(i) The set of differential intermediate fields between L and K.

(i) The set the Cy-algebraic subgroup schemes of the automorphy group G (which
s a Cg-algebraic group scheme).

To a differential intermediate field M, we associate the closed Cy-algebraic sub-
group scheme G(M). A Cy-algebraic subgroup scheme H of G is mapped to the dif-
ferential intermediate field Lf of H-imvariants.

Proof. Since L/K is strongly normal, it follows from Corollary (3.11) that

for a differential intermediate field M, L/M is quasi-automorphic with automor-
phy group Diff-bir,L and $(M) = Diff-bir, L. Hence L°™ = M by Lemma
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(2.22). We have to show that for any closed Cg-algebraic subgroup scheme H,
9(L") = H. The inclusion 9(L") D H is evident from the definition. Let us denote
(L") by H, which is a Cg-algebraic subgroup scheme of G by Lemma (4.1) so
that we have

(4.3.1) =1

as the above argument shows. Geometrically let X be a model with derivation of
L/K such that G operates on X as in Theorem (2.13). If we denote by
(Hg\ X)" and (Hy; \ X)’, the varieties of orbits of Hy and H,; respectively, then
the natural morphism (Hy\ X)’— (H, \ X)’ is birational. Let us consider a base
change X; of X by the field extension L/ K. Since we have the generic point Spec
L— X, X, is isomorphic to G, = G &, L. It follows from (4.3.1) the canonical
morphism H; \ G, — H,; \ G, is birational so that we have H, = H,, and conse-
quently H = H,.

We introduced the notion of quasi-automorphic extension and showed that
classical Galois extension and strongly normal extension are quasi-automorphic.
Further for these two types of extensions the automorphy group is uniquely deter-
mined and we have the Galois correspondence (Theorems (2.21) and (4.3)). In gen-
bral a quasi-automorphic extension is not so nice as these two types of extensions.
In fact we showed already in Remark (4.2) that in general we do not have the
Galois correspondence since in that example the subgroup functor 4(M) of G is
too small. Besides, the automorphy group is not uniquely determined as the fol-
lowing example shows. Also Example (4.9) offers us such an example, where L/K
is an abstract field extension.

ExampLE (4.4). We work in the field Q[[z]]1[x] of Laurent series with
derivation d/dzx. Let us set K=Q,y =expx, L=Q(/— 1, y). Then as in
Remark (4.2), Spec Q(/— 1)[y, y ™' is a principal homogeneous space with a
group G,, g X Z/2Z. So L/K is quasi-automorphic with automorphy group G,, g
X Z/2Z by Theorem (2.13). Another principal homogeneous space structure is
defined as follows. We consider an algebraic group G generated by the following
G g-automorphisms of L &, G :

Y Pay=aQy Y —y—1y
- , a€G,q and
Vy—1 "’\/‘_1 y—1 > —y—1.

Namely as a Q-scheme G is a disjoint union of two copies of A* = Aa —(0):
G = G, 1l G, with G, G, = A* So we have on A* the usual product. A point
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a € G, represents a G g-automorphism

[y may=aQy
/=T =T

and a point @ € G, represents a Gg-automorphism

[y Pay=a@y—1y
y=1 = —y—1

of L&, G. The group law on G is described as follows: If a;, a, € A* =G,
then the product of @, and a, is the usual product @,a, € A* = G,; If a € A¥
=G, b€E AF = G,, then the product of @ and b is ab € A¥= Gy; If by, b, €
A¥ = G, then the product of b, and b, is — bb, € A* = G,. So we have an exact
sequence

(4.4.1) 1—- G, q— G—Z/2Z— 1.

The extension (4.4.1) does not split over Q. However if we go to Q(Y— 1), then
the extension splits so that (G, SpecQG/— 1)[y, ¥y '1/Q is a principal
homogeneous space. Hence L/K is quasi-automorphic with automorphy group G
by Theorem (2.13).

We considering Remark (4.2), what we can expect best in general is the fol-
lowing

PROPOSITION (4.5). Let L/ K be a quasi-automorphic extension. Then the mapping
{C-algebraic subgroups schemes of G} — {differential intermediate fields of L/ K},
L L% s mjective.

Proof. Let H,, H, be two algebraic subgroups of G such that L' =" we
have to show H; = H, Considering the subgroup scheme of G generated by H,
and H, we may assume that H, is an algebraic subgroup of H,. Proposition now
follows from the latter part of the proof of Theorem (4.3).

Proposition (4.5) does not seem interesting nor useful since the conclusion of
the proposition holds simply if L/ K is an abstract field extension such that there
exists a model X of L/K which is a principal homogeneous space for an algebraic
group G over K. When L/ K is an abstract field extension of char. p > 0, Proposi-
tion (4.5) is proved in [Ch] (Theorem 7.6 of [Ch]) in order to study inseparable
field extension. See also [G]. For an automorphic extension we have a map from in-
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termediate fields to subgroups (cf. Theorem (4.10)).

Let L/K be an abstract field extension which is quasi-automorphic with
automorphy group G. In particular the extension L/K is finite: We set n =
[L:K]. Let M/K be a Galois extension containing L and ¥ its Galois group. We
can take M = the Galois closure of L/K as they did in [G]. However it is not
necessary to assume that M is the Galois closure of L/K. Since M @M is a
direct product of fields isomorphic to M, L &, M is also a direct product of
fields isomorphic to M : L &, M = II;_, M; with M, = M. Geometrically the base
change Spec L &, M of Spec L over K is a disjoint union of #-copies of Spec M.
So G @ M is a subgroup scheme of Aut, (Spec L ®x M) which is isomorphic to
the symmetric group S, of degree n. Hence (G &y L, Spec L &x M) is M-
isomorphic to an operation of a finite group H on the set S = Spec L @, M =
Spec IT._, M, of n-points such that (H, S) is a principal homogeneous space. On
the other hand the Galois group ¢ of M /K operates on (G,, Spec L &, M) as
K-automorphisms covering the operation of the Galois group 9 on M giving a des-
cent data on (H, SpecII/_, M,). In particular 9 operates on the set S such that ¢
normalizes the subgrup H of S,.

Remark (4.6). Let us consider in general an M-scheme SpecII._, M, M, =
M, where we regard Hf=1M,- as an M-algebra by the diagonal map. To give a
Galois descent on the M-scheme I"[:»=l M, is equivalent to defining a morphism p:
g — S, S, being the symmetric group of degree /. In fact a morphism p:9— S,
defines an operation of the Galois group 9 on the algebra H5=1 M, by sending (z;,
Ly .., x) EM_ M, to (0(Tppa), 0 @pe@),- - - 0(&umw)) for 0 € 9. The op-
eration covers that of ¥ on M. Namely the structure morphism Spec Hiﬂ M,—
Spec M is -equivalent. This fact can be applied both to the scheme Spec Hﬁ=1 M,
and the group scheme H.

According to [G] we adopt the following
DerFINITION (4.7). Let H be a finite group operating effectively on a set S of #
letters so that H is a subgroup of the symmetric group S,. We say that H is regu-

lar if (H, S) is a principal homogeneous space.

The following theorem is due to Greither and Pareigis ([G] 2.1 Theorem).
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THEOREM (4.8). Keeping the motation above, we have a 1:1-correspondence be-
tween the elements of the following sets:

(1) The set of equivalence classes of finite group schemes G operating on Spec L
over K such that L/K is quasi-automorphic with automorphy group G (Here we say
that two operations (G,, Spec L) and (G,, Spec L) are equivalent if there exists a
morphism ¢ : G, — G, of K-group schemes such that (¢, 1d) : (G,, Spec L) — (G,,
Spec L) is an isomorphism of group scheme operations.);

(2) The set of equivalence classes of finite groups H operating effectively on the
set S of n-letters (so that H can be regarded as a subgroup of the symmetric group S,
of degree n) such that H is regular and normalized by (the image in S, of) the Galois
Group G (We say that two finite groups operating on the set S are equivalent if their
images n the symmetric group S, coincide, the operation of the Galois group G on the
set S being fixed.).

Proof. It would be enough to understand how we define the correspondence.
From data in (1) we define (G &, M, Spec L @, M) which is M-isomorphic to
the operation (H, S) of a finite group H on the set S, as we have seen above.
Conversely given a data in (b) or let (H, S) = (H, Spec @y M) be a principal
homogeneous space (over M). The operation of the Galois group ¢ defines a des-
cent data on (H, Spec L &, M) by Remark (4.6). So (H®, (Spec L R m® =
(Hg, Spec L) is a principal homogeneous space (over K) by the Galois descent.
Here H@ denotes the descent of the M-scheme H by the descent data. Namely let
A be an M-Hopf algebra such that 4 operates on A and H = Spec Ag, where A®
is the ring of §-invariants of A. It is easy to check that A% isa K-Hopf algebra so
that H' is a finite group scheme and (Hg, Spec L) is a principal homogeneous
space.

Therem (4.8) yields us examples of quasi-automorphic extensions of abstract
fields such that the automorphy group is not uniquely determined.

Exavrie (4.9) ([G], 2.3). We take K=Q,L=Q®{2) and M= Q{2
¥/ — 1). So the Galois group ¥ is isomorphic to the dihedral group: Letting Spec L
&, M = {1,2,3,4}, we can identify ¢ with a subgroup <o, ©, 0 = (1234), ¢ =
(13). A subgroup H = {0? of the symmetric group S, is a regular subgroup and
normalized by the Galois group %. On the other hand <02, oty is also a regular
subgroup and normalized by 4. Since H =~ Z/47Z, {o°, oty ~ Z/2Z + Z./2Z,
these two data in (ii) of Theorem (4.8) define non-isomorphic automorphy groups

for Q(V2) /Q.
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Proposition (4.5) gives an injective map from the set of algebraic subgroups
of G to the set of differential intermediate fields of L/K. If an extension is auto-
morphic, we have the inverse of the above map as the following theorem shows.

THEOREM (4.10). Let L/K be an automorphic extension. Then there exists an
order reversing 1:1 correspondence between the elements of the following two sets.

(i) The set of differential fields between L and K.

(i) The set of Cx-algebraic subgroup schemes of the automorphy group G (which
is a Cg-algebraic group scheme).

To a differential intermediate field M we associale the closed Cg-algebraic sub-
group scheme 9(M). A Cyx-algebraic subgroup scheme H of G is mapped to the dif-
ferential intermediate field L7 of H-1invariants.

Proof. The argument of the proof of Theorem (4.3) allows us to prove that
4" = H for any closed Cy-subgroup scheme of G. So it is sufficient to show
L’ = M for every differential intermediate field M. The inclusion ' >y
being trivial, we have to check the other inclusion L*™ < M We shall show that
if y€ L\ M, then y & L°® : 1f y € L\ M, then there exist A € o (FId/K")
and & € 9(M) (A) such that ¢, 1 ® ) # 1 ®y. We need a

SuLemvA (4.11). If y € L\ M, then there exist an A € of (Fld/M") and
M- homomorphisms A,, A, : L' — A such that Ay #F A,

The Sublemma follows from the proof of Lemma (3.5).

The morphisms A, 4,: L' — A define differential morphisms I, I,: L—
AL[A1[¢7"] by Proposition (1.4) so that [, i, € F,,,(A)  F,,.(A). Let X be a
model of the differential field extension L/K on which the automorphy group G
operates. Since L/ K is quasi-automorphic, we can find 2 € G(4) such that [, =
hl,. Let @, ¢,:Spec A[[f11{¢ '1— Spec L— X be the morphisms of schemes
with derivation corresponding to /;, I, respectively (cf. §2). We denote the morph-
isms of the base change Spec AL[A1[¢7'1— A ®., X of @), ¢, by @14, @y, S0 that
we have commutative diagrams

@

Spec AL[AIlET] — A®, X

N\ L2’
X
Let ¢,: A Q@ X— A&, X be the morphism induced by the operation of the

(4.12) i=1,2.
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A-valued point A. So we have @,, = ¢, ° ¢14. Since we have A,(y) # A,(y), we
have 1,(y) # L,(y). Since ¢} and ¢, coincides with respectively I, [, on L, ¢@i4(1
Qy—¢,1®9) =¢3(10Y — 1@y =1QLH ~ 1L #0
and 1 @y — gl);,k(l & y) # 0. It remains to show that 2z € (M) or g[):(l Xz =

1 &z for every 2 € M. Let now z € M, then

(4.13) oF(2) = @) (2)

since A;, A, are M-morphisms. It follows from (4.12) and (4.13), (0;2(1 Rz =
@5 (1 ® 2) and hence
(4.14) 0;1®z—¢;1®2) =0.

Since L/K is automorphic, it follows from (4.14) 1 @ z — (,b;k(l ® 2z) = 0. This is
what we had to show.

We have seen in Examples (4.4) and (4.9) that for a quasi-automorphic exten-
sion, the automorphy group is not uniquely determined and we do not have the
Galois correspondence. As for an automorphic extension, we have the Galois cor-
respondence (Theorem (4.10)) but as we see below, the automorphy group is not
uniquely determined. Example (4.9) yields such an example.

ExampLe (4.15). Let L = Q(/2), K = Q as in Example (4.9). We have seen
there that the extension L/K is quasi-automorphic for mutually non-isomorphic
automorphic group schemes. We show that L/ K is almost classically Galois and
hence automorphic by Corollary (2.26) with respect to these group schemes.
To this let us use a different interpretation. The Galois closure of L over K is
Q\/2, v— 1). We have a Q(/— 1)-automorphism o of Q(¥/2, v— 1) sending v2
to V2 .y — 1 so that the Galois group of Q(¥/2, v— 1) /Q(/= 1) is the cyclic
group <o) of order 4. On the other hand we have a Q(2)-automorphism 7 of
QW2 ,V—1) sending y— 1 to —+— 1. The Galois group of QW2 ,vV— 1)/
Q(2) is the cyclic group <) of order 2. We have 70 = ¢°7 and the Galois group
of Q(W2, y— 1) /Q is the dehedral group <o, 7>. In the diagram

Q(Z, V=D
Q(W) ‘ | Galois with group <o?
QW=D

. Galois with group {z)

Q

subfields Q(/2) and Q(/— 1) are linearly disjoint over Q so that Q(2 ,
V= 1) is isomorphic to Q(/2) ®q Q(— 1). The Galois group <z of Q(Y— 1)/
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Q normalizes the Galois group <o> of Q(¥2, v— 1) /Q(/— 1). So by Galois des-
cent the operation of the finite group <o) on Q(/2, v— 1) /Q(/— 1) descends to
an action of a finite group scheme which is a Q-form of the cyclic group <o>, on
Q({‘/f) /Q. This operation is nothing but the quasi-automorphic structure induced
by the regular subgroup H = <o in Example (4.9) so that this quasi-automorphic
structure is almost classically Galois.

Now we consider the subgroup <o”, 07> of the Galois group <o, v of Q{2
/= 1) /Q. The corresponding subfield Q(¥2, v— 1) ® = Q(/=2). In the dia-

gram
QW2,v=1D)
Q({‘/Z) g | Galois with group <¢°, o)
I QW=2)

" Galois with group {7

Q

subfields Q(2) and Q(/— 2) are linearly disjoint over Q. Since the Galois
group <t of Q(Y— 2) /Q normalizes the subgroup <o’, 6z>. The operation of
the Galois group <o’, 67> on Q(V/2, y— 1) /Q(/— 2) descends to a finite group
scheme action on Q({l/f) /Q by Galois descent. This operation is the second
quasi-automorphic structure on Q(W) /Q. So this structure is also almost classi-
cally Galois. We have thus seen that Q({l/g) /Q has two mutually non-equivalent
automorphic structures.
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