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Introduction

This paper will be the first part of our works on differential Galois theory

which we plan to write. Our goal is to establish a Galois Theory of ordinary dif-

ferential equations. The theory is infinite dimensional by nature and has a long

history. The pioneer of this field is S. Lie who tried to apply the idea of Abel and

Galois to differential equations. Picard [P] realized Galois Theory of linear ordin-

ary differential equations, which is called nowadays Picard-Vessiot Theory.

Picard-Vessiot Theory is finite dimensional and the Galois group is a linear algeb-

raic group. The first attempt of Galois theory of a general ordinary differential

equations which is infinite dimensional, is done by the thesis of Drach [D]. He re-

placed an ordinary differential equation by a linear partial differential equation

satisfied by the first integrals and looked for a Galois Theory of linear partial dif-

ferential equations. It is widely admitted that the work of Drach is full of imcom-

plete definitions and gaps in proofs. In fact in a few months after Drach had got

his degree, Vessiot was aware of the defects of Drach's thesis. Vessiot took the

matter serious and devoted all his life to make the Drach theory complete. Vessiot

got the grand prix of the academy of Paris in Mathematics in 1903 by a series of

articles. However his theory is not written in a clear language in the modern sense
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2 HIROSHI UMEMURA

of the word so that it is difficult for us to understand what he wrote. So a general

Galois Theory for ordinary differential equations ( = an infinite dimensional dif-

ferential Galois Theory) is not yet established at least in our taste.

Kolchin replaced a system of differential equations by a differential field ex-

tension. He introduced the notion of strongly normal extension of differential field

and made finite dimensional differential Galois Theory complete and thus he gener-

alized Picard-Vessiot Theory (cf. [K]). In the preface of [Kl], he writes: Indeed,

since as algebraic equation can be considered as a differential equation in which

derivatives do not occur, it is possible to consider algebraic geometry as a special

case of differential algebra. So the notion of strongly normal extension should

generalize that of Galois extension. However we have unpleasant phenomena as

follows:

(i) An extension Q ( / ~ 1 ) / Q is Galois but not strongly normal;

(ii) A differential field extension QCr, exp x)/Q(x, exp 3x) with derivation

d/dx is strongly normal but not Galois.

If there does not exist a natural definition unifying strongly normal extension

and Galois extension, the existence of these examples contradicts the spirit of his

words above. In this paper we do not touch general Galois Theory of ordinary dif-

ferential equations but make Galois theory of differential equations satisfying the

finiteness condition as transparent as possible. This is an inevitable task before

we proceed to general Galois Theory. Whereas the Kolchin theory is formulated in

the language of algebraic geometry of Weil working in a universal domain, theory

of schemes seems more natural. In Weil's language it is not easy to treat algebraic

varieties whose irreducible components are not absolutely irreducible over a field.

This is the reason why Kolchin was obliged to adopt an awkward definition of

algebraic group (cf. Chap. V, [Kl]). We try to reduce the theory to a few princi-

ples. Namely Lemma (1.1) and a criterion in terms of Wronskian for functions to

be linearly independent over the field of constants are basic and except for these

two principles which belong to differential algebra, all the results are deduced by

theory of schemes. In this attempt it becomes clear in what categories we have to

work and what functors we have to consider. This process will contribute to clar-

ify the problems in the general theory.

We introduce the notion of quasi-automorphic extension which unifies the

both notions of strongly normal extension and Galois extension (Definition (2.5)).

A differential field extension L/K is strongly normal if and only if it is

quasi-automorphic and the fields of constants of L and K coincide (Theorem

(3.10)). So our notion explains well what strongly normal extension means. We
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prove that a differential field extension L/K is quasi-automorphic if and only if

(i) the constant field extension CL/CK is finite and (ii) if there exist a model X

with derivation of L/K and an algebraic group scheme G over the field of con-

stants Cκ such that X is a principal homogeneous space of G (Theorem (2.13)). In

particular an abstract field extension L/K of characteristic 0 is quasi-

automorphic if and only if the extension is finite and Spec L is a principal

homogeneous space of a finite group scheme over K (Theorem (2.7)). The subtle

point is to find a natural and correct definition of quasi-automorphic extension

which excludes the function fields of arbitrary principal homogeneous spaces. We

introduce an automorphic extension as a quasi-automorphic extension L/K such

that the morphism φ*A :Q[1 ® L, 0*(1 ® L)] —•AtttlKΓ1] is injective for every

abstract field extension A of the abstract field structure K of the differential

field if (Definition (2.23)). We show that a classical Galois extension and a strong-

ly normal extension are automorphic (Propositions (2.25) and (2.27)). There are

automorphic extensions other than these two types. We prove that an almost clas-

sically Galois extension introduced by Greither and Pareigis [G] is automorphic

(Corollary (2.26)).

Unfortunately in general for a quasi-automorphic extension L/K, the auto-

morphy group is not uniquely determined (Examples (4.4), (4.9) and (4.15)) and we

have not Galois correspondence (Remark (4.2)). However we have an injective map

{C^-algebraic subgroup schemes} —* {differential intermediate fields of L/K}

(Proposition (4.5)). This result does not seem very interesting because it holds for

the function field K(V)/K of any principal homogeneous space V over an abstract

field K. For an automorphic extension we have the Galois correspondence. Namely

the above injective map is in fact bijective if L/K is automorphic (Theorem

(4.10)). This result implies in particular that we have the Galois correspondence

for an almost classically Galois extension which is one of the main results of [G].

Even for an automorphic extension the automorphic group is not uniquely deter-

mined (Example (4.15).

We always mean in this paper, by a Galois extension a finite Galois exten-

sion. Throughout the paper we assume that the characteristic of the fields is equal

to 0. However it seems that theory of Okugawa [0) fits well in our frame work. In

that paper he treated Picard-Vessiot theory in char, p > 0, where the correct

generalization in char, p > 0 of a differential ring is a ring with higher derivation.

We can understand in view of the defintion of a quasi-automorphic extension why

we have to introduce the higher derivation if we work in char, p > 0 (Defintion

(2.5)). It is an easy and pleasant task to sketch the proof of principal results of

this paper in char, p > 0. Yet there are subtle points treating eventually
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non-reduced schemes so that we will treat char, p > 0 case in another paper, we

are grateful to Mitsuhiro Takeuchi for teaching us what they are studying in the

Galois theories of inseparable field extensions.

§1. Preliminaries

All the rings in this paper are assumed to be commutative and contain the

field Q of rational numbers. A differential ring 04, δ) consists of a ring A and a

derivation δ : A^ A: Namely δ{a + b) = δa + δb, δ{ab) = (δa)b + a(δb) for

all a, b ^ A. Kolchin calls such a ring an ordinary differential ring (cf. [Kl] Chap.

I, 1). We say that an element a ^ A is a constant if δa = 0. Since δl = δ ( l . l ) —

( δ l ) l + l ( δ l ) = 251, δ l = 0 so that δ(Z) = 0 and hence δ(Q) = 0. So the

ring CA of constants of A is a Q-algebra. We adopt the following usual notation: a
(0) « , (1) * / * \ // (2) t , , 5 - (») (w + 1) r

— a , δa = a' — a , δ(δa) = a = a and more generally δa = a for n

> 0. We use the following convention: We denote the differential ring {A, δ) sim-

ply by A if there is no danger of confusion for the choise of the derivation δ.

Forgetting the derivation δ of the differential ring (A, δ), we get an abstract ring

A. When it is necessary to emphasize the abstract ring A, we denote it by A .

Let/ : A~> B be a homomorphism of differential rings, i.e. / is a homomorph-

ism of rings compatible with the derivations so that we can regard / as a homo-

morphism A —• B of abstract rings. We denote this homomorphism of abstract

rings b y / :A —> B . Thus we can define a forgetful functor : (Diff-rng) —•

(Rng) of the category (Diff-rng) of differential rings to the category (Rng) of rings.

The set of differential algebra homomorphisms will be denoted by Diff-homC4, B)

or simply by Horn04, B) if there is no danger of confusing it with the set

Horn 04 , B ) of abstract algebra homomorphisms.

Let A be a differential ring, B a differential subring of A and 5 a subset of A.

According to Kolchin, we denote by BiS) a differential subalgebra generated by S

over B : B{S) is the smallest differential subalgebra of A containing B and S.

Let I be a differential field, M a differential subfield of L and 5 a subset of

A. The differential subfield generated by M and S will be denoted by M(S). The

following lemma is well-known but we give a proof due to Bialinicki-Birula be-

cause we use it in a basic way and because we had better understand the princi-

ple on which our theory depends.

LEMMA (1.1) (Kolchin). Let A be a differential ring and K a differential subfield

of A. Then the field K and the ring CA of constants of A are linearly disjoint over Cκ.
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Proof If the Lemma were false, then there would be n elements cv c2,. . ., cn

^ CA such that the c{ are linearly independent over Cκ but are linearly dependent

over K. We chose n > 1 minimum among such integers so that n > 2. Let

(1.1.1) Σ a i c i = 0 , a t ^ K
ι = l

be a non-trivial linear relation so that at least one of the at is not equal to 0. We
- 1

may assume an Φ 0. Then multiplying an to the relation (1.1.1), we may further

assume an = 1. So the relation (1.1.1) becomes

(1.1.2) α Λ + ••• +an_lcn_l + cn = 0.

We notice here at least one of the a{ for 1 < i < n — 1 is not constant. Dif-

ferentiating (1.1.2), we get a[c1 + + ar

n_xcn_x = 0, which is a non-trivial

linear relation over K. So cv c2>. . ., cn_ι ^ CA are linearly independent over Cκ

but linearly dependent over K. This contradicts the choice of the integer n.

The proof of the lemma is simple but the lemma is fundamental and have ap-

plications.

COROLLARY (1.2). Let L/K be a differential field extension such that L is gener-

ated by constants over K. Then there is a 1:1 correspondence between the elements of

the following two sets.

(i) The set S of differential intermediate fields L ^ M Ό K.

(ii) The set T of intermediate fields CL ^ Dκ ^ C.

Here we define a map Φ : 5 —• T by M •-• CM = M Π CL for M e 5 and a map

Ψ : T—+ S by D •—• DK ( = a differential subfield of L generated by D and K which

coincides with a subfield of L generated by D and K) for D ^ T so that φ°ψ= IdΓ,

Proof For D e T, we have KD Π CL = D so that Φ° Ψ= IdΓ since CL and

if are linearly disjoint over Cκ. In fact the inclusion KD Π CL ^> D being trivial,

we have to show KD Π CL c Z). Let {^}αe/ be a basis of a C^-vector space K. If

c e if/) Π CLcz KD, then we can write c = Σ α e / α α / α / Σ α € / δ α / α with αα, i α e

Z), where at least one of the ba Φ 0 and the # α , δα are equal to 0 except for a fi-

nite number of indices. So we have Σa(=I cbafa — Σ α e / aafa
 a n ^ hence Σ α € / (cba

~ ao) fa — 0 Since the ci α , αα e CL, by the Lemma c£α — «α = 0 for all a e /.

Since there exists an index a ^ I such that 6α =̂ 0, we get c = aa/ba so that c e

https://doi.org/10.1017/S0027763000006012 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006012


6 HIROSHI UMEMURA

D. Now we have to show Ψ° Φ = Ids or KCM — M. Since the inclusion KCM c M

is evident, it is sufficient to show KCM 3 M. An element u ^ M is written as a

quotient w = ΣaGl aafa/ΣaeI bja with Σ α e / bja Φ 0, where the aa, ba e Q

are equal to 0 except for a finite number of indices. We get u Σ α e / #α/α = Σ α e /

6α/α and hence Σ α e / # α ^ / α — Σ α e / 6α/α = 0. This shows that the ufa and /α,

which are elements of M, are linearly dependent over CL. So it follows from the

Lemma applied for L and M that the ufa and /α are linearly dependent over CM so

that there exist ca and ba ^ CM for a ^ / such that they are equal to 0 except for

a finite number of indices and such that we have a non-trivial linear relation

(1.2.1) Σ caufa - Σ dja = 0
ael a<al

among the ufα and fα. If all the dα were equal to 0, then Σ α € / cαufα = 0 so that

Σ α € / cαfα = 0. Since {fα}αGl is the basis of the Cκ-vector space K and since Q

and K are linearly disjoint over Cκ by Lemma (1.1), all the cα would be equal to 0

so that the linear relation (1.2.1) would be trivial. This contradicts the choice of

the cα and dα. Hence Σ α e / dαfα Φ 0 so that u = Σ α e / cαfα/ΣαeI dαfα and

w ^ ^ C ^ . Thus the inclusion ifCM ^ M is proved.

In the course of the proof of corollary, we proved the following result.

COROLLARY (1.3). Let E/F be α differential field extension and E =) G => F a

differential intermediate field. If there exists a set W consisting of constants of E such

that F(W) 3 G, then G is generated by constants over F: Namely G = FCG.

For a ring B, we denote by 2?[[£1] the ring of formal power series with

coefficients in J5. The ring of formal Laurent series with coefficients in B will be

denoted by i ? [ M ] | 7 ~ ] . These rings are differential rings with derivation d/dt

Let φ\B~+C be a morphism of rings. Then it induces morphisms 2ϊ[[fl] —>

C[[fl], BίltNlΓ1] -> C t M K Γ 1 ] of differential rings. We denote the both homo-

mo rphisms by φ[[t\] so that φ[[t]](Σ^<<nan f) = Σ_oo«w φ(an)tn.

Let A b e a differential ring. A morphism / :A—>B[[f\] of differential rings

will be called a Tayloy morphism. Let us define a mapping ί IA—>i4.[[£l] by

setting i(a) = Σ —r~ t for a €= A. Then i is a morphism of differential rings or a

Taylor morphism. We call i the morphism of the universal Taylor expansion of the

differential ring A or the universal Taylor morphism for short.
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PROPOSITION (1.4). (i) The universal Taylor morphism is a monomorphism.

(ii) The universal Taylor morphism is universal among the Taylor morphisms. Namely

let f : A—* B[[t]] be a Taylor morphism. Then there exists a unique morphism φ :A

—* B of rings such that φ[[t]]°i = / In other words we have a bisection

Φ : Horn (A \ B) -> Diff-homU, B[[t]])

sending a morphism ψ\A —* B of rings to a Taylor morphism φ\_\_t\\o i:A~*

Proof. Let g : A [[t]] —> A be a morphism of taking the value at t = 0 or

the constant term of power series: g(a(t)) = a(0) for a(t) e A [[£]]. Then g°i

= ldA \ so that the universal Taylor morphism is a monomorphism. Let h:

B[[t]]—* B be the morphism of taking the value at / = 0. Then given / €Ξ

Diff-homG4, B[[f]]), we get a morphism h°f : A-+ B[[f]] —> B of rings. Denoting

/*°/by Ψ(f), we get a map iF :Diff-hom(A, J3[[fl]) ^ H o m ( A \ 5) . Since f*°Φ

= Id, Φ°Ψ= Id, Proposition is proved.

Let L/if be an extension of differential field. We use the following condition

very often

(F.C) The field L is finitely generated over K as an abstract field.

This condition will be called the finiteness condition.

The following lemma is well-known. We give a proof since we use it in an

essential way and maybe algebraic geometer is not familiar with it.

LEMMA (1.5). If a differential field extension L/K satisfies the condition (F.C),

then there exists a K-algebra Lo finitely generated over K such that Lo is closed under

the derivation δ and the quotient field of Lo is L.

Proof Let us observe the following: Let S c L be a subset. For a subring

K[S] of L to be closed under the derivation, it is necessary and sufficient that we

have s' e K[S] for any s ^ S. Let zv z2i . . . , zm ^ L be generators of the ab-

stract field L over K . Since the δZi are in L, we can find flf f2,. . ., fm, glf g2,

. . ., gm e K [zu z2,.. ., zm] with g{ Φ 0 such that z- = f{/g{ for 1 < i < m. We

may assume that gγ = ^ 2 = * = gm by replacing the ̂  by gxg2 ' " gm. Let us

put g = gx = £ 2 = = ^ w and Lo = i f t^, ^2, , zm, 1 /g\. We show that I o
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is closed under the derivation. We have z\ = ft/g ^ Lo so that / ' G Lo for every
2^ , 2 2 , . . . , * m ] . In particular gr e Lo so that (1 / # ) ' = — g' /' g2 ^ Lo. Now

Lemma follows from our observation above.

Let (A, <5) be a differential ring. The derivation δ :A~* A defines a derivation

Af-+ Af for any/ e A since (5 — = — . Since the structure sheaf

Θx of a scheme X = Spec A is the sheaf of rings associated with a presheaf

D(f) ^ Af, we get a derivation δ : Θx —> Θx. Here D(f) = ix e Spec A | / e zχ or

/Or) =£ 0} in accordance with E.G.A. It is therefore convenient to adopt the follow-

ing

DEFINITION (1.6). A scheme with derivation consists of a scheme X and a

derivation δ : 6x~*θx. Namely Γ(Ut Θx) is a differential algebra with derivation

δ for every open set U of X and the restriction morphism pv : Γ(U, Θx)—*

Γ(V, Θx) is a morphism of differential algebras for every pair of open sets V^ U

of X. We denote the scheme with derivation by Cr, δ) or simply by X if there is

no danger of confusion of the choice of the derivation. A morphism / : (X, δλ) —•

(X, <52) of schemes with derivation is a morphism of schemes f \X—*Y commut-

ing with the derivations. More precisely if we use the notation of E.G.A. Chap. I,

§1, 2.3.1 so that the morphism / consists of a continous map ψ:X—> Y and a

0-morphism θ : Oγ—* ΰx, then θ : Θγ—* Θx is a morphism of the sheaves of dif-

ferential rings.

So we can speak of the category of schemes with derivation. Let (A, δ) be a

differential ring. Then Spec A has a structure of a scheme with derivation and the

differential ring (A, δ) is recovered from the scheme Spec A with derivation. Let

/ :A—* B be a homomorphism of differential rings. The associated morphism with

/ will be denoted by af : Spec B—* Spec A This is a morphism of schemes with

derivation. It follows from E.G.A. Chap. I, Proposition (2.3.2) that we have a bijec-

tion Diff-homW, B) - Diff-hom(Spec B, Spec ,4), / •-+ af.

THEOREM (1.7). In the category of schemes with derivation, the fibre product ex-

ists.

Proof. Let S be a scheme with derivation and X, Y be two 5-schemes with

derivation. We show that the fibre product X xs Y exists in the category of

schemes with derivation. As in the case of usual schemes, we may assume that X,
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F , 5 are affίne: There exist a differential algebra C and differential C-algebras

A, B such that X = Spec A, Y = Spec B and S = Spec C. Then the theorem fol-

lows from the following

PROPOSITION (1.8). Let C be a differential ring and A, B differential C-algebras.

Then there exists a differential C-algebra D with the following properties:

(i) There exist a differential C-algebra morphism φ1:A
h^Df φ2: β —• D

(ii) For any differential C-algebra E and differential C-morphisms φ1:A—+E,

ψ2: B-* E, there exists a unique differential C'-morphism f : D~+ E such that f°φ1

~ Φif f°Ψ2 ~ 02 Namely we have a bijection

Diff-homctD, E) - Diff-homcG4, E) x Diff-homcQ3, E)

sending f e Diff-homc(Z>, E) to (f°φ19f
oφ2)

Proof. To be more precise let (A, δx) and (B, δ2) be the differential

C-algebras in question. We define a derivation δ on the tensor product A ®c<

B k of the abstract algebras as follows: δ(a®b) = δγ(a) ®b + a® δ2(b) for a

€= A and b ^ B. We can check that δ is well-defined and is in fact a derivation

on A" ®c» J3*. The canonical morphisms φλ :A~> A ®cBy a~+ a ® 1 for a e A

and ( ^ 2 : 5 - ^ A Θ c β , δ - * 1 ® δ for b^B are C-morphisms of differential

algebras. The morphisms φ1 and φ2 satisfies the condition (ii).

A rational map of a scheme I to a scheme Y is an equivalence class of

morphisms of dense open sets of X to Y. Two morphisms are considered to be

equivalent if they coincide on a dense open sets (cf. E.G.A. Chap. I, Definition

(8.1.2)). An S-rational map of an S-scheme to another S-scheme is a rational map

which is an S-morphism. A rational function on X is an Jf-rational map of X to

X®z

rL\T\, where T is a variable over Z. All the rational functions on X form a

ring R(X). If X irreducible, then the ring R(X) coincides with the local ring Θx at

the generic point x G X. Moreover if X is reduced, then R(X) — Θx is a field (cf.

E.G.A. Chap. I, Proposition (8.1.5)).

Let L/Kbe a differential field extension satisfying the condition (F.C) and Lo

be the differential ring of Lemma (1.5). So Spec Lo is a scheme with derivation

over the scheme Spec K with derivation.

DEFINITION (1.9). A model of the differential field extension L/K is a

ϋf-scheme X with derivation such that the underlying scheme X is reduced, irre-

ducible and of finite type over K and such that the field K(X) of rational func-

tions of X is i£-isomorphic to L as a differential field.
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Remarks (1.9.1). If X is a model of L/K, then there exist two non-empty

open sets U c X, V c Spec Lo and a if-morphism / : [/—>SpecZ,0, g : V—+X

of schemes with derivation such that f °g = Id, g°f = Id. Since these open sets

are universally if-scheme theoretically dense respectively in Spec Lo and in X,

we can say that there exists a if-pseudo-isomorphism X * * *—* Spec LQ compati-

ble with derivation. (We recall below the definition of a pseudo-morphism.) This

formulation is not only formal but also useful in our theory since we study not

only models over K but also their various base changes for morphisms S—•

Spec K, where the scheme S with derivation is not necessarily reduced.

(1.9.2) A germ of introducing schemes with derivation appeared already in

the 19-th century when the mathematicians of that time studied a condition for an

ordinary differential equation of the first order to be free from movable singular

points.

(1.9.3) In general, we can not find a complete model with derivation of a dif-

ferential field extension L/K:A model X with derivation whose underlying

scheme is proper over K. For an ordinary algebraic differential equation of the

first order or for a differential field extension L/K satisfying the finiteness condi-

tion (CD) with tr.d [L:Kl = 1, the complete model with derivation exists if and

only if the equation is free from the movable singlular points.

We can show that if y satisfies the Painleve equation y" = 6y + x, there is

no complete model of a differential field extension C(x)(y} /C(x), where the de-

rivation is d/dx.

(1.9.4) After we had done our work, we learned that in recent monograph

[Bu], the scheme with derivation plays an important role.

Let us recall the notion of pseudo-morphism of E.G.A. Chap. IV, §20. Let X

be a scheme. An open set U of X is scheme theoretically dense by defintion if the

restriction map Γ(V, Θx) ~* Γ(V Π U, Θx) is a monomorphism for every open

set V of X (cf. E.G.A. Chap. IV, (20.2.1)). When X is an S-scheme, we say that an

open set U of X is universally scheme theoretically dense over S or universally

S-scheme theoretically dense if for every morphism Sr —* S of schemes, the base

change Us, is scheme theoretically dense in XS9. Let Y be another S-scheme. An

S-pseudo-morphism of X to Y is an S-morphism / : U—> Y of S-schemes where U

is an open set of X scheme theoretically dense over S modulo the following

equivalence relation: We identify two such morphisms / : U-* Y and f :U' —* Y

if they coincide on the intersection U Π U'. We say that the couple (U, /) repre-

sents its equivalence class.

We define a pseudo-function on a scheme X as we introduced a rational func-
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tion on X. Namely a pseudo-function is an JΓ-pseudo-morphism of X to

X®ZZ[T], where T is a variable over Z. The notion of pseudo-function is finer

and hence more useful than that of rational function. In our theory we should deal

with pseudo-functions rather than rational functions as natural objects because as

we said above, we have to study the base changes X® S/S of a model X which

is a if-scheme with derivation. But in our analysis only rational functions appear

and pseudo-functions are hidded by virtue of the following result (E.G.A., Chap.

IV, Remarque (20.2.9)).

If X is a reduced scheme, then the following conditions on an open set U of X

are equivalent:

(i) Then open set U is dense;

(ii) Then open set U is scheme theoretically dense.

So the notion of pseudo-morphism (resp. pseudo-function) on a reduced

scheme coincides with that of rational map (resp. rational function).

A morphism / :X—> Y of schemes is scheme theoretically dominant if the

morphism Γ(U, Θγ) —* Γ(f ([/), &x) is a monomorphism for every open set U

of Y. Let / : X—> Y be morphism of schemes. We say that the morphism / is uni-

versally scheme theoretically dominant if the base change fs,: XSr —* Ys, is scheme

theoretically dominant for every morphism S'—* S of schemes.

Let us notice the follwing fact. Let / : Y—* Z be a /c-morphism of algebraic

schemes over a field k such that Z is irreducible and reduced. Then the morphism

/ : Y—»Z is universally scheme theoretically dominant over k if and only if the

image/(Y) contains the genbric point of Z.

We say that an S-pseudo-morphism / : X * •—• Y is universally scheme

theoretically dominant if it is represented by a couple (/, U) such that the

S-morphism / : U—+X is universally scheme theoretically dominant over S. Let Z

be a third S-scheme and g\Y' '—* Z be an S-pseudo-morphism. According to

E.G.A. Chap. IV, (20.3.2) if the S-pseudo-morphism / : X * •—• Y is universally

scheme theoretically dominant over S, then we can define an S-pseudo-morphism

g°f :X - —• Z. We say that a S-pseudo-morphism / : X~> Y is an S-pseudo-

isomorphism if / is universally scheme theoretically dominant over S and there

exists an S-pseudo-morphism g:Y% —> X such that g is universally scheme

theoretically dominant over S with g° f = Id x, f°g = Id r . We denote by Ps.autsX

the group of S-pseudo-automorphisms of X, i.e. the group of S-pseudo-isomor-

phisms of X to X. If we set

Ps.aut sZ (SO = Ps.auts, (X x s SO,

then Ps.aut : (Sch/S)°—• (Grp) is a group functor. The notation Ps.autsJ£,
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Ps.aut s^f is due to E.G.A. but it seems that most authors denote the group

Ps.aut5^ί by Bir5X when X is an algebraic variety over a field k so that S =

Spec k. Hence we denote the group Ps.aut s X by BirfeX and the group functor

Ps.autsJ£ by Bir5X when 5 is the spectrum of a field.

Let us assume that k is a field and S = Spec k. Let F/k is a field extension

finitely generated over k. A reduced algebraic A -scheme X whose ring of mero-

morphic functions ( = rational functions) is /c-isomorphic F will be called a model

of F/k. Let X, Xr be models of F/k. Then there exists a /c-pseudo-isomorphism

X ' —> X' so that the group B i r s Z ( 5 0 is isomorphic to the group Bir^Z'CSO

for any A -scheme S\ So the group functor Bir sX is isomorphic to the group func-

tor Bir^Jf'. In other words the group BirΛX(S) and the group functor BirAJΓ are

independent of the choice of model X. So we denote Bir^X by Bir^F.

PROPOSITION (1.10) (Demazure [D], 1, Proposition 1). Let X, Y be schemes

smooth and of finite type over a scheme S. The following conditions for an S-pseudo-

morphism f X ' —• Y are equivalent.

(i) / is an S-pseudo-isomorphism.

(ii) There exist universally S-scheme theoretically dense open sets U of X and V

of Y such that f induces an S- isomorphism U —> V.

PROPOSITION (1.11). Let L/K be a differential field extension with CL = Cκ =

C satisfying the finiteness condition (F.C). Let X be a model with derivation of L/K,

A a Cκ-algebra and U a universally scheme theoretically dense open set of X®CA. If

f ^ Γ(U, ΰx <s>cA) is constant, then f comes from a global section of Θ'Spec A : There

exists an element g G /XSpecA, ^spec^) ~ A suc^ thut §°P = f> where p denotes

the projection U c X ξ$cA —> Spec A.

Remark. A morphism Y~» Z of schemes consists of a of a continuous map

g : Y—> Z of the underlying topological spaces F , Z and of a morphism Θz~* Θγ

of sheaves of rings (cf. E.G.A. Chap. I, 2.3). So in the Proposition we mean by the

notation g°p the image of the section g of the structure sheaf ΰA by the projection

morphism p : If—* Spec A.

Proof Since C = Cκ = CL is algebraically closed in L, XB is irreducible for

any field extension B/C. In particular for any point £ ^ Spec A, the fibre

p~ (z) = X®cC(z) is irreducible. Therefore if W is an open set of XA such that

Wz= W®cC{z) is not empty, then Wz is dense in X®cC{z). Since XA—•

SpeCi4 is faithfully flat, it follows from the above investigation that we have to
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prove the following assertion:

(1.11.1) For any ponit x ^ U, there exists a neighbourhood V of x depending

on x such that the restriction pv(f) of / comes from a section of the structure

sheaf OSpecA over p(V). Here we notice that since p : XA —> Spec A is flat, p is an

open map and hence p{V) is an open sub-set of Spec A. Let x be a point of U. We

can find a neighbourhood D(h) of x in U with h ^ Γ(XA, Θx ) so that

(1.11.2) pU

D(h)(f) =k/h

on D(h) with ft e Γ(XA, 6X). This is an identity in Γ(D(ti), Ux) = (L° <&cA)h.

Let us set R = Γ(D(h), θx), then the ring CR of constants and L are linearly

disjoint over C by Lemma (1.1).

A

c

Let ie-\ i(El be a basis of the C-vector space L . We can write k — Σ , 0, ® ft,,

h = Σt e{ ® c, with i f , cf ^ i4, where the bt and the ct are zero except for a finite

number of indices. Setting / = pD(h)(f), we get by (1.11.2) / = k/h in Γ(xA, ΘχA)h.

Therefore fh = k in Γ{XA,Θx)h and hence Σ , (^ Θ l ) / ( 1 ®c} = / ( Σ f βf Θ ^ )

= Σ f ^(8)6, = Σ f ( ^ (8)1) ( 1 ® ft,).• Namely we have Σ f (ef ® 1) (/(I ® c,)

- 1 ® ft,) = 0. Since the / ( I ® ς ) - 1 ® bt are in CR and the β,. ® 1 are

Cff-linearly independent, we conclude / ( I ® ct) = 1 ® ft2 for all z ^ /. Since 0 Φ

h{x) = Σ , ei{x)ct{x), there exists an index ί such that c, (x) ^ 0. Namely in a

neighbourhood Vof x, we have pv(f) — bi/ci.

LEMMA (1.12). L ί̂ R be a differential ring with 1. //"i? is α direct product of a

finite number of ideals R{: R = Π I = 1 Ri9 then the ideals Rt are closed under the de-

rivation so that R is a direct product of the differential ideals R{.

Proof Let 1 = eγ 4- e2 + * * * + en be the orthogonal idempotent decomposi-

tion of 1 so that R{ = Re{ for 1 < i < n. Since etβj = 0 if i Φ j , 0 = (ete)' — er

iej

+ ete'} and e'fi, = — β f^ e i?f Π i?; = 0. Thus the -th component of e\ = 0 for

i Φ j and ^ e i?. so that the ring i?z = i?^? is closed under the derivation. In fact
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(aet)' = a'e{ + ae[ e i?^ since the Rt are ideals of R.

COROLLARY (1.12.1). We using the notation of Lemma (1.12) and its proof the

idempotents e{ are constants for 1 < i < n. If we set C{ — CR. for 1 < i < n, then the

ring CR of constants of R is a direct product of the C{: CR — Π ί = 1 C f.

Proof. Differentiating the idempotent decomposition 1 = eι + e2 + * * + en,

we get 0 = e[ + ef

2 + + e'n so that £• = 0 for 1 < i < n since £• ̂  R{ by

Lemma (1.12). Thus the first assertion is proved. As for the second, it is sufficient

to show that every constant c of R can be written as a sum of an element of the Ct

1 < i < n. In fact c = ceλ + c#2 ~̂~ ' ' ' ~^~ cen is the decomposition of the element

c. As we have just seen, the e{ are constants so that ce( ^ C{ so that the second

assertion is proved.

Most of schemes X which arise in this paper are reduced algebraic schemes

over a field k and we study their base changes Xs for a A -schemes S. Let us re-

call that a λ -algebraic scheme is a scheme of finite type over field k (cf. E.G.A.

Chap. I, 6.5.1). We have to consider however some exceptions such as Spec

Let L/K be a differential field extension satisfying the finiteness condition

(F.C). Since we are in characteristic 0, the tensor product L ®KL is reduced and

the total quotient ring Q(L ® κ L) is a direct product of the ideals M f :Q(L

®KD = lfί=1Mi and the Mt are fields (see for example [Z.S] Chap. IV, §3). Then

by Lemma (1.12) the Mt are differential fields.

Geometrically let X be a model of L/K. Since X is noetherian and we are in

characteristic 0, X ®κ X is noetherian and reduced. There are finitely many irre-

ducible components Yt oίXxκX: XXKX= U l = 1 Yt. The total quotient ring

Q(L 0 ®KLO) which coincides with Q(L ®KL) is isomorphic to the direct product

of the K(Y{) = Mt

Anyhow we have the projections fi\Qt{L®κV) —» Mt, 1 ^ i ^ n and two

if-morphisms φv <p2:L—• L®KL such that φx identifies L with L® 1 c Q(L

®KL) and φ2 identifies L with 1 ® I C Q(L®KL). We get two if-morphisms
1 2 1 2

/ f , ft \L-+ Mi by setting /,- = f{ ° φv f{ = f{ ° φ2. We set for further purpose

ft\D = L{1\ fi(L) = L? for 1 < i < n.

Let % be a category and X an object of <6. Then /zz: $ —• (Set) sending F to
r r x = Hom(F, X) is a functor (# being the dual category of C). We some-
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times denote hx(Y) by X(Y). Let 5 = SpecA be an affine scheme and # a categ-

ory of S-schemes. We often denote Jf(Spec B) by X(B) for an A-algebra B.

Let Xif 1 < i < n be objects of a category *6 such that the product X =

Hi=ιXi exists in (β. The i-th projection X~^Xt will be denoted by p{ for 1 ^ i

Let us recall the definition of principal homogeneous space. An operation

(G, X) of a group G on a set X is a principal homogeneous space if the following

condition is satisfied: If x ^ X, then a map G~+ X sending g ^ G to gx ^ X is

bijective. It is convenient to interpret that (G, φ) is a principal homogeneous

space for any group G. We often say that the set X is a principal homogeneous

space of the group G without making the operation G x X—* X precise. Let F : %

—* (Set) be a functor and G : ίί —•* (Grp) be a group functor. If the functor G

operates on the functor F in such a way that (G(S), F(S)) is a principal

homogeneous space for every object S e wΉ, we say that (G, F) is a principal

homogeneous space or F is principal homogeneous space of G.

Let 5 be a scheme and # the dual of the category of S-schemes. Let G an

5-group scheme and X an 5-scheme such that G operates on X : We have an

5-morphism μ:G*X—*X making the several well-known diagrams com-

mutaitve. We can regard G and X as functors on the category (6. Then (G, X) is

a principal homogeneous space if and only if the morphism (μ, p2) : G x s X^> X

xs X is an isomorphism.

Let G be an S-group scheme and X an S-scheme such that G operates on X

over 5. We say that the operation (G, X) is generically transitive if the morphism

(μ, p2) : G X 5 X—>Z x s ^ > (g> χ) ~~* (gχ> χ) is scheme theoretically dominant.

Let us recall that a morphism h : V—• FT of schemes is scheme theoretically domi-

nant by definition if the morphism Γ(U, Θv) —* Γ(h ([/), Θv) is injective for ev-

ery open set U of V.

The following result which we learned from Miyanishi seems well-known.

LEMMA (1.13). Let k be a field of characteristic 0 and G a k-algebraic group

scheme. Then the irreducible component Go of G containing 1 is absolutely irreducible:

The base change Goκ remains irreducible for any field extension K/k

Proof. We have to show that the extension k(G0)/k is regular. Since we are

in characteristic 0, it is sufficient to show that k is algebraically closed in k(G0).

Let / e k(G0) be algebraic over k and let fn + ajn~ι + + an = 0, a,, e

k (1 < i < n) be the minimal polynomial of / over k. Since Go is reduced, Go is
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smooth over k so that the local ring ΘG(jg is regular for any point g e GQ. Thus

@Gog i s a unique factorization domain and hence normal so that / ^ @Gog- ^n P a r '

ticular for the point l e G , / E @GQV Since 1 is a /c-rational point of Go, we have

a /c-morphism ΘG λ —> k so that we have / + axf
n + + αw = 0 / being the

image of / by the A -morphism ΘGQ1 —> k. Hence / ^ k is a root of the irreducible

polynomial .r* + tfΓz
>w~1+ + an e fc[#] so that w = 1 and f = — aί^ k.We

have thus proved that k is algebraically closed in k(G0). Hence the Lemma is

proved.

In our papers [Ul], [U2] we defined algebraic group germ as an analogue of

analytic group germ which is formulated in Bourbaki [Bo]. Roughly speaking a

group germ is a local group law consisting of a local composition law, a local in-

verse and a local unit. In algebraic geometry, however rational group law which

was first introduced by Weil [W], seems to arise more naturally than algebraic

group germ.

DEFINITION (1.14). A rational group law over a field k (of characteristic 0)

consists of a reduced /c-algebraic scheme Z, a /c-rational map m : Z x k Z * * •—• Z

satisfying the following conditions:

(i) The map (m, p^) : Z x k Z •—• Z X k Z is dominant;

(ii) The following diagram is commutative;

Z x (Z x Z) > Z* Z
Idxm

It .
(Z x Z) X Z I »

mxld ,

Z x z • Z
m

where the products are taken over k.

Remark (1.14.1). If the field k is of characteristic p > 0, then X X k X is not

necessarily reduced so that the condition (1.14.i) should be modified.

PROPOSITION (1.15). Let Z be a rational group law. Then there exists a k-

algebraic scheme G birationally equivalent to X: i.e. There exists a k-birational map

G* ' '—* X compatible with group laws.
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When X is absolutely irreducible over k, Proposition is due to weil [W]. An

extreme generalization of Weil's result is proved in S.G.A.D., Expose XVIII. Let us

notice that the algebraic group scheme G is uniquely determined up to isomorph-

isms.

The same remark should be given for law chunk of algebraic operation intro-

duced in [Ul].

DEFINITION (1.16). Let G be an algebraic group scheme over a field k of char-

acteristic 0 and X a reduced /c-algebraic scheme. We say that a /c-rational map

μ : G x k X •—* X is a rational operation of the algebraic group G on the algeb-

raic scheme X if the following conditions are satisfied:

(i) A rational map (pl9 μ): G xk X —> G xkX, (g, x) >-> (g, μ(g, x)) is

dominant;

(ii) The diagram

> G x X
Idxμ

i «

• X
U

is commutative, where the products are taken over k.

PROPOSITION (1.17). Let k be a field {of char. 0). For a rational operation (G, X)

of a k-group scheme G on a reduced k-algebraic scheme X, there exists an operation

(G, Y) over k which is birationally equivalent to (G, X).

Proof When all the irreducible components of G and X are absolutely irre-

ducible, the Proposition is proved Weil [Wj. Rosenlicht proved the Proposition

under an additional hypothesis that the variety X and the irreducible components

of G are absolutely irreducible (cf. [R] Theorem 1). His proof works if all the irre-

ducible components of the scheme X and those of G are absolutely irreducible.

Now by Galois descent the Proposition follows from

LEMMA (1.18). Keeping the notation of Proposition (1.17), we assume furthermore

that k is algebraically closed, (i) There exists an operation (G, Y) birationally equiva-

lent to (G, X) such that Y is quasi-projective. (ii) Let (G, Y-), (G, Y2) be operations

G

(G

U

X

X

G

(G

II

II

G)

•i
X

X

X

X

X)

X
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birationally equivalent to (G, X). Then there exist G-invariant dense open sets Ult

U2 such that (G, U^) is isomorphic to (G, U2).

Proof. The second assertion is proved following the Proof of Corollary to

Theorem 1 [R]. There the case where X is absolutely irreducible is treated. It re-

mains to show the first assertion. As we noticed above, there exists an operation

(G, Z) birationally equivalent to (G, X). We show that there exists a variety of

orbits of (G, Z) by Theorem 2 [R]. There exists a G-invariant dense open set U

of Z and a morphism τ : U—» W of of reduced /c-algebraic schemes such that a

fibre t/ξ is a Gk{ξ)-homogeneous space for any point ξ ^ W. Let us first assume

that W is irreducible. Let η : Spec k{ W) —• W be the generic point so that Uη is

the generic fibre. (Gkiw)) Uv) is a homogeneous space and hence Uv is quasi-

projective as is well known. Therefore there exists a non-empty affine open set V

such that the morphism τ is quasi-projective when restricted over τ (V) —+ V. So

τ~ V is quasi-projective since V is affine. In general if W is not irreducibe, we

can argue at the generic points of irreducible components of W to conclude that

there exists a G-invariant dense open subset £7 of Z which is quasi-projective.

§2. Automorphic extensions

Let L/K be a differential field extension satisfying the finiteness condition

(F. C) of §1. Let X be a model with derivation of the extension L/K. We sometimes

denote by C the field Cκ of constants of K to simplify the notation. The category of

C-schemes will be denoted by (Sch/C). We define a group functor Diff-bir^L:

(Sch/C)°-> (Grp) by setting

Diff-bir^L(S) = {/ e Ps.aut I x c S/Spec K x c S \

pseudo-morphism/ is compatible with derivation).

In fact if Diff-bir^L(S), then φ f ^ Diff-birKL(S') for a morphism φ : S r

—* S of C-schemes so that Diff-birxL is a group functor. It is evident that the de-

finition is independent of the choice of model.

EXAMPLE (2.1). We consider a differential field (C[|>]] [ J Γ 1 ] , d/dx) of the

formal Laurent series with coefficients in the complex numer field C. Let us set

y = expCr) = Σ^ = o τrf xn e C[Lr]] Cr"1]. The series y satisfies a differential

equation
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(2.1.1) dy/dx = y.

We also set K = CCr) so that K is a differential subfield of C[[x]] Lr" 1], By the

differential equation (2.1.1), L = K(y) is a differential subfield of C[Lτ]] [x~ ] by

considering the Laurent expansion at x = 0 of rational functions. So we obtained

a differential field extension L/K. Since these fields are subfields of C [[#]][# ],

CL = Cκ = C. Let us take X = Spec i£|j/, z/~ ] as a model of L/K. Let us deter-

mine Diff-bir^L(SpeCi4) for a C-algebra A. Let/ e Diff-bir^LCSpec^) so that

/ : X x c SpeCi4 —• X x c S p e c A is a K ®cA-pseudo-automorphism compati-

ble with derivation. By Proposition (1.10), there exist universally K ®c A-scheme

theoretic dense ope sets U, V of XA = Spec K[y, y'1] Θ c ^4 such that the

pseudo-morphism / induces a K ®c ^-isomorphism / : ί/—• V of schemes com-

patible with derivation. Let us set

u = the restriction to U of y e Γ(XA, Θ),

v = the restriction to 7 of y e Γ(XA, β),

«/ = / t/.

Since 2/ is invertible on X and hence on XA, the functions w, t; and hence w are in-

vertible respectively over U or V. It follows from the differential equation (2.1.1)

that we have

(2.1.2) du/dx—u, dυ/dx=v and dw/dx—w.

The functions u, w are in a differential algebra Γ(U, Θ) and invertible in the

algebra. We show that there exists a constant c in the differential algebra

Γ(U, 0) such that w = cu. In fact (wu~1)' = (w'u — wu')/u2 = (wu — uw)/u

= 0 by the differential equations (2.1.2). It follows from Proposition (1.11) that

any constant of Γ(U, Θ) comes from /XSpecA, ^Spec^) through the structure

morphism XA~* Spec A Since c is invertible, we conclude that w — cu with c ^

A = group of the units of A. This shows that the K Θ c A-isomorphism / : U—>

V coincides with φ :XA—*XA associated with a K®CA-automorphism φ : K[y,

y'1] ®CA = (K0cA)[y, y-l]->K[y, y'1] ®CA= {K®cA)[y, y~'λ sending

y to cy of the differential algebra. Conversely every element c ̂  A defines a

K®CA-automorphism φ of the differential algebra K[y, y~ ] ® C i 4 sending y to

cy and hence K ® c Λ-automorphism aφ : XA —• JfA of schemes with derivation. We

have thus proved the functorial isomorphism Diff-birKL(Spec A) — A . If we

notice that the above argument works not only for affine C-schemes but also for

every C-schemes, we have proved a functorial isomorphism Diff-bir^-ZXS) =

Γ(S, Θs) for any C-scheme S. Namely the functor Diff-bir xL(S) is represent-
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able by a group scheme G m C .

We shall recall in §3, Definition (3.2) the notion of strongly normal extension

introduced by Kolchin. The above extension L/K is strongly normal (cf. Example

(3.2)). We shall see later that in general if L/K is a strongly normal extension

with Galois group G so that G is an algebraic group over CL = Cκ, then the func-

tor Diff-birxL is representable by the Galois group G (cf. Theorem (2.22))

Let G be a Cx-group scheme and φ : G —+ Diff-birxL be a morphism of group

functors. Then taking the value at G ^Λ(Sch/Cκ), we get a mapping G(G) =

Hom(G, G) —• Diff-bir^L(G) c Ps.autGjrQΓ x GCκ). The image of the identity in

G(G) — Hom(G, G) defines a G^-pseudo morphism X X κ Gκ * ~> X x# Gκ of

schemes with derivation. By the argument of Demazure [D], p. 514, the group

scheme Gκ with derivation pseudo-operates on X. Conversely a pseudo-operation

of Gκ xκX •—• Gκ XKX which is a G^-pseudo-morphism compatible with de-

rivation, defines a morphism G —• Diff-bir^L of group functors on the category

(Sch/Cκ) of C^-schemes. We have proved the following

PROPOSITION (2.2). Let G be a group scheme over C — Cκ. Then there is a

1:1 -correspondence between the elements of the following two sets.

(i) The set of morphisms G —• Diff-bir^L of group functors on the dual

(Sch / C) of the category of C-schemes.

(ii) The set of pseudo-operations Gκ *KX ' ' # — > Gκ *KX that are Gκ-pseudo-

morphisms compatible with derivation.

Let L/K be a differential field extension satisfying the finiteness condition

(F.C) of §1. We define a functor &uκ of the category (Fld/iΓ") of abstract field

extensions of K to the category (Set) of sets by

&L/K(A) = ί / e Diff-homα, AlltΏίt'1]) \ the restriction of/ to the sub-

field K of L coincides with the universal Taylor morphism

(2.3) i:K-+K* [[*]]. Namely/ makes the diagram

L + AllilUΓ1]
T ί

commutative, where the vertical arrows are the natural inclu-

sion morphisms}.
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Here we regard the field -A[[/]]|7~~ ] of Laurent series as a differential field

by the derivation d/dt(cf. §1).

In fact 3FL/K is a functor. For if φ\A^B be a morphism in the category

(Fld/K ) or φ is a K -morphism of field extensions of K , then it induces a

morphism φ[[t]] : A[[t\] [Γ 1 ] -> 5[[fl] [Γ 1 ] of the fields of Laurent series and

hence we get a map 2FL/K(A) —• &L/K(B), φ ^ φ[[fl] ° / for every / :L—>

A[[t]] [Γ 1 ] of 5^*04) so that ^ : (Fld/ϋί *) -> (Set) is a functor.

l?mαrfc (2.3.1). For a field extension A of L" (so that Λ e ^ / ( F l d / i ^ ) ) ,

the easiest way to get an element of 2FL/K(A) is as follows. By Proposition (1.4) the

inclusion A ^ L gives us a Taylor morphism / :L~* A[[t]] such that the dia-

gram

L" - Aim]
T T

is commutative, where the vertical arrows are the canonical morphisms. Thus the

morphism/ composed with the canonical inclusion i4[[fl] <^i4[[7]]I7 ] gives an

element of 2FL/K(A).

Let I be a differential model of L/K. Then / defines a morphism / :

SpeCi4[[ί]] [t ] —* Spec L of schemes with derivation and we have the morphism

Spec L—> X of schemes with derivation giving the generic point of X. So we have

&L/K(A) = fte Diff-hom (Spec A[[t]] [ Γ 1 ] , X) \ h factors through the

generic point Spec Z,—• X making the diagram

SpecAtMΠΓ1] -*> SpecL
I I

Specif [[fl] ^ Specie

commutative, where the vertical arrows are associated with canonical in-

clusion morphisms}.

Since i4[[£]][ί ] is a field, the last condition is equivalent to requiring that

the image of h : SpecAttfl] [Γ1] —* X is the generic point and we have conse-

quently
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&L/K(A) = ih ^ Diff-hom (Spec A[[fl] [ Γ 1 ] , X) | The image of h :

SpeCi4[[fl] [t~ ] —• X is the generic point of X and A

(2.4) makes the diagram

SpecΛEttlHΓ1] Λ JΓ
I I commutative}.

Spec*' [[fl] -^

Here the vertical arrows are canonical morphisms induced by the inclusions.

The field C — Cκ of constants of K is a subfield of K so that C cz K and

the category (Fid /K ) oί K -fields is a subcategory of the category (Fld/C)

of C-fields. Since the category (Fld/C) is a sub-category of the dual category

(Sch/C) , the category (Sch/K ) is a sub-category of the dual category

(Sch/O°.
Let G be a group sub-functor of Diff-birxL: (Sch)°—» (Grp), and A e

ϋJ(Fld/K ). We can speak of the value G (Spec A) which we sometimes denote

by G(A). Let g e GC4) so that £ defines a Spec if ΘCjfi4-pseudo automorphism

φg: XA •—• JTA of a scheme with derivation. If h €= 5FL/K(A), as we noticed above

A : SpeCi4[[ί]] [ί ] —> X is a morphism of schemes with derivation and hence we

get an i4-morphism hA : SpeCi4[[fl] [t~ ]-+ XA of schemes with derivation. If we

can composite hA and φg to get a morphism φg°hA : SpeCi4[[fl] [t~ ] — -̂X̂ , we get

p°φg°hA:SpecA[[t]][t ]-^X which is a morphism of schemes with derivation,

where p denotes the canonical projection XA —* X.

DEFINITION (2.5). (1) Let G be a group sub-functor of the group functor

Diff-bir^L: ( S c h / Q ) 0 — • (Set) satisfying the following conditions: (i) We can

composite φg and hA; (ii) The image of p ° φg ° hA : SpeCi4[[fl] [ί"1] —• Z is the

generic point of X so that P ° φg ° hA ^ 3FL/K(A) and the group functor

G I (Fid /K ) operates on the functor HFL/K.

Then we say that G | (Fid/K ) naturally operates on 2FL/K and the morphism

p°φg°hA will be denoted by gh. Dually l e t / : Z,—•i4[[fl] [Γ 1 ] be the morphism of

differential algebras defining h. The morphism L—+ A[[/]][/ ] of differential

algebras corresponding to p°φg°hA will be denoted by gf.

(2) If there exists a group sub-functor of the group functor Diff-bir^L^-:

(Sch/Cκ) —* (Grp) representable by an algebraic group scheme G such that

(i) G\ (Fld/K*) naturally operates on &L/κ and (ii) (G | ( F l d / # * ) , SFL/K) is a

principal homogeneous space, then we say that the extension L/K is quasi-
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automorphic. The group scheme G will be called an automorphy group of the ex-

tension L/K.

When G\ (Fid/if ) naturally operates on SFL/K> by abuse of language we

sometimes say that the group scheme G naturally operates on SFUK.

We notice that in Definition (2.5.1) if the condition is satisfied, then p°φg°hA

makes the diagram

P°φg°hA

SpecAtMΠΓ1] > X
1 I

Specif' [[fl] > Specif

commutative, the vertical arrows being the canonical morphisms.

The uniqueness of the automorphy group is discussed at the end of this sec-

tion and in §4 (Theorem (2.22) and Example (4.4)). For a quasi-automorphic ex-

tension in general the automorphy group is not uniquely determined.

Let us illustrate the definition by examples.

EXAMPLE (2.6.1). Let us consider the differential field extension L/K of Ex-

ample (2.1). We proved there

Diff-birxL(S) = Γ(S, ϋs)

for any C-scheme S. The group functor Diff-bir^L is representable by the multi-

plicative group scheme Gm c. Let us take the functor Diff-bir^Z, itself as the auto-

morphy group scheme G. In particular we have

Όiΐΐ-bir KL(A) = A*

for any field extension A of if . Since if is an extension of Cκ, the field A is an

extension of Cκ. If we take the model X = Spec if [z/, y~ ], an element c ^ A de-

fines an A 0 C ^ if-automorphism φc of a differential algebra A ® C χ K[y, y~ ]

sending y to cy and hence an A Θ C χ if-automorphism φc of scheme X®CχA with

derivation. Let us show that G m Cκ operates naturally on $FL/K. Let h : Spec

i4[[fl] [t~ ] —• X be an element of 2FL/K{A). The corresponding morphism K[y,

y ] —>A[[t]][t ] of differential algebras is denoted by / Since φc is an auto-

morphism of XA over if ®CRA, φc°hA : SpecΛ[[fl] [t~ ] ~^XA and hence p ° φc ° hA :

Spec A[[f\] [Γ 1 ] -^ X are defined. The morphism p°φc°hA : Spec A[[t\] [Γ 1 ] -^ X

is associated with a morphism k : if[z/, z/ ] ^ i 4 [ [ / ] ] [t ] sending y to c/(z/) and

extending the canonical morphism i :K—*K [[t]] c Λ[[f]][^ ]. Thus it suffices

to check that the morphism k factors through the generic point. Or equivalently k
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can be extended to the quotient field L = K(y) of K[y, y~ ]. In a differential

algebra Q(f(L).A)f f(L) and CQ ( / α ) - A = A are linearly disjoint over f(CL) =

f(C) = C(czKk [[fl] a AίimίΓ1]) by Lemma (1.1) so that Q(/(L).A) =

Q(/(L) ®C j rA). For a similar reason Q(/tK).A) - Q(/CK) ® C A). Since 0 =£ c

^ A, there exists a Q(t'CK) ΘcA)-automorphism ξc:Q(f(L) ® c A ) —• Q(/(L)

®Ci4) of the differential field sending /(z/) to c/(z/) and hence we have an

Q(/(ZD .A)-automorphism 0C of the differential field Q(/(L).A) sending/(z/) to

£/(?/) by the above isomorphisms. Consequently φc ° f : L—>Q,(f(L)A)—>

Q(/(L)A) c A t M Π Γ 1 ] is the desired extension of /c.

Let now A,: SpecA[[fl] [Γ 1 ] -> X (i = 0, 1) be elements of FL/K(A). The

morphisms hQ, hx arise from morphisms /,: K[y, y ] —^-Attίl] [t ] (/ = 0, 1) of

differential algebras factorizing through the morphism K[y, y ] —• L which gives

the generic point of X = Spec K[y, y~λ] : hx, =
 β/^ for ί = 0, 1. It follows

from the differential equation (2.1.1) that k{(y)f = — Λ T — = kt(y) so that

/co(?/) ^i(^) is a constant in i4[[£]] [ί ] : There exists a non-zero element c ^ A

such that /ĉ z/) = cko(y). This shows p ° φc°
a fQ

 = °A and ^ L / π is a principal

homogeneous space of Gm CR. SO L / i ί is a quasi-automorphic extension.

(2.6.2) The second example is Galois extension of abstract field. Let I be a

(finite) Galois extension of an abstract field K. They are differential fields with

trivial derivation. Since L/K is finite, SpecL is the unique model of L/K. Since

Cκ = K, ( S c h / Q ) = (Sch/K) so that the functors Diff-bir^L, Bir^L, Aut^L:

(Sch/iO ~* (Grp) coincide. Here for a K-scheme X the following notation is em-

ployed: The functors Ax\tκX and Bir^Jf are respectively the functor of automor-

phisms of the iί-scheme X and the functor of pseudo-automorphisms of the

scheme X

f (S) = A u t s I x ^ S a n d Bir^X (5) = Ps.aut 5 X Xκ S

for any if-scheme S. The Galois group G of the extension L/K is a finite group

so that we can regard it as a finite group scheme over K. The finite group scheme

G operates on the scheme Spec L. So G is a representable subgroup functor of

Diff-bir^-L. As is well-known ( G , S p e c L ) is a principal homogeneous space,

when we consider G and Spec L as functors on the category (Sch/K) . For any

field extension A of Cκ = Kf Diff-hom(L, A[[t]] [Γ 1 ]) = Horn ( I , A) so that

3"L/K(A) — Hor%(L, A) is a principal homogeneous space of G(A) which is no-
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thing but the finite group G. We have proved that every Galois extension of an ab-

stract field with Galois group G is quasi-automorphic with automorphy group G.

We can show the converse of Example (2.6.2).

THEOREM (2.7). Let L/K be an abstract field extension. Then the following con-

ditions are equivalent.

(1) The extension L/K is quasi-automorphic.

(2) There exists a finite group scheme G over K which operates on a model X of

L/K such that (G, X) is a principal hemogeneous space, X and G being regarded as

a functor on the category (Sch/K) of K-schemes.

(3) There exists a finite group scheme G over K which operates on Spec L over K

such that (G, Spec L) is a principal hemogeneous space.

Proof. If the condition (2) is satisfied, then X is finite over K and hence L is

finite over K and X = Spec L so that the condition (3) is satisfied.

If the condition (3) holds, then Spec L is finite over K, hence Spec I is a

model of K and condition (2) is satisfied with X— Spec L. The argument of Ex-

ample (2.6.2) allows us to prove that the condition (3) implies the condition (1)

since L is finite over K if condition (3) is assumed.

Let us now assume the condition (1). We first show that L is finite over K.

Let us examine the conditions (2.5.1), (2.5.2) for an abstract case. First of all

Cκ = K and the canonical morphism i :K—* K [[t]] is the identification of K

with the ring of constant series in K [[£]]. For a field A e <J(F\d/K), Diff-hom

(L, A[[*]]) = Hom(L, A) and the diagram (2.3) reduces to

ί T

so that 3FL/K(A) = Homκ(L, A). It follows from Proposition (1.17) that we can

find a model X of L/K such that the group scheme G of automorphy operates on

X over K. We need

LEMMA (2.8). The operation (G, X) is generically transitive, i.e. the morphism G

XCX—* X X

KX, (g, x) •-* (gx, x) is dominant.

Proof of Lemma. It is sufficient to show that the base changed operation (G^,

X%) is generically transitive for an algebraic closure K of K The total quotient

ring Q(L<g)κK) is a direct product of fields M{: Q(L ®KK) = Un

i=1 Mf. Let Xt
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be a model of M{/K. Then X% = X®KK is ^-birationally equivalent to disjoint

union of the X{: There exists ^-isomorphism between Zariski open sets of X^

and ]ln

t=1Xv Let Ω be a field extension of K and p, q: Jln

i=1Xj be generic points of

II^= 1 Xit i.e. p and # are respectively a generic point of X{ and ^ for some indices

1 < i, j < n. We have possibly i = y. The morphism p is defined by a K

-morphism M{ —* Ω. Composing with the canonical morphisms we get a K-

morphism p : L~+ Q(L (&κ K) —* M{-^ Ω. Similarly q gives us a ^-morphism

q : L —•> Q (L (8)κ K) —+ Mj —• β. Conversely the morphisms^ and # determine

the points p and q. Since >̂ and # are in 2?L/κ(Ω)> it follows from condition (1)

that there exists a point g e G(ί2) such that £̂ > = q or ^ = #. q.e.d.

It follows from Lemma (2.8) that we may assume that (G, X) is a

homogeneous space.

LEMMA (2.9). We can find a model X of L/K such that (G, X) is a principal

homogeneous space.

Proof of Lemma. In fact in the proof of Lemma (2.8), the choice of g ^

G(Ω) is unique.

Now we come back to the proof of the theorem. We take a model X such that

(G, X) is a principal homogeneous space. We can find a ^-valued point of the

ίί-algebraic scheme X by the Hubert Nullstellensatz. So there exist a finite exten-

sion N oί K and a iV-valued point q : Spec N—> X. This gives an L-valued point

q: SpecZ—-* X since N a K is contained in an algebraic closure L of L. On the

other hand the inclusion j : L-* L or the associated morphism p : Spec L—• Spec

L—+ X lies in 3?L/K(L). Denoting the Z-rational points of Xι corresponding to q:

Spec L—*X and p : Spec L—> X by the same letter q and >̂, there exists the uni-

que g G G(L) such that gp — q since (G, X) is a principal homogeneous space.

Thus ^ G &L/K(L) by our assumtion of being automorphic so that <?: Spec L~^ X

and consequently also # : SpeciV—>X factors through the generic point. Thus the

extension L/K is contained in the finite algebraic extension N so That L/K is fi-

nite, X — Spec L and G is a finite group scheme.

EXAMPLE (2.10). Let K be an abstract field or a field with trivial derivation

such that u + u + 1 is irreducible in the polynomial ring K[u], i.e. any primitive

cube root of 1 is not in K. Let a be an element of K such that a polynomial u — a

is irreducible in K[u]. Let L = K[u] /{u — α) and ΰ the residue class of u so
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that L = K[u\. The field L is an extension of K of degree 3. Let G be the group

scheme of the cube root of 1 or let G be the kernel of the morphism GmK—* GmK,

v •-• υ for v G GmK. As a scheme G = Spec ϋΓU] (2 — 1) = Spec K[z], z being

the residue class of z and the multiplication G x G—> G is given by

-KΪ2] ®iΠ/Z] sending z to 2 ® 2 . The group scheme G operates on a scheme Spec

L over K by if-morphism ϋΓ[«] —•/£[£] ®κK[ϋ] sending ΰ to z®ΰ. (G, Spec

L) is a principal homogeneous space and hence L/K is quasi-automorphic. But

is not Galois since any primitive cube root of 1 is not contained in K.

Remark (2.11). Abstract field extensions which are quasi-automorphic were

studied systematically in [G]. Disadvantages of such a Galois theory are that the

automorphy group is not uniquely determined and we do not have Galois corres-

pondence. A detailed discussion will be done in §4.

Let L/K be a quasi-automorphic extension with group G of automorphy. Let

X be a model with derivation of the extension L/K so that the algebraic group Gκ

pseudo-operates on X: We have an ^ί-pseudo-morphism (μ, p2): GCR X CRX =

Gκ Xκ X * —• X X

KX sending (g, x) to (gx, x) of schemes with derivation.

Here two schemes are regarded as X-schemes via the second projections.

LEMMA (2.12). // L/K is quasi-automorphic, then (Gκ, X) is pseudo-

transitive. More precisely the pseudo-morphism (μ, p^) : G X c X * * •—> X X

KX is

dominant.

Proof. It is sufficient to show that (Gχ\, X^ ) is generically transitive for an

algebraic closure K of K. The total quotient ring Q(L ®^ K) is a direct product of

differential fields Mt: Q (L <g)κ L) = Π7=i Λff. Let Xt be a differential model of

Mj/K. Then X% = X®KK is differentialy ^-birationally equivalent to the dis-

joint union Mt=ιXt of the schemes X{: There exists a ^-isomorphism of schemes

with derivation between dense Zariski open sets of X^ and Un

i=ιXt. Let Ω be a

field extension of K and py q : Spec Ω—* I I / = 1 X( be generic points of I I ί = 1 X{

i.e. the images of the morphisms p and q are respectively the generic points of X{

and Xj for some indices 1 < i, j < n. We have possibly i — j . The morphism p is

defined by K -morphism M{ —* Ω. Composing with the canonical morphisms we

get a K -morphism p :L - ^ Q d ® ^ © —> Mt —> Ω and consequently a

morphism p*[[i]] :L* [[*]] ~+ Ω[[t]] c ΩίίtilίΓ1] of differential algebras. Com-

posing now p [[f]] with the universal Taylor morphism i:L—>L [[£]] we get a

morphism p:L—*Ω[[f\][t~] so that p ^ ^L/K(Ω). Similarly for q, we get a

https://doi.org/10.1017/S0027763000006012 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006012


2 8 HIROSHI UMEMURA

morphism q :L —• Ω of fields and a morphism q: L—• β[[fl] [t~x] of differential

fields such that q ̂  2FL/K(Ω). So there exists g e G(Ω) such that gp — q. Since p

and # factor through the subring £?[[/]] c β[[fl] [/" ], g# = q implies by a spe-

cialization t = 0 gp = q.

THEOREM (2.13). L#ί L/if be a differential field extension satisfying the finite-

ness condition (F.C) o/§l. Then the following conditions (1) and (2) are equivalent.

(1) 77i£ extension L/K is quasi-automorphic with automorphy group G.

(2) The extension CL/ Cκ is finite and we can find a model with derivation X of

L/K such that an algebraic Cκ-group scheme G operates on X differentially, i.e. the

morphism μ : G x c X— Gκ x κ X~* Xf (g, x) |-> gx of the operation is a morphism

of K-schemes with derivation and such that {Gκ\ , X ) is a principal homogeneous

space.

Remark. (2.13.11). Before we start proof, we notice that the latter condition

in (2) is equivalent to the morphism

(2.13.2) (μ,pJ:Gκ *κX^XxκX

is an isomorphism of schemes with derivation (cf. §1).

Proof. If the condition (2) is satisfied, then the morphism (μ, p2) '. G xCκX~^

X *KX is a X-isomorphism of schemes with derivation, where the both schemes

are considered as Jf-schemes via second projections. Let us prove that the group

scheme G naturally operates on the functor 2FL/K (cf. Definition (2.3)). Let A ̂

(Fld/ϋΓ * ) , g e G(A) and let p : Spec A t M H Γ 1 ] -* X be a point of X giving an

element of 3FL/K(A). To simplify the notation, we denote the field Cκ by C. We de-

note the image of g: Spec A —* G by the same letter g. The point g induces a

C(g) <g)c ̂ -automorphism φg:C(g) ®CX~> C(g) ®CX of C(g) (g>c K-scheme

C(g) <S)CX with derivation. Here C(g) denotes the residue field ϋGg/mg. We

have to show that p2°φg°p : SpecΛ[[fl] [Γ 1 ] -^ C(g) ® C X - * C ( ^ ) Θ c Z - ^ Z i s

in 2FL/K(A). To this end it is sufficient to check that the image of p2

o φg°p is the

generic point of X. We notice here that since the field C is algebraically closed in

K, the extension K/C is regular so that C(g) ®CK is a domain. If we regard

C{g) as a subfield of A [ [ d ] [ ί ~ ] by the morphism ^ r S p e c A — > G and by the

natural inclusion A c A t M K Γ 1 ] , then C(g) ®CK- C(g).p*K by Lemma (1.1).

Since the morphism ψg is a C(g) ® c ϋί-automorphism, if we can show that the im-

age of p is the generic point of an irreducible component of the generic fibre of the

C(g) <g)c^-scheme C(g) ®CX, then the image φg °p : Spec A[[t]] [Γ 1 ] -• C(g)
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® c X is the generic point of an irreducible component of the generic fibre of the

Cig) *S)C iί-scheme Cig) (£)CX and hence p2

oφ°P is the generic point of X. So the

question is reduced to proving that the image of p is the generic point of an irre-

ducible component of the generic fibre of the C{g) ®c K-scheme C[g] ® C X The

point g : Spec A —* G defines a point g' = g°ai: Spec A [[£]] [t~ ] —> G, where i

denotes the natural inclusion map i :A c i4[[fl] [t ]. So we get a point gr: Spec

A [ [ t Π [ Γ 1 ] - > G a n d hence a point ̂  = (#',/>) : SpecA[[fl] [Γ 1 ] -> G X C X The

morphism />' factors through C(#) Θ c Spec Θxp—*G XCX, where ^ is the gener-

ic point of X that is the image of the morphism p : Spec A[[fl] [t~ ] —* X so that

Θxp-L Namely there exists a morphism p": SpecA[[fl] [Γ 1 ] ^ C(g) Θ c

) such that the diagram

SpecACMΠΓ1]
/•

is commutative, where the morphism C(g) ®CX—>G®CK is the canonical

morphism. Since the irreducible components of the generic fibre of the scheme

C(g) ®CX over C(g) ®CK are of dimension tr .d.IZ; ϋΠ, we have to show that

tτ.d.\p"*(C(g) ®c6χP) C(g) ®CK] = tr.d.tL β . In fact p"*(C(g) ®cOxp)

= g'*(C(g)).p*Wxp) ^g'*(C(g))p*(L) cAlίiiUΓ1]. It follows from Lemma

(1.1) that g'*{C(g).p*{L) - g'*(C(g)) ®c,p*(L) = C(g) ®C,L, where C =

Cig) Π p*(L). So tr.d.[p"*(C(g) ®CΘXP) C(^) <8>cia = tr.d. [Cig) ®σL;

C(g)®cK\. Since KC - Qt(K®cO by Lemma (1.1), Q(C(#) ® c # C ) -

Q(C(ί) ΘciD. Hence tr.d. (Cig) ®cL:C{g) ®CK\ = tr.d.ίCig) ®σL;C(g)

®σ KC] = tr.d. [(C(g) Θ σ KC) <g)κc, L Cig) ® c , XC1 = tr.d. [L iΓCI. Since

the extension field C is an intermediate field of the finite field extension

CL/C = Cκ, the extension KC/Kr is finite. Consequently tr.d. [L KC] = tr.d.

[L]K\ so that tτ.d. ίp"*iCig) ®CUXP) Cig) ®CK\ = tr.d. [L; A]. This is

what we had to prove. So the group scheme G operates naturally on the functor

& L/K'

Let now A be a field extension of K and p, g : Spec A[[fl] [Γ1] -+ X be ele-

ments of 3FL/K(A) so that /?, ^ are morphisms of schemes with derivation making

the diagram (2.4) commutative. So (p, q) : SpeCi4[[fl] [t~ ] —• X χ

κX defines a

morphism of schemes with derivation. Thus by the isomorphism (2.13.2), we get a

morphism r : SpeCi4[[fl] [t~ ] —> G x C χ X of schemes with derivation. Since Spec

i4[[fl] [t~ ] -^ G X r X-+ X is nothing but the morphism q, r is determined by a

composite morphism 5 : SpecA[[fl] [t ] —• G xc^X—^ G of schemes with deriva-

tion and we have sq = p by the isomorphism (2.13.2). Since G is a scheme with
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trivial derivation, the morphism s factors through the subring A a A[[t]][t ] of

constants of i4[[£]] [t~ ] so that there exists a point u : Spec A—* G such that r =

u°φ, where φ : SpeCi4[[fl] [Γ1] —• Spec A is the canonical morphism. In other

words uq — p and the u e G(A) with up = q is unique by the isomorphism

(2.13.2). Thus 3FL/K(A) is a principal homogeneous space of G(A). So the condi-

tion (2) implies the condition (1).

Let us now assume that the L is a quasi-automorphic extension of K. Then it

follows from Propositions (1.15) and (2.2) that we can find a model X of L /K

such that G operates on X. Since L has the derivation δ and the operation of G is

compatible with the derivation, we have a derivation δ:Θχ—> K(X) = L, where

K(X) is the constant sheaf of rational functions on the scheme X such that the op-

eration of G is compatible with δ. So there exists a non-empty G-invariant open

set U of X such that δ : Θx —• UΓCX) induces a derivation 0^ —• 0^. Let us denote

Uby X again. The algebraic scheme X has the following properties: The algebraic

scheme X is a scheme with derivation and is a model of L/K. The algebraic group

scheme Gκ operates on X such that the morphism μ : G x c X = Gκ X Jf —• Jf is a

if-morphism of schemes with derivation. So the morphism (Id, μ) : G XCX~+ G

*CK is a G Θ c iΓ-automorphism of the scheme G XCX with derivation. By Lem-

ma (2.12) we may assume that (Gκ\, X) is a homogeneous space. In the argument

of the proof of Lemma (2.12), the element g ^ G(Ω) such that gp = q is unique so

that (Gκ , Z) is a principal homogeneous space. So the second condition of (2) is

satisfied. It remains to show that the extension CL/Cκ is finite. Let us state it in a

form of Lemma.

LEMMA (2.14). If L/K is a quasi-automorphic extension, then the field CL of

constants of L is a finite extension of Cκ.

Proof. Let X be the differential model of L/K such that the automorphy

group G operates on X so that (Gκ, X) is a principal homogeneous space. It fol-

lows from Lemma (1.2) that the extension CL is finitely generated over Cκ. Let Y

be a model of CL/CK. Since CL and K are linearly disjoint over CK1 Yκ is a model

of KCL/K. So there exists a dominant if-rational map / : X * * —• Yκ of schemes

with derivation. Let U be a Zariski open set of X over which the rational map / is

regular so that/(ί/) c: Yκ contains a dense Zariski open set W. Since the field Cκ

of constants of K is algebraically closed in K, K is a regular extension of Cκ so

that K ®cκCκ is a domain for an algebraic closure Cκ of C# and we can consider

the quotient field QCfiΓ®c Cκ).
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SUBLEMMA (2.15). There exist a Cκ-valued point q : Spec Cκ—* Ysuch that the

induced Q(if ®CκCκ)-valued point qκ : Spec Q(if ®CκCκ) —» Spec if ® c C* —• Yκ

factors through W or the image ft (Spec Q(if ®Clpκ^ G W

Proof of Sublemma. The complement Z — Yκ~ W is a closed set of Yκ. Since

X and Y are algebraic schemes, we can find a subring i? of if of finite type over

C^ such that Z c Ŷ  is defined over R. There exist a closed subscheme Zo c YΛ

of Xo such that Z o ®RK c: Ŷ . coincides with the closed subscheme Z of Yκ. To

simplify the notation we set Cκ — C, Cκ— C and R = R ® c C. The schemes Y ,̂

Spec R, and Ŷ  are C-algebraic and hence ZOχ is a closed C-algebraic subscheme

of YR SO that Ŷ  — Zo# is a C-algebraic scheme. By the Hubert Nullstellensatz we

can find a C-valued point q;: Spec C—*YR — ZO#. Thus we get a C-valued point

of Y by composing <?' with Y# — Zo^ cz Yχ—>Y: We denote this point by q :

Spec C—* Y. Then # satisfies our requirement. In fact since K/C is a regular ex-

tension, R is a domain, q : Spec C—* Y defines a section ft : Spec R —* YR. Since

the image #'(Spec C) is in Ŷ  — Zo^, i.e. ^(Spec C) is not in ZOR and ^(Spec

C) c q βiSpecR), the image q^(Spec R) is not contained in Zo^ so that the image

of the generic point of Spec R is not in Z0R-. Namely the Q(i?) -valued point

Spec Q(i?) —* Ŷ  induced by q factors through YR — ZQR . Hence the

C)-valued point q^{κ ^^ : Spec Q(if ®c C) —* YQ{K <g>cc) factors through (Y^ —

0 ^j v9c\K v9cC) — vi — Z) Q9C\K v9cL). q.e.d.

The quotient field Q(if ® C C ) is a field algebraic over if and hence we
h _ h k

can find an algebraic closure if ^ Q(if Q9C C) of if . We denote by g# the
u h b b

Specif -valued point of Yx arising from qκ: Spec (if ® c O -^ IJJ- : The
h b b

morphism q% : Spec if —• Spec (if ® c C) ~^YK ^s a composite of qκ and the
— h — h

morphism defined by the inclusion if 3 Q(if ®c O By applying the Hubert

Nullstellensatz to the fibre of / : U-* Y over ^ ( S p e c K ), we can find a K

-valued point q : Spec K —> U c X* such that /°# = ft. <?: Spec R-+X de-

fines an Z, -valued point Spec L —> Spec ^ —* X which we denote by q,

where L is an algebraic closure of L such that L Z) if .

The morphism # : Spec L -^ X has the following property.

(2.16.1) The image of the L -valued point q : Spec L ~* X is in [/ so that

we can define f°q : Spec L —* Yκ .

(2.16.2) The morphism /°^ : Spec L —+ Yκ arises from the Spec C^-valued

point φ : Spec Cκ~^> Y. More precisely the following diagram is commutative.
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=r 1, foq h

Spec L -+ Yκ

Spec Cκ

where the morphism Yκ —* F is the projection and Spec L —• Spec C# is the

morphism induced by the inclusion Cκ ^ K cz Z . It is convenient to denote the

composite map of the horizontal map by ζ : Spec L —• F On the other hand the

inclusion morphism L —* L together with the generic point Spec L —* X of X

gives a morphism p:SpecL -+X and a morphism L~+L [[t]]—*

V [[f lΠΓ 1 ] of differential fields so that V [[*]] [Γ1]-valued point £ : S p e c

L " [[fl] [Γ 1 ] -^ Z in ^ L / j r ( Z ") (cf. Remark (2.3.1)). By Proposition (1.4), q : Spec

L —• X defines a morphism ^ : S p e c L [[t]] -+X of schemes with derivation

and hence a morphism Spec L \]_tY\[t ] —> X of schemes with derivation com-

posing with inclusion L [[t]] —• Z [[/]][£"]. We denote this morphism again by

^ : S p e c L [[fl][ί ]—>X. Since (Gκ* >X ) is a principal homogeneous space,

there exists g ^ G(L ) such that gp — q. Thus gp — Qi\ so that ^£i is in

&L/K(L ). This implies that the image of q: Spec L [[t]] [Γ1] —* X is the gener-

ic point of X. Consequently the image of the morphism qn : Spec L [it]] —• X of

schemes with derivation contains the generic point of X or the morphism qn is

dominant. Composing with / : U~* Yκ, we get a morphism η : Spec L[[fl] —• F π of

schemes with derivation. Since F i s a scheme with trivial derivation, the morphism

ϊ] : Spec L [[t]] —• Y of schemes with derivation factors through the morphism

SpecZ [[£]]—>-£ induced the inclusion L cz L [[/]] so that there exists a

morphism φ : Spec L —> Fof schemes making the diagram

Spec

1
Spec

V

V
commutative. Necessarily by definition of qy φ coincides with ζ introduced above.

Since η : Spec L [[t]] —* F is dominant, φ = rj is dominant. It follows from the

definition that η' comes from qκ : Spec K -^ Y and hence from q : Spec C-+ Y

so that q is dominant. Thus F i s finite over Cκ and CL is finite over Cκ.

LEMMA (2.17). Let L/K be a quasi-automorphic extension with automorphy

group G and M the algebraic closure of K in L so that L ZD M ZD K. Then the exten-

sion M/K is quasi-automorphic with automorphy group G/G . In particular if G / G

is a finite group, then the extension M/K is Galois with Galois group G/G and

hence the quotient group G/G is uniquely determined by the extension L/K.
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Proof. We can find a model X of L/K such that (Gκ* , X ) is a principal

homogeneous space. In particular X is smooth over K so that the local ring

Θx\ x is a regular local K -algebra for every point x ^ X. Since the regular local

ring ϋκ\x is U.F.D., 0X* x is integrally closed and hence Θx* x 3 M for every

point r ̂  X . Thus we have the natural i£-morphism / :X—• Spec Λf = F of

if-schemes with derivation. We have a diagram

G xcX ^ X

(2.18) I d x / | | f

G x c F F

We show that in (2.18) f°μ factors through Id x / In fact if we go over an algeb-

raic closure K , then X®K*K is a disjoint union of absolutely irreducible com-

ponents of Xx* = X ®KK , (Yκ) is a disjoint union of points isomorphic to

Spec K of which the number is equal to that of the irreducible components of (X

&)KK) and / ® I d : (X^) —• (F#) is the mapping of collapsing each compo-

nent to a point. Thus once the base change K/K is done, (G X X)χ — ^ F# fac-

tors through (Id x f)^ : ( G x I ) ^ ( G x Y)% . Then it factors already over K

if we take care of the following trivial fact.

SUBLEMMA (2.19). Let E/F be a field extension, f : C-* A an F-algebra morph-

ism and B a F-subalgebra of A. If the image off®ld: C Θ F E —> A Θ F E is con-

tained in the subalgebra B ® F E, then the image f (C) is contained in B.

Thus we have a morphism G X c Y—> Y of the operation of G on F. This

morphism is a morphism of if-schemes with derivation, where G X c F i s regarded

as a i£-scheme by a composite of the projection p2: G x c Y—> Y and the structure

morphism F—•» Spec K. Hence G^* operates on F and the morphism / is

Gπ»-equivariant. Since F i s finite over K, the functor Aut#< F of the group of

automorphisms of F /K is representable by a finite group scheme. We have a

morphism φ : Gκ> —»Aut# F. The kernel N of φ is an algebraic i ί -group

scheme. Since Gχi — X%\ and ^ * - ^ * ~^ Y~k* is a morphism of collapsing each

component of X^* to a point, iV^ = (G^) which coincides with (G )^ by Lemma

(1.12). The morphism G * CY~* F induces the morphism μ: (G/G°) XKY-*Y of

operation of G/G such that

(2.20) (μyp2):{G/GQ) xcY^YxκY

is a ϋί-morphism of schemes with derivation. The if-morphism (μ, p2) is an iso-

morphism since its base change over K is an isomorphism. So by Theorem (2.13)
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M/K is quasi-automorphic with automorphy group G/G°. If G/G° is a finite

group, M/K is Galois such that the Galois group of the extension M/K is isomor-

phic to G/G by the argument of the proof of Theorem (2.7).

We can deduce from Theorem (2.13) the following remarkable result.

THEOREM (2.21). Let L/K be a quasi-automorphic extension. If CL— Cκ, then

the functor Diff-bir^L: (Sch/Cκ) —* (Grp) is representable by the automorphy

group G. In particular under the assumption CL = Cκ, the automorphy group is unique-

ly determined (cf Definition (2.23)).

Proof In fact, let S be a C = CL = C^-scheme and / :X x c S * —> X x

 c

S an element of Diff-birxL(S) so that / is a K ®cS-pseudo-automorphism of

X XCS compatible with derivation. We can define an K(^c^-pseudo-morphism

(/, Id) :XS - - —> Xs X Xs = (X XKX)S of schemes with derivation, where the

fiber product Xs x Xs is taken over K ® c S. Since we have an Jf-isomorphism

(2.13.1) of schemes with derivation, we get an X5-pseudo-morphism Xs X Xs =

(X X

KX)S ' ' —> (G XCX)S = Gs x 5 Xs of schemes with derivation and hence a

K x c 5-pseudo-morphism Xs * •—• Gs and hence an 5-pseudo-morphism Xs

' ' —* Gs of schemes with derivation. By Proposition (1.11) the S-pseudo-

morphism Xs * •—* Gs of schemes with derivation factors through the projection

Xs~* Spec S, we get a morphism φ : S—> G. In other words, by the isomorphism

(2.13.2) φldXs = / or the S-pseudo-morphism f :XS—+ Xs of schemes with de-

rivation is an 5-morphism Xs—* Xs induced by S~* G form the operation G x c

X->G xcXoί G:

S x Q X—* S x Q X G x Q X * G x Q X

\ ]/ is a pull-back of \ ι/

S G

by the morphism S—*G.

Remark (2.21.1). We show is §3 that the conditions of Theorem (2.21) are

satisfied if and only if L/K is strongly normal in the sense of Kolchin.

LEMMA (2.22). If L/K is a quasi-automorphic extension with automorphy group

G, then K coincides with the field of G-invariants of L. To be more precise, if a ^

L\K, then there exists a C = Cκ-scheme S and g ^ G(S) such that g defines a

K®c S-pseudo-automorphism ψg: Xs—+ Xs with φg a Φ a. Here we regard a as a
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rational function on X and we mean by φg a the meromorphic function d°Pι°φg on Xs,

pί: Xs = X x c S—* X being the projection (cf. §4).

Proof In fact let us take S = Spec (L&)KV) which is a if -scheme. Let iι:

L —* (L ®κ L) be the K -morphism identifying L with L ®\ and i2: L

—• (L ®KL) the K -morphism identifying L with 1 ® L . We get two morph-

isms i J:L-*(L<g)κL) * [[*]] c (L®KL)" [[t]][t~ι], j = 1,2 of differential

algebras. So we get two points q{: Spec (L ®κ L) [[t]][t ]—>X which are

morphisms of schemes with derivation. It follows from (2.13.2) there exists <p ^

G((L (8)KL) ) such that φqx = q2. Now by definition if we have ix{b) = i2(b) for

an element b ^ L, then b ® 1 = iλ(b) — i2(b) = 1 0 5 and hence b ^ K. Hence

ix{a) Φ i2(a). Now )̂ satisfies our requirement: i^φia)) = i2(a) Φ ix(a).

Let L/K be a quasi-automorphic extension with automorphy group G. We

take the model X with derivation of L/K as in Theorem (2.13). Since the constant

field extension CL/CK is finite, as in the Proof of Lemma (2.17), for any

C^-scheme S the group G(S) operates on the scheme CL ®c S/S of constants by

Proposition (1.11). So we have a morphism φ : G-* AutCκCL of group functors on

(Sch/Cκ) . Since the extension CL/CK is finite, the group functor AutCκCL is

representable by a finite group scheme over Cκ and hence N = Ker φ is a closed

subgroup scheme of G such that G/N is a finite group scheme over Cκ.

Let us fix a general notation. Let / : Y~> Z be a morphism of reduced

schemes and w a rational function on Z. When we can compose / and w to get a

rational function w°f on Yt the composite function w°f will be denoted b y / (w).

Let R be a ring of rational functions on Z such that / (w) is defined for every

w ^ R. Then we have a morphism / : R—> (The ring of rational functions on Y).

If / is a morphism of schemes with derivation and if R is closed under the deriva-

tion, then / is a morphism of differential algebras.

Let L/K be a quasi-automorphic extension with automorphy group G. We

can find a model X as in Theorem (2.13). Let A e <d(Fld/K ) and φv φ2 ^

$?L/K(A). So there exists h e GC4) such that the diagram

SpecAtt f lΠΓ 1 ] - ^ A®CκX

(2.22.1) \ i 0Λ

is commutative, where φ iA: Spec A[[f]][t~ ]—* A<8>c X is a morphism of

schemes induced from <p?: SpeCi4[[£|] [£ ] —•* X so that the diagram
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SpecA[[tmrιl — A®CX

is commutative for i = 1,2 (cf. Definition (2.5)). In diagram (2.22.1) the morphism

φh is a induced morphism by the A-valued point h: Spec A—» G. Namely the dia-

gram

A®CκX -> G xCκX

φk i I
A®CκX -> G xCκX

is commutative, where the right vertical arrow sends (g, x) to (gf gx). Since we

are in characteristic 0, the schemes in (2.22.1) are reduced. So the notion of a

pseudo-function coincides with that of a rational function (cf. E.G.A. Chap. IV, Re-

marque (20.2.7)). A field 1 ®L is considered as a field of rational functions on

A ®CRX. Since ψx: Spec A[[fl] [t~ ] —» X factors through the generic point Spec

L—* X of X. So by composition with φlt we get a morphism

(2.22.2) φΐA:l®L^A[[t]][Γ1]

of differential fields. Here we consider 1 ® L as a field of rational functions on

A ®CκX and A[[t]] [Γ 1 ] is the field of rational functions on Spec A[[t]] [Γ 1 ] :

The ring of composition
The field of

rational functions with φ1A^ rational functions on
A®.X ^ SpecA[[fi][l/fl

By composition with φh, φh (1 ® L) is a field of rational functions on A ®CκX- It

follows from diagram (2.22.1) that we can compose every element in φh (1 ®

L) with φ1A to get a field of rational functions on SpecA[[£]] [ί ] since the

morphism φ2 factors through the generic point of X: In fact for 1 ® #, a e L, we

define φy^Φh (1 ® #)) a s ΨZA^- ® a^ Namely we have a diagram:

The ring of composition
The field of

rational functions with φ1A

Λ ^ ^τ rational functions on
on A ®Cκ X

\J
φ*h(\®L)
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- I TSo we get a morphism Q[l ® L, ψh(l ®i>)] ~~*-A[[/]][£ ] of differential rings

induced by composition with φ1A :

The ring of composition
The field of

rational functions with φ1A-. rational functions on

°n A®c«[f " ~ ^ Spec ilCM] [1/0

Q[l ® L, 0*(1 ®L)

DEFINITION (2.23). A quasi-automorphic extension L/K is said to be auto-

morphic if for every A ^ <w{F\d/K ) and every φlt φ2 e ^ I / i Γ (A), the morphism

φ1A :Q[1 ® L , φh (1 ® I ) ] --*-A [[£]][/" ] induced by ^ l i 4 is injective.

PROPOSITION (2.24). A. Galois extension L of an abstract field K is automorphic.

Proof. Since the automorphic group G is a finite group, every A-valued point

of G arises from a K-valued point of G for any A ^ w(Fld/K). So in particular

h e G(A) comes from an ft' e G(IQ. Hence Q[0*(1 ®L), 1 ® ZJ = #[0*(1 ®
L), 1 ®L] = K[ψ*,(l ®L), 1 ®L] = iΓ[l ®L] = 1 ® L and the map in De-

finition (2.23) is injective.

We can slightly generalize Proposition (2.24).

PROPOSITION (2.25). Let L be a quasi-automorphic extension of an abstract field

K with automorphy group G.

(i) Let F be an abstract field extension. If L <8)κ F is a field, then L ® x F/F is

quasi-automorphic with automorphy group GF.

(ii) Let F be an abstract field extension of K satisfying the condition (i). The fol-

lowing conditions are equivalent: (a) The extension L ®KF/F is Galois with Galois

group isomorphic to GF (b) The group scheme GF is a finite group.

(iii) If there exists a field extension F/K satisfying these equivalent conditions in

(ii), then the extension L/K is automorphic.

Proof, (i) follows from Theorem (2.7). The equivalence of the conditions in (ii)

is well-known. Assume that there exists a field extension F/K satisfying the

equivalent conditions of (ii). Let A ^ w(Fld/K) and φv φ2 G SFL/K(A) as in De-

finition (2.23). Since the extenpion L/K is finite by Theorem (2.7), X = Spec L is

the unique model of L/K. We can find a field A'/K that contains two fields
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if-isomorphic to A and F respectively. We have natural inclusions 2FL/K(A) c

^L/K(A') c: SFL <s>κF/F(A) so that there correspond to φlt φ2 e 2FL/K(A) elements

φ'v φ'2 e $FL 0 F / F(A'). In fact ^ , (p'2 ̂  2?L ® F / F W ) a r e defined as follows. Since

the field A' contains F, the composite morphism SpecA'[[i]] [t~ ] —• Spec

A[[fl] [t~ ] -^Spec L — X factors through the first projection px: Spec L ®κ F —

X ®κ F—* X so that we have a morphism φ\: Spec A'[[fl] [t~ ]-^ XF oί schemes

with derivation making the following diagram commutative.

XF

SpeciltMlLΓ1] - ^ X

i= 1,2).

We can regard the A-valued point h ^ G(A) with φ2 = ^^i as an A'-valued

point A' e G(A). The point A' induces an A'-automorphism φh, :A ®KX~* A

®KX, that is, an A'-automorphism of A ®FXF such that φ2 = ψh'°φ[ Since L

®KF/F is Galois,

u

In [G] they introduced the notion of an almost classically Galois extension and

proved the Galois correspondence for a such extension. Namely a quasi-

automorphic extension L of an abstract field K with automorphy group G is

almost classically Galois if there exists a Galois extension F/K such that L ®κ

F/F is a Galois extension and such that G ®# F is its Galois group. So an almost

classically Galois extension is a particular case of the extension in Proposition

COROLLARY (2.26). An almost classically Galois extension in the sense of [G] is

autornorphic.

In [G] they proved that the Galois correspondece exists for an almost classi-

cally Galois extension, which is one of their main results (5.2 Theorem in [G]). We

show in §4 Theorem (4.10) that the Galois correspondence exists for an automor-

phic extension. So the result of [G] follows from Corollary (2.26) and Theorem

(4.10).

PROPOSITION (2.27). A quasi-automorphic extension L/K with CL = Cκ is auto-

morphic.
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Proof. Let A ^ oi (Fid /K ) and X be a model on which the automorphy

group G operates. Let φ19 φ2 e G(A) and h e GC4) as in Definition (2.23). We

have a morphism Spec A[[fl] [t~ ] — ^ A ® C i f X Since C# = CL, L/Cκ is a regu-

lar extension so that A ® c L is an integral domain. We have φlA\A®c L—>
— i κ κ

A[\.i[]\_t ]. It is sufficient to show that this map is injective. The intersection

φ*lA(l®L) Π A in A tMΠΓ 1 ] is C φ S ι ( l β L ) - < ^ ( 1 ® Q) = « £ ( 1 <g> C,) = C z

( c x " c A[[t\][t~1]) since 4 is the field of constants of AlίiiΠΓ1]. Hence by

Lemma (1.1) φ1A(l (8)L) and A are linearly disjoint over ^ > u ( l ® C j r ) . So the

mapping in question induced by φlA is injective. This is what we had to show.

§3. Relation with the Kolchin theory

The differential Galois theory of Kolchin depends on the language of algebraic

geometry of Weil. Namely let Ω be a differential universal domain so that Ω is a

differential field and all the differential fields which he considers are differential

subfields of Ω. The differential universal domain Ω is fixed once for all and he

studies small differential subfields of Ω. We mean by a small differential subfield

of Ω a differential subfield K of Ω such that for every differentially finitely gener-

ated field extension L of K, there exists a differential if-embedding / : L—> Ω : f

is a morphism of differential fields such that/(#) = a for every a ^ K.

Let L/Kbe a differential field extension which satisfies the finiteness condi-

tion (CF) of §1. He says that a if-morphism / :L—+Ω of differential fields is

strong if (i) f(a) = a for every constant a €= L and if (ii) the composite field

f(L). L which is a differential field is generated over L by constants. He says that

the extension L/K is strongly normal if every i£-morphism L—>Ωis strong.

Remark (3.1). It follows from Corollary (1.2) that the following conditions

are equivalent.

(i) The composite field f(L)L is generated over L by constants,

(ii) f(L) is contained in the composite field f(L)CΩ.

EXAMPLE (3.2). Let us analyze Example (2.1): K= C(x), L = C(x, exp x)

with derivation d/dx. Any morphism/ \L—*Ω of differential field is strong. In

fact, since y = exp x is a solution of the differential equation (2.1.1), the image

f(y) = z satisfies the differential equation

(3.2.1) z' = z.

Then it follows from (2.1.1) and (3.2.1) by the argument of Example (2.1) that
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yz is a constant so that f(L)L = K(y, z) = K(y, yz ) is generated over L =

K{y) by the constant yz . Here we notice that we may replace C by any abstract

field, for example Q.

As is widely recognized, it is more convenient to avoid the universal domain.

We adopt the following

DEFINITION (3.3). Let L/K be a differential field extension satisfying the

finiteness condition (FC) of §1.

(1) Let f,g:L—*Mbe two if-morphisms of differential field extensions of

K. We say that the morphism / is strong over g if (i) f(a) = g(a) for every con-

stant a of L and if (ii) the composite field f(L). g(L) is generated over g(L) by

constants.

(2) We say that the extension L/K is strongly normal if for every differen-

tial field extension M of K and for arbitrary two if-morphisms / , g :L—* M of

differential fields, / is strong over g.

Remark (3.4). As we noticed above, the condition (3.3.2) is satisfied if and

only if the image f(L) is contained in the composite field g(L) CM.

Kolchin uses the case where M is the universal domain Ω and g :L—+ Ω is

the identity map. Evidently our Definition (3.2) of strongly normal extension coin-

cides with Kolchin's. In fact it is sufficient to notice the following: For every dif-

ferential field extension N1/K satisfying the finiteness condition (CF) of §1, every

differential intermediate field Nx 3 N2 ^ K and for any morphism φ : N2~^ Ω of

differential fields, the morphism φ can be extended to a morphism φ : Λ^—• Ω of

differential fields.

Let L/K be a differential field extension satisfying the finiteness condition

(CF) of §1. As is explained in §1, the total quotient ring Q(L<S>KL), which is a

differential ring, is a direct product of the differential fields Mt : Q(L (&κ L) =

LEMMA (3.5). Let L/K be a differential field extension satisfying the finiteness

condition (CF) of §1 and a ^ L\K. Then there exist K-morphisms f, g : L~• M of

K-differential fields such that f (a) Φ g(ά).

Proof We use the notation of §1 below Corollary (1.12.1). Since a ® 1 Φ 1

® a in L ®κ L c Q(L ®κ L) = Un

i=1 Mit there exists a differential field Mt such
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that for the i-th projection /•: Q(L Θ*L) -> Mt ft(a 0 1 ) Φ /<(1 0 a).

LEMMA (3.6). // an extension L/K is strongly normal, then the field of constants

CL of L coincides with the field of constants Cκ of K.

Proof. If a €= L\K, then by Lemma (3.5) there exist i£-morphisms / , g :

Z,—• M of ϋf-differential fields such that/(α) =£ #(#)• Since / is strong over g, a

is not constant by Definition (3.3. i). Namely any constant in L is contained in K

so that CL c Cκ. The opposite inclusion being trivial, the Lemma is proved.

DEFINITION (3.7). Let L/K be a differential field extension satisfying the

finiteness condition (CF) of §1 and ffh1:L-^Mlfgyh2:L-^M2 four K-

morphisms of K-differential fields. We say that the morphism (g, h2) is a spe-

cialization of (/, hj) or simply g is a specialization of/ if there exists a differen-

tial algebra morphism r : Qίh^L), f(L)] —* Q[h2(L), g(L)] making the diagram

below commutative:

(3.7.1) Λ i r

Q[h2(L),g(L)] c M 2

where pf q are the natural morphisms induced from / , g respectively: p(a 0 6) =

fiώh^b), q(a 0 b) = g(a)h2(e) for β e I and b <Ξ L

Remark (3.7.2). If we regard the fields Mx and M2 as over fields of L respec-

tively hγ and h2, and L ®KL as an L-algebra by a |-^ 1 ® a, then the morphisms

p, q are L-morphisms and the commutativity of the diagram (3.7.1) requires that

the morphism r is an L-morphism.

LEMMA (3.8). // (/, h2) is a specialization of (g, h^ and f is strong over hv

then g is strong over h2.

Proof We need the following well-known fact (see for example [Kl], Chap. II,

§1, Theorem 1).

Sublemma (3.8.1). The following two conditions for elements yly y2y. . . , yn of a

differential field K are equivalent.

(1) V\y V2> - t Vn

 are linearly independent over the field Cκ of constants of K

(2) The Wronskian W(yv y2, . . . , yn) Φ 0 {Let us recall that the Wronskian
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W(yv y 2 , . . . , y n ) is the determinant of a matrix (y/ )i<*,;<«•)

If we regard L ®κ L as an L-algebra by identifying L with 1 ® L c: L ®κ L

and Mlt M2 respectively by hίt h2, then the morphisms in diagram (3.7.1) are

L-morphisms (cf. Remark (3.7.2)). It follows from Remark (3.4) that we have to

show that g(L) c h2(L)CMϊ We show g(a) e h2(L)CM2 for a ^ L. Let ie)i&1 be

a basis of the CL-vector space L. Since / is strong over hv we have f(L) c

so that we can write

(3.8.2) f(a) = Σ aMO /Σ 6A(e<) with aif bt e CMχ

for all / ̂  /. Here almost all the at and b{ are equal to zero. We get from (3.8.2)

ΣbJ(a)hM) -ΣaMti) = 0.
i

In particular a finite number of the fictih^e^) and h^e) are linearly dependent

over CMi. Say /(ajh^ej, h^ej 1 < / < w are linearly dependent over CMi. By

Sublemma (3.8.1), W(f(a)hι(ei)J(ά)hι(ei)y...J{ά)hι(ei)y h^), / z ^ ^ ) , . . . ,

fo\(ei)} ~ 0 Since PF is a differential polynomial of the fiώh^ej and A ^ ^ )

1 < / < n, with coefficients in Q, we get 0 = Wirifiώh^eJ), rifiώh^e^),. . .,

r{f{a)hM))9 K A i K » , K A ^ ) ) , . . . , K A ^ ^ ) ) = JVr(^(a)A2(eli), g(a)h2(eh),

. . . , g(a)h2(ein), A 2 (^) , A 2 (β ί 2 ),. . . , A(«in)). So g{a)h2{ei), g(a)h2(ei2),..., ^(fl)

h2(e{j, h2{e{^, A 2 (^,) , . . . , h2(e{j are linearly dependent over CMz by Sublemma

(3.8.1): We can find a non-trivial linear relation

(3.8.3) Σ βtg(a)h2{e) - Σ α,A2(e,) = 0,

where α? , jSf- are in CM2 and equal to 0 except for a finite number of indices. We

have either (i) every βi is equal to 0 or (ii) one of the β{ is not equal to 0. We

show that the first case never occurs. If the first case happened, it would follow

from (3.8.3)

(3.8.4) Σαr fA 2(^) = 0.
I

Since eit i €= / are linearly independent over CL, the h2(et), i ^ I are linearly in-

dependent over h2(CL) = C^ a ) . On the other hand CMz and h2{L) are linearly dis-

joint over h2(Cj) — Ch2iL) by Lemma (1.1) so that the h2(et), i ^ I are linearly in-

dependent over CM<ι. Hence (3.8.4) would imply that a{ = 0 for every i e /. Con-

sequently Oίi — βi = 0 for every i G /. This is a contradiction. So the latter case

always occurs: At least one of the β{ is not equal to 0. As we have seen above, the

A2(^ ) are linearly independent over CM so that Σ z βig(a)h2(e) Φ 0 and g{a) =
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ΣiaMeJ/ΣiβAbi)- Thus ^(α) €= h2(L)CM.

LEMMA (3.9). For a differential field extension L/K satisfying the finiteness con-

dition (C.F) o/§l, the following conditions (1) and (2) are equivalent.

(1) The extension L/K is strongly normal {cf Definition (3.3)).

(2) The field of constants CL of L coincides with the field Cκ of K. We using the

notation of §1 below Corollary (1.12.1), the composite fields Lt , Lt in M{ are gener-

ated over Lι by constants for 1 < i < n. Namely the morphisms f{ is strong over f\

for 1 < i < n.

Proof If the extension L/K is strongly normal, then CL = Cκ by Lemma

(3.6). Since we have the two if-morphisms fifft :L-^M{ of differential fields

such that fi (L) = L{ , ff(L) = Lf for 1 < i < n, the condition (1) implies the

condition (2) by definition.

Let us now assume that the condition (2) is satisfied. Let /, g : L—> M be two

if-morphisms of differential fields so that we get an L-morphism h : L ®KL—* M

of differential L-algebras such that h(a®b) =f(ά)g(b) for a, b ^ L. Here we

regard L®KL, M as L-algebras respectively by Z,—> 1 ® L c L®κLy g : L—>

M. Then h factors through one of the M{. Namely let us regard Mt as an

L-algebra by ff :L—Mi and set A{ = Qlf-iD, //(L)] = ft(L Θ^L) so that At

is a differential L-subalgebra of M{. Then there exists a differential L-morphism

φ:At-+M such that φ °f{ \L ®κL = h, where / ^ L ^ L c Q(L <g)κ L) = Un

t=1 Mt

—* M{ is the projection as in §1. In fact let £ be an abstract K -subalgebra of L

of finite type over K so that an algebra £ (S^* L is of finite type over L . Then

hcβ = h\ £ ®Xί L : £ ®^ L -^ M is an L -morphism of algebras so that the

image of the morphism hg : Spec M —+ Spec (£ ®#> L ) lies on an irreducible

component, say the i-th irreducible component X{ of the algebraic L -scheme

Spec 0? Θ#> L ). Hence the image point ahce(Spec M) is a specialization of the

generic point of L -integral scheme Xt. Namely if we set A% = Q[ft (L),

/, (£)] — fi(£ ®KL), then there exists an L -morphism φ£ -Ag—* M of algeb-

ras making the diagram

^ M

commutative, where we set ft£ = f{\£ ®KL so that we have f^ia (£) b) =

ft1 (a)fi2 (W for ΰ G ί , ft G L. Since the subalgebra A% and the morphisms fi£,

hcβ, ψcβ are uniquely determined by the subalgebra £, we can glue them: If £' be
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another abstract K -subalgebra of L of finite type over K , then fi£ and fi£,f

hg and h%,, φ^ and ψg, coincide when restricted on the subsets where the both

morphisms are defined. In this way the morphisms fiX and hg recover respectively

L a n d h and the morphism φ£ defines an abstract algebra morphism φ:

j,/?&)] =At->Q[g(L),f(L)] making the diagram

L®KL^ Q[ft

1(L),f?(L)]=Atc:Mt

h\ ϊ *
Q[g(L),f(L)]

commutative so that we have

(3.9.1) φ ( / » / > ) ) = f(a)g(b) for a, b ^ L.

Here we denote fi\L®κL by p. Since the canonical morphisms f{ (L) —>f(L),

ft (L)-+g(L) (/t (a) •-•/(α),/,-2 (a) ^ g(ά) for a e L) are differential morphisms,

the morphism φ is a differential morphism by (3.9.1). In other words (/, g) is a

specialization of (/ , / ) so that / is strong over g by Lemma (3.8). Hence the

condition (1) is satisfied.

THEOREM (3.10). For a differential field extension L/K satisfying the finiteness

condition (FC) o/§l the following conditions (1) and (2) are equivalent.

(1) The extension L/K is quasi-automorphic and the field CL of constants of L

coincides with the field Cκ of constants of K {so that L/K is automorphic by Proposi-

tion (2.27)).

(2) The extension L/K is strongly normal (cf Definition (3.2)).

Proof We use the notation of §1 below Corollary (1.12.1). We assume that

the extension L/K is quasi-automorphic. We have two if-morphisms /,- and f{ of

differential fields: fiffi :L^>M1 for 1 < i ^ n. In particular we have morph-

isms f
2 h h h

,/,- :Z, —»Λf of fields and hence by Remark (2.3.1) we get two

morphisms ft,ft :L—+Mί [[t]] cz Mf [[£]][/ ] of differential algebras which

are in ^L/κ(Mi ). Therefore there exists # f G G(M; ) such that ^ 7 * = f{. This

shows in particular that we denoting by Nt a composite field of /, (L) and

fi(L) in Mt [[fl][ί ], then iVf is generated over f{(L) by constants. Since

i(Lt ) = j \ (L) and i(Li ) = ft (L) by definition, we can conclude that
Λ / T ( Ό τ(2)\ . - r (2) , . Ά/Γ Λ / f Ί Γ Γ i 1 1 _

QCLj . L2 ) is generated over L? by constants, where z : M2 —̂  M2 LuJJ ^

M, [[ί]][ί ] is the universal Taylor morphism and canonical inclusion. It follows

from Lemma (3.9) that the extension L/K is strongly normal.

Let us now assume that the extension is strongly normal. We show that the
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total quotient ring Q(L ®κ L) = Un

i=ι M{ of L®KL is generated over 1 ®L by

constants. More precisely the ring Q{L®KL) is a quotient ring of a subring of

Q(L <S)K L) generated over 1 ® I by constants. To this end it is sufficient to

prove that the subring L ®1 of Q(L ®KL) is contained in the total quotient ring

S of a ring generated by 1 ® L and the constants of Q(L ®KL), where we consid-

er the ring 5 as a subring of Q(L®KL). The idempotents et giving the decom-

position Q(L 0 X L ) = Π ί = 1 M{ are constants by Corollary (1.11.1) so that

(3.10.1) S 3 (1 ®L)ei = Lf for 1 < i < n.

Since in M{ a composite field L{ L{ is generated over L{ by constants, it follows

from (3.10.1) S 3 L™L™ => L (" = tt ® l)e f . Hence S => Σ ? = 1 L^, => L Θ 1.

This is what we wanted to show. It follows from Corollary (1.11.1) that the ring

of constants CQ{L <S>KL) is the direct product of the fields CM. which are finitely

generated over Cκ = CL. Let G' be a model of C Q α ®κL)/C. Namely Gr is a re-

duced and noetherian Cx-scheme over C whose ring C(G0 of rational functions

(or the total quotient ring of the ring C[G'] of regular functions if we choose an

affine model Gf) is isomorphic to CQ(L <S>KL}. We notice that C(G0 is also isomor-

phic to HXΘG,x, where the x are minimal points of G\ It follows from Lemma (1.1)

that in Q(L ®KD, the field 1 ®L and CQ(L <Ξ>KL) are linearly disjoint over C. So

Q(L <S)K L) is differentially L-isomorphic to the total quotient ring Q ( C Q ( I <S>KL)

® c L) : We have a differential isomorphism θ : Q(L ®KL) -> Q ( C Q α 0 χ L ) Θ c L)

such that θ(l ® L) = 1 ® L . Composing <9 with the inclusion L~* Q(L <g)κL),

a ^ a ® 1 for a ^ L, we get a differential morphism Z,—• Q(L Θ^ L) —*

Q ( C Q ( L <8)XD ® C ̂ ) I n the language of schemes, we have a if-birational maps

compatible with derivations Gr x c Z •—>X x π Z and μ': Gr X c X —• Z

such that the first map G' XC^Γ — ^ I x ^ l i s nothing but (μ\ p2). Hence we

have a G'-rational map (Id, μ') : Gr XCX > G' *CX.

SUBLEMMA (3.10.2) . Let S be a reduced noetherian C-scheme and n:S XCX

' ' '—> X be a K-pseudo-morphism compatible with derivation such that the rational

map (n, p2) : S X cX ' '—>X XKX is dominant. Then there exists a C-pseudo-

morphism h : S *—> Gf such that the diagram

S xcZ *—>X

(h,p2) . / u'

G' x c X

is commutative.
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Proof of Sublemma. Since we treat reduced noetherian schemes over fields of

characteristic 0, their products are reduced noetherian schemes so that the notion

of pseudo-morphisms coincide with that of rational maps (E.G.A. Chap. I. §8 and

Chap. IV, §20). We have a if-rational map (μ'f p2Y
K(n, p2):S XCX >X xκ

X ' ' '—* G' X c X since (n, p2) is dominant. So by Proposition (1.11) we have a

C-rational map h : S * •—> Gr such that the diagram

5 - U G'

is commutative, where the upper horizontal maps are (n, p2) and {μ't p2) . The

assertion of Sublemma follows from the diagram. q.e.d.

In Q(Z,(S)# D , similarly the field L ® 1 and C Q ( I &κL) are linearly disjoint over

C. We have a differential isomorphism θ': Q(Z ®KL) —• Q ( C Q ( L ^ ^ Θ c L) such

that β'(L ® 1) = 1 ®L. Composing θ' with the inclusion L^ Q(L Θ π L ) , α ^ 1

® α for a ^ L, we get a differential morphism L—^ Q(L ®KL) —* Q ( C Q ( I ®KU®KL

L). This means in the language of schemes that we have a if-birational map G'

X C X •—>JΓ x ^ ^ and a if-rational map μ" : G' X c X - ' -—* X compatible with

derivation so that we have a G'-rational map (Id, μ") : Gr XCX - •—» G7 χ

c X

It follows from the definition (Id, μ')°(Id, μ") = (Id, //'0°(Id, ^0 = IdG,XcΛΓ. In

particular the rational map (Id, μ') : Gf x CX ' ' —* G' X c X is birational. (So by

Sublemma we have a rational map (— 1) : G' * * •—> Gr such that the diagram

G' xcX"β'-^X

/

is commutative. Let us write μ'(g, x) = ^"x when μ : G X X ' ' —• X is defined at

(g, x) e G X C Z . Multiplying (^, £>) : G7 X C Z >X xκX with G r, we get a

birational map

(3.10.3) G' x c ( G ' x c X ) >Gf xc(XxκX),

(gi> §2> χ} ^ (gv g^' χ} We also have a birational map induced by (μr, p2)~ :X

x κ X ' * * G' x c Ji

(3.10.4) G' χ c ( x χ J t j β = ( G ' χ c Λ ) χ I j r — • tar χκX)χκx

(g, x, y) >->• (gx, x, y). Composing birational maps (3.10.3), (3.10,4) with the
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projection p13: X x κ X x κ X—+ X x κ X, we get a dominant rational map Gr X c

Gf X C Z — > Z x X, (# l f g2, x) *-> (gx^x), x). Therefore we get a rational

map m! \G' x G' > G' by Sublemma (3.10.2). We show that (m', p2) : G' x c

G' * * ~~* G' X c G
r is dominant. We have a birational map rational map

(3.10.5) {μ\p2r
ι x I d / ( f e J 2 ) ^ x ^ x ^ >X*KX*KX

= (XxκX) xκX >(Gf xcX) xκX.

On the other hand, we have a birational map

(3.10.6) G' xcX xκX= G' x c (X xκX) > Gr x c ( G ' xκX)

= G'xcG'xκX.

Composing birational maps (3.10.3), (3.10.4), (3.10.5), (3.10.6), we get a birational

map

G' x c G' x c X ^ G' x G' xcX, (glt g2, x) *-* (m'(glgl), g2, x).

Hence (m/, p2) : Gr x c G' m—> Gf x c Gr is dominant. Since the rational map μf

is defined by composite of birational automorphisms, the following diagram is com-

mutative:

Idxw

G' x G' x G' = G' x (Gf x GO » G' x G'

II
(Gr x GO x G' ϊ *

• wxld

Gr x G' > G'

where the products are taken over C In other words nΐ is a rational group law

over G. Thus we can find a group scheme G defined over C such that G is bira-

tionally equivalent to G' by Proposition (1.14). The /^-rational map μ : G x CX =

Gκ XKX- - -—* X induced of μf is compatible with derivations. We have seen

above that the morphism (plf m) : G XCX' * —> G XCX is birational and hence

dominant. It follows from the definition that the diagram

G x c G x c X = G x c ( G x c X ) -*^* GxcX

II
(G x c G) x c X I m

G x c Z
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is commutative so that the group scheme Gκ rationally operates on X. It follows

from Proposition (1.16) and the argument of the proof of Theorem (2.13) that we

can find a model Z with derivation of L/K such that Gκ operates on Z and the

morphism μ : Gκ x κ Z—+ Z is a morphism of schemes with derivation. It follows

from the construction a morphism (μ, p2) : G XCZ = G x^-Z—• Z x Z is bira-

tional so that we may assume (Gκ , Z ) is a principal homogeneous space. It fol-

lows from Theorem (2.13) that the extension L/K is quasi-automorphic with

automorphy group G. L/K is quasi-automorphic with automorphy group G.

COROLLARY (3.11). Let L/K be a quasi-automorphic extension with CL — Cκ (so

that L/K is automorphic) and M a differential intermediate field. Then the extension

L/M is automorphic. The automorphy group is Diff-birML and is a closed subgroup

of the automorphy group of L/K.

Proof. By Theorem (3.10) it is sufficient to show that the extension L/M is

strongly normal. Let/, g \L—*Mr be two M-morphisms of differential fields. So

in particular / , g are i£-morphisms. Since L/K is strongly normal by Theorem

(3.10), / is strong over g. Thus the extension L/M is strongly normal. The last

assertion follows from Theorem (2.21).

Remark (3.12). For general quasi-automorphic extension L/K, the extension

L/K is not always quasi-automorphic for a differential intermediate field M of

L/K. See Remark (4.2) and Example (4.9).

§4. Galois correspondence

Let L/K be a quasi-automorphic extension with automorphy group G so that

G is a C^-algebraic group scheme. Let X be a model with derivation of L/K such

that G operates on X and (μ> p2) :G x c X~^> X xKX is an isomorphism of

schemes with derivation (cf. Theorem (2.13)). Let H be a C^-algebraic subgroup

scheme. We say that an element a ^ L remains invariant under the operation of H

or a is //-invariant if the following condition is satisfied: For any K -scheme 5

and for any g €= H(S) so that g induces an S ®CRK- automorphism φg\ S X CχX

—* S xcκX> t n e meromorphic function a°p2 coincides with aop2°ψg. The meromor-

phic function a is iί-invariant if and only if cιop2

oμH = a°p2, where μH: H X CR X

—* X is the morphism of operation of H on X. For a C^-algebraic subgroup

scheme H, we denote by L the differential intermediate field of L/K consisting of

elements of L invariant under H. Let now M be an intermediate differential field
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of L/K We denote by <3(M) : ( S c h / C A ) - * (Grp) the subgroup functor of G

leaving every element of M fixed.

LEMMA (4.1). Let L/K be a quasi-autonwrphic extension with automorphy group

G. Then the group functor $(M) is representable by a closed Cκ-algebraic subgroup

scheme of G.

Proof We denote Cκ by C. Let Y be a model with derivation of M/K so that

we have a if-rational map φ : X * —* Y induced by the inclusion map M c: L. We

have to show that for a smooth C-scheme S and an 5 ® c ϋί-pseudo-morphism

φ:SxcX- ' — ^ S x c l compatible with derivation, there exists a closed

C-subscheme So of S such that for any C-morphism / : S' —* S of schemes, the di-

agram

S ' x i --> S' x X

j <P°P2 j V°P2

Y Y

is commutative if and only if the morphism / : S'—> S factors through the sub-

scheme So, where the fibre product is taken over C. Since the question is local, we

may assume that S and X are affine: X = SpecA with a C-algebra A. Let g be a

point of 5. Then φg : Xc{g) ®cK ' ' —> %c(g) ®cκ factors through φ°p2 if and only if

we have

(4.1.1) (uoφ°p2)°ψg = u°φ°p2

for every u ^ M, where we regard was a meromorphic function on F. The rela-

tions (4.1.1) are reduced to relations with coefficients in K among the coordinates

of the point g of the affine scheme 5 so that φg 'XC(g) ®cκ ' ' '~* Xag) ®cκ factors

through φ°p2 if and only if the coordinates of the point g of the affine scheme S

satisfies a certain number of polynomial relations

(4.1.2) Fa(g) = 0 , a e /

with coefficients in K, which is an equality in C(g) ®CK. Since C(g) and K are

linearly disjoint over C in C(G) ®CK, there exist a certain number of polynomial

relations

(4.1.3) H β ( g ) = 0 , β e j

with coefficients in Cκ such that g satisfies (4.1.2) if and only if g satisfies
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(4.1.3).

Remark (4.2). Let L/K be a quasi-automorphic extension with automorphy

group G and M a differential intermediate field. In general the algebraic group

^(M) is small so that L/M is not quasi-automorphic with respect to ®(M). Let

us illustrate the situation by an example. We work in the field Q[[x]][.r ] of

Laurent series with derivation d/dx. Let K = Q and y — exp x. We set L —

Q(ω, y), where ω is a complex number satisfying ω + ω + 1 = 0 so that ω =

1. We have CL — Q(ω) Φ Q = Cκ. Since the extension CL/CK is Galois with

group Z/2Z and since Q(ω)[y, y~l] = Q(ω) ®QQ[y, y" 1], SpecQ(ω)[z/, z/"1]

is a principal homogeneous space of Gm Q X Z/2Z. (See also Example (3.2).) To

be precise (g, 0), (g, ϊ) e Gw Q x Z/2Z operates on Q(ω)[z/, z/"1] over Q by

(£, 0)(ω) = ω, (#, 0)(z/) = gy(= g®y), (g, ί)(ω) = ω2, (^, ϊ)(z/) = g®y.

So by Theorem (2.13), the extension L/if is quasi-automorphic. Let now M =

Q(ωy ) so that (ωy )r = 3ωy and Mis a differential intermediate field of L/K.

Let (g, 0) e G w Q x Z/2Z. Then (g , 0) is in »(Aβ if and only if (g, 0) fixes

ωz/ : ωz/ = # ®ωz/ or equivalently £ 3 = 1. Let us look for a condition for an

element (g, ϊ) to be in 9(M). Since (^, ϊ) (ωy3) = g3 0 ω2y3 so that (^, ϊ) is in

«(A0 if and only if g3 ® aΐy3 = ωy3 = 1 ® ω / . So (^, ϊ) is never in »(Af).

Hence we have §(K) = i(g, 0) e Gw Q x Z/2Z | / = 1}. Since L/M is algeb-

raic of degree 6 and $(M) is a finite group scheme of degree 3, 5KM) can not be

an automorphy group of L/M. We notice here that the extension L/M is

quasi-automorphic with automorphy group $(M) X Z/2Z. See example (4.4).

THEOREM (4.3) (Kolchin). Let L/K be a strongly normal extension or according to

Theorem (3.10) equivalently a quasi-automorphic extension with CL = Cκ. Then there

exists an order reversing 1:1 correspondence between the elements of the following two

sets.

(i) The set of differential intermediate fields between L and K.

(ii) The set the Cκ-algebraic subgroup schemes of the automorphy group G {which

is a Cκ-algebraic group scheme).

To a differential intermediate field M, we associate the closed Cκ-algebraic sub-

group scheme SKΛf). A Cκ-algebraic subgroup scheme H of G is mapped to the dif-

ferential intermediate field L of H- invariants.

Proof Since L/K is strongly normal, it follows from Corollary (3.11) that

for a differential intermediate field M, L/M is quasi-automorphic with automor-

phy group Diff-birML and S?(Λ#) = Diff-birML. Hence jJ>m) — M by Lemma
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(2.22). We have to show that for any closed C^-algebraic subgroup scheme H,

) = H. The inclusion 2?(L ) 3 H is evident from the definition. Let us denote

) by Hx which is a Cx-algebraic subgroup scheme of G by Lemma (4.1) so

that we have

(4.3.1) L H ί = L H

as the above argument shows. Geometrically let X be a model with derivation of

L/K such that G operates on X as in Theorem (2.13). If we denote by

(HK\X)' and (H1K\X)f, the varieties of orbits of Hκ and H1K respectively, then

the natural morphism (HK\X)' —> (H^XX)' is birational. Let us consider a base

change XL of X by the field extension L/K Since we have the generic point Spec

L—*X, XL is isomorphic to GL = G®CRL. It follows from (4.3.1) the canonical

morphism HL\GL~^ H1L\ GL is birational so that we have HL — HίL and conse-

quently H = Hv

We introduced the notion of quasi-automorphic extension and showed that

classical Galois extension and strongly normal extension are quasi-automorphic.

Further for these two types of extensions the automorphy group is uniquely deter-

mined and we have the Galois correspondence (Theorems (2.21) and (4.3)). In gen-

bral a quasi-automorphic extension is not so nice as these two types of extensions.

In fact we showed already in Remark (4.2) that in general we do not have the

Galois correspondence since in that example the subgroup functor %{M) of G is

too small. Besides, the automorphy group is not uniquely determined as the fol-

lowing example shows. Also Example (4.9) offers us such an example, where L/K

is an abstract field extension.

EXAMPLE (4.4). We work in the field Q [ M ] M of Laurent series with

derivation d/dx. Let us set K = Q, y = expx, L — Q(\/— 1 , y). Then as in

Remark (4.2), SpecQ(\/— l)[z/, y ] is a principal homogeneous space with a

group G m Q x Z/2Z. So L/K is quasi-automorphic with automorphy group Gm Q

X Z/2Z by Theorem (2.13). Another principal homogeneous space structure is

defined as follows. We consider an algebraic group G generated by the following

GQ-automorphisms of L ®cfi '•

y ^ay=a&y

^ T ^ T ' β e G - * a n d

Namely as a Q-scheme G is a disjoint union of two copies of A = AQ — (0) :

G = Go II Gλ with Go, Gx — A . So we have on A the usual product. A point
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a G Go represents a Gq-automorphism

and a point a ^ Gγ represents a Gq-automorphism

^ ay = a®y/— 1 z/

^π: ^ ~/ :=rτ
of L®c G. The group law on G is described as follows: If a19 a2 ^ A = Go,

then the product of ax and # 2 * s the usual product α ^ ^ A = Go If a ^ A

= Go, b ^ A — Gly then the product of α and b is ab ^ A = Gx\ lί bu b2

 e

A = Gh then the product of b1 and Z>2 is — bλb2

 e A = Go. So we have an exact

sequence

(4.4.1) l — G a . Q — G — Z ^ Z — 1 .

The extension (4.4.1) does not split over Q. However if we go to Q(\/— 1), then

the extension splits so that (G, Spec QW~ 1) [z/, y~ ] / Q is a principal

homogeneous space. Hence L/if is quasi-automorphic with automorphy group G

by Theorem (2.13).

We considering Remark (4.2), what we can expect best in general is the fol-

lowing

PROPOSITION (4.5). Let L/K be a quasi-automorphic extension. Then the mapping

{C-algebraic subgroups schemes of G} —* {differential intermediate fields of L/K},

L •—• L is injective.

Proof. Let Hlf H2 be two algebraic subgroups of G such that L ι — L 2. We

have to show Hλ = H2. Considering the subgroup scheme of G generated by Hλ

and H2, we may assume that H2 is an algebraic subgroup of Hv Proposition now

follows from the latter part of the proof of Theorem (4.3).

Proposition (4.5) does not seem interesting nor useful since the conclusion of

the proposition holds simply if L/K is an abstract field extension such that there

exists a model X of L/K which is a principal homogeneous space for an algebraic

group G over K. When L/K is an abstract field extension of char, p > 0, Proposi-

tion (4.5) is proved in [Ch] (Theorem 7.6 of [Ch]) in order to study inseparable

field extension. See also [G]. For an automorphic extension we have a map from in-
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termediate fields to subgroups (cf. Theorem (4.10)).

Let L/K be an abstract field extension which is quasi-automorphic with

automorphy group G. In particular the extension L/K is finite: We set n —

[L:K\. Let M/K be a Galois extension containing L and $ its Galois group. We

can take M — the Galois closure of L/K as they did in [G]. However it is not

necessary to assume that M is the Galois closure of L/K. Since M ®KM is a

direct product of fields isomorphic to M, L®KM is also a direct product of

fields isomorphic to M : L ®κ M — ϊΓi=ι M{ with M{ — M. Geometrically the base

change Spec L ®κ M of Spec L over K is a disjoint union of ^-copies of Spec M.

So G (£)κ M is a subgroup scheme of AutM(Spec L ®KM) which is isomorphic to

the symmetric group Sn of degree n. Hence (G ®KL> Spec L ®KM) is M-

isomorphic to an operation of a finite group H on the set 5 = Spec L ®κ M —

Spec Ht=1 M{ of ^-points such that (H, S) is a principal homogeneous space. On

the other hand the Galois group 2? of M/K operates on (GM, Spec L <S>K M) as

if-automorphisms covering the operation of the Galois group $ on M giving a des-

cent data on (H, Spec Un

i=1 M). In particular 2? operates on the set 5 such that ^

normalizes the subgrup H of Sn.

Remark (4.6). Let us consider in general an M-scheme Spec Ut=1 Mif M{ =

M, where we regard Π I = 1 M{ as an M-algebra by the diagonal map. To give a

Galois descent on the M-scheme Π ί = 1 M{ is equivalent to defining a morphism p :

$—• Sh Si being the symmetric group of degree /. In fact a morphism p:^-^ St

defines an operation of the Galois group ^ on the algebra Π ί = 1 M{ by sending (xlt

x2,..., Xι) e Π = 1 M{ to (σ(xipσ)ω), σ(x{βσH2))}. . ., σ(x(σoHι))) for σ e <8. The op-

eration covers that of $ on M. Namely the structure morphism Spec Π ι = 1 Mt —•

Spec M is ^-equivalent This fact can be applied both to the scheme Spec Π ί = 1 Mt

and the group scheme H.

According to [G] we adopt the following

DEFINITION (4.7). Let H be a finite group operating effectively on a set 5 of n

letters so that H is a subgroup of the symmetric group Sn. We say that H is regu-

lar if (H, S) is a principal homogeneous space.

The following theorem is due to Greither and Pareigis ([G] 2.1 Theorem).
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THEOREM (4.8). Keeping the notation above, we have a 1:1-correspondence be-

tween the elements of the following sets:

(1) The set of equivalence classes of finite group schemes G operating on Spec L

over K such that L/K is quasi-automorphic with automorphy group G (Here we say

that two operations (Glf Spec L) and (Gv Spec L) are equivalent if there exists a

morphism φ : G2 —* G2 of K-group schemes such that (φ, Id) : (Gl9 Spec L) —» (G2,

Spec L) is an isomorphism of group scheme operations.)',

(2) The set of equivalence classes of finite groups H operating effectively on the

set S of n- letters (so that H can be regarded as a subgroup of the symmetric group Sn

of degree n) such that H is regular and normalized by (the image in Sn of) the Galois

Group § (We say that two finite groups operating on the set S are equivalent if their

images in the symmetric group Sn coincide, the operation of the Galois group *& on the

set S being fixed.).

Proof. It would be enough to understand how we define the correspondence.

From data in (1) we define (G®KM, Spec L ®κ M) which is M-isomorphic to

the operation (H, S) of a finite group H on the set S, as we have seen above.

Conversely given a data in (b) or let (H, S) — (H, Spec (S)K M) be a principal

homogeneous space (over M). The operation of the Galois group ^ defines a des-

cent data on (H, S p e c L Θ ^ M ) by Remark (4.6). So (if, (Spec L ®KM)®) =

{ti , Spec L) is a principal homogeneous space (over K) by the Galois descent.

Here H denotes the descent of the M-scheme H by the descent data. Namely let
eg eg eg

A be an M-Hopf algebra such that ^ operates on A and n = Spec A , where A
eg

is the ring of ^-invariants of A. It is easy to check that A is a ίί-Hopf algebra so

that i f is a finite group scheme and (H , Spec L) is a principal homogeneous

space.

Therem (4.8) yields us examples of quasi-automorphic extensions of abstract

fields such that the automorphy group is not uniquely determined.

EXAMPLE (4.9) ([G], 2.3). We take K = Q, L = Q $ 2 ) and M = Q ( v / 2 ,

y/— 1). So the Galois group $ is isomorphic to the dihedral group: Letting Spec L

®KM= {1,2,3,4}, we can identify $ with a subgroup <σ, r>, σ= (1234), τ =

(13). A subgroup H = <σ> of the symmetric group 5 4 is a regular subgroup and

normalized by the Galois group (S. On the other hand <σ , σr) is also a regular

subgroup and normalized by <§. Since Ή - Z / 4 Z , <σ\ στ> - Z/2Z + Z/2Z,

these two data in (ii) of Theorem (4.8) define non-isomorphic automorphy groups

forQ(v^2)/Q.
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Proposition (4.5) gives an injective map from the set of algebraic subgroups

of G to the set of differential intermediate fields of L/K. If an extension is auto-

morphic, we have the inverse of the above map as the following theorem shows.

THEOREM (4.10). Let L/K be an automorphic extension. Then there exists an

order reversing 1:1 correspondence between the elements of the following two sets.

(i) The set of differential fields between L and K.

(ii) The set of Cκ-algebraic subgroup schemes of the automorphy group G (which

is a Cκ-algebraic group scheme).

To a differential intermediate field M we associate the closed Cκ-algebraic sub-

group scheme &(M). A Cκ-algebraic subgroup scheme H of G is mapped to the dif-

ferential intermediate field L of H-invariants.

Proof. The argument of the proof of Theorem (4.3) allows us to prove that

2?(L ) = H for any closed C^-subgroup scheme of G. So it is sufficient to show

L — M for every differential intermediate field M. The inclusion L ^ M

being trivial, we have to check the other inclusion L c M. We shall show that

if y^L\M, then y Φ L9(M): If y G L\M, then there exist A G J(Fld/K*)

and h G §(M)(A) such that 0* (1 ® y) Φ 1 ® y. We need a

SUBLEMMA (4.11). If y ^ L\M, then there exist an A G c4(F\ά/M ) and

M-homomorphisms λv λ2: L —*A such that λλ(y) Φ λ2(y).

The Sublemma follows from the proof of Lemma (3.5).

The morphisms λvλ2:L —>A define differential morphisms lvl2:L—*

AίWίΓ1] by Proposition (1.4) so that lv l2 G 2FL/M(A) c 2FL/K(A). Let X be a

model of the differential field extension L/K on which the automorphy group G

operates. Since L/K is quasi-automorphic, we can find h G G(A) such that l2 —

hlv Let ψv φ2: SpecΛ[[fl] [t~ ] —• Spec L~^X be the morphisms of schemes

with derivation corresponding to llf l2 respectively (cf. §2). We denote the morph-

isms of the base change SpeCi4[[ί]] [Γ1] —> A ® C ί I o f φv φ2 by φUf φ2A so that

we have commutative diagrams

Spec i l tMlCΓ 1 ] - ^ A®CκX
(4.12) . 2 , i= 1, 2.

X

Let φh :A ®C j f X—>A ®CRX be the morphism induced by the operation of the
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Λ-valued point h. So we have φ2A — Φh° ΨIA- Since we have λ^y) Φ λ2(y), we

have Iγiy) Φ I2(y). Since φ1 and φ2 coincides with respectively lv l2 on L, φ1A(l

®y- ψ*h(l®y)) = φ*ιA(l®y) - ?&(l®y) = 1 ® / ^ ) ~ l®/2(y) ^ 0

a n d l ® ? / - 0*(1 ® y) Φ 0. It remains to show that h e <§(M) or 0*(1 ® z) =

1 Θ z for every z ^ M. Let now £ ̂  M, then

(4.13) φ*(z) = φ*2iz)

since λv λ2 are M-morphisms. It follows from (4.12) and (4.13), φ1A(l ® 2) =

φ*A(l <S) z) and hence

(4.14) <pf(l®z- 0*(1 ®z)) = 0.

Since L/Jf is automorphic, it follows from (4.14) 1 ® z — 0*(1 ® >ε) = 0 . This is

what we had to show.

We have seen in Examples (4.4) and (4.9) that for a quasi-automorphic exten-

sion, the automorphy group is not uniquely determined and we do not have the

Galois correspondence. As for an automorphic extension, we have the Galois cor-

respondence (Theorem (4.10)) but as we see below, the automorphy group is not

uniquely determined. Example (4.9) yields such an example.

EXAMPLE (4.15). Let L = Q(^2), K = Q as in Example (4.9). We have seen

there that the extension L/K is quasi-automorphic for mutually non-isomorphic

automorphic group schemes. We show that L/K is almost classically Galois and

hence automorphic by Corollary (2.26) with respect to these group schemes.

To this let us use a different interpretation. The Galois closure of L over K is

Q(v^2", y/— 1). We have a QW~ 1)-automorphism σ of Q(v^2", \l~ 1) sending ψλ

to ψl. yj— 1 so that the Galois group of Q(v^2, y/— I) /QW~ 1) is the cyclic

group <σ> of order 4. On the other hand we have a QCv7^)-automorphism τ of

Q(^2 , yF^T) sending / " T to - y/~ 1 . The Galois group of QCv^, y/~ 1) /

Q(\/2 )̂ is the cyclic group <τ) of order 2. We have rσ = σ τ and the Galois group

of Q(\/2\ A/~~ 1) / Q is the dehedral group (σ, r ) . In the diagram

Q

I Galois with group (σ)

Q(/^T)
Galois with group (τ)

subfields Q(v^2) and QW~ 1) are linearly disjoint over Q so that

y/- 1) is isomorphic to Qίv^) Θ Q Qίv 7 - 1). The Galois group <r> of Q(\/— 1) /
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Q normalizes the Galois group (σ) of Q(\/2\ \/~" 1) /Q(\/~ 1). So by Galois des-

cent the operation of the finite group <σ> on Q(^2~, v7— 1) /Q(\/~~ 1) descends to

an action of a finite group scheme which is a Q-form of the cyclic group <σ>, on

Q(\/2 )̂ /Q. This operation is nothing but the quasi-automorphic structure induced

by the regular subgroup H = <σ> in Example (4.9) so that this quasi-automorphic

structure is almost classically Galois.

Now we consider the subgroup (σ , στ) of the Galois group (σ, τ) of Q(\/2",

P T ) / Q The corresponding subfield Qίv^, / = ΠΓ) < σ 2 ' τ > = Q ί / 1 1 ^ ) . In the dia-

gram

Q(γ2) I Galois with group (σ , στ)

I ^ Q(/=^)
Galois with group ( r )

subfields Q(\/2) and Qίy 7 — 2 ) are linearly disjoint over Q. Since the Galois

group <r> of QW~ 2 ) / Q normalizes the subgroup <σ , σr>. The operation of

the Galois group (σ , στ) on Qίv 7 ^, \/~ 1) /Q(\/~" 2 ) descends to a finite group

scheme action on Q(\/2^ / Q by Galois descent. This operation is the second

quasi-automorphic s t ructure on Q(A/2^) / Q . SO this s t ructure is also almost classi-

cally Galois. We have thus seen that Q(v / 2^)/Q has two mutually non-equivalent

automorphic s t ructures .
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