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Turbulence exhibits a striking duality: it drives concentrated substances apart, enhancing
mixing and transport, while simultaneously drawing particles and bubbles into collisions.
Little experimental data exist to clarify the latter process due to challenges in techniques
for resolving bubble pairs from afar to coalescence via turbulent entrainment, film
drainage and rupture. In this work, we tracked pairs of bubbles across nearly four
orders of magnitude in spatial resolution, capturing the entire dynamics of collision and
coalescence. The resulting statistics show that critical variables exhibit scalings with
bubble size in ways that are different from some classical models, which were developed
based on assumptions that bubble collision and coalescence only mirror the key scales
of the surrounding turbulence. Furthermore, contrary to classical models which suggest
that coalescence favours slow collision velocity, we find a ‘Goldilocks zone’ of relative
velocities for bubble coalescence, where there is an optimal coalescence velocity that is
neither too high nor too low. This zone arises from the competition between bubble–bubble
and bubble–eddy interactions. Incorporating this zone into the new model yields excellent
agreement with experimental results, laying a foundation for better predictions for many
multiphase flow systems.

Key words: breakup/coalescence

1. Introduction
Turbulence accelerates two seemingly contradictory processes: dispersing particles orders
of magnitude faster than pure molecular diffusion (Toschi & Bodenschatz 2009; Tan &
Ni 2022; Shnapp et al. 2023; Huang et al. 2025) and also drawing bubbles and particles
together (Pumir & Wilkinson 2016). The latter plays a crucial role in applications where
turbulence fosters the growth of flocculated particles in wastewater treatment (Zhao et al.
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Figure 1. Flow chart of a pseudo-code with key steps and their associated equation number to compute
bubble size evolution due to coalescence from t to t + �t .

2021) and microbubbles in chemical and nuclear reactors (Liao & Lucas 2010; Lohse
2018; Mathai, Lohse & Sun 2020; Ma et al. 2025). However, the impact of turbulence on
the bubble collision and coalescence dynamics remains a mystery. This enigma persists
due to the vast spectrum of processes involved, spanning over eight orders of magnitude
in separations. This range encompasses the dispersion of microbubbles over centimetre
distances (Mathai et al. 2018), collisions occurring at millimetre scales (Prince & Blanch
1990a; Wu et al. 1998; Lehr, Millies & Mewes 2002; Wang, Wang & Jin 2005) and
the subsequent film drainage and microscopic connecting liquid bridge at micrometre
dimensions (Paulsen et al. 2014; Bartlett et al. 2023; Ozan, Solsvik & Jakobsen 2023).

The coalescence rate ṅ, one of key quantities in the population balance equation
(Williams 1985) in addition to the bubble breakup rate (Ni 2024; Vela-Martín & Avila
2022; Qi et al. 2022, 2024), plays a significant role in the prediction of the evolution of
the bubble size distribution. The governing parameters affecting bubble coalescence in
turbulence are illustrated in the flowchart in figure 1, which illustrates the procedure to
compute the bubble size distribution from time t to t + �t driven by the coalescence.
The breakup process needs to be computed separately. The procedure follows the classical
formulation, where the coalescence rate is determined by the collision frequency (IV.1 in
figure 1) and coalescence efficiency (IV.2).

A widely used model for the bubble coalescence rate shows ṅ =Fc · Ecc, in which
Fc describes how frequently two bubbles collide (IV.1 in figure 1) and Ecc determines
how often those collisions result in coalescence (IV.2 in figure 1). Based on the kinetic
gas theory of Kennard et al. (1938), the collision frequency Fc can be modelled as
Fc = nSδv, where n is the bubble number density, S is the cross-sectional area of the
circumcircle of both bubbles and δv is the relative velocity between the two bubbles
during a collision, which can also be called the collision or approach velocity (Liao &
Lucas 2010). Coulaloglou & Tavlarides (1977) assumed that the approach velocity should
be the velocity of the eddies of the bubble size. For collision of two equally sized bubbles
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with diameter db, the collision velocity can be readily formulated through the Kolmogorov
theory as δv = C2ε

1/3d1/3
b , where C2 is a constant and ε is the dissipation rate. Although

this framework has been widely adopted (Lee, Erickson & Glasgow 1987; Prince &
Blanch 1990a; Luo 1995), no experimental observation is available to substantiate this
key hypothesis so far.

Regarding the coalescence efficiency, a widely accepted concept introduced by Ross
(1971) and Coulaloglou (1975) suggests that the probability of coalescence (IV.2 in
figure 1) depends on the contact time between two colliding bubbles, which is formulated
as Ecc = exp(−tdr/tct ), where tdr is the drainage time required for the film to thin down
to a critical thickness (II in figure 1), and tct is the duration that two bubbles remain
in close proximity (I.3 in figure 1). Nevertheless, determining the contact time between
bubbles in turbulent flows poses significant theoretical challenges due to the complex and
evolving nature of film drainage processes (Chesters & Hofman 1982; Chen, Hahn &
Slattery 1984; Oolman & Blanch 1986; Jeelani & Hartland 1998; Danov, Valkovska &
Ivanov 1999; Chesters & Bazhlekov 2000; Lu et al. 2019; Prince & Blanch 1990b; Firouzi,
Howes & Nguyen 2015), compounded by the chaotic nature of turbulence. The earliest
estimation of the contact time relies on dimensional analysis, similar to the turnover time
of an equal-sized eddy, tct ∝ d2/3

b /ε1/3. Later, several refined models were developed,
which also present a similar scaling with db, either through analysing the energy balance
between kinetic energy and surface energy (Chesters 1991), or by deriving the interaction
time based on the parallel film model (Luo 1995; Kamp et al. 2001).

Several recent studies suggest that collision and coalescence cannot be treated
independently (Das 2015; Gong et al. 2020; Ozan et al. 2021, 2023), based on the fact
that they both depend on the approach velocity (Doubliez 1991; Duineveld 1996; Lehr &
Mewes 2001; Lehr et al. 2002). As a result, the coalescence rate can be formulated as
ṅ = ∫

SδvEcc(db, δv) f c
v (δv)dδv, where f c

v (δv) is the probability distribution function of
the approach velocity δv. The coalescence probability Ecc(db, δv) is obtained either from
analytical derivation based on an energy balance during collision (Kamp et al. 2001; Das
2015) or from simulations of film drainage (Gong et al. 2020; Ozan, Hosen & Jakobsen
2021).

Many models developed for bubble collision and coalescence, although with some
variations, shared many similar hypotheses on the collision velocity, contact time and
coalescence efficiency, none of which has been measured in three-dimensional (3-D)
turbulence. In this work, we employed an advanced in-house 3-D bubble-tracking
algorithm (Tan et al. 2023b) that can effectively track dense bubbles in 3-D turbulent
environments. By accurately capturing all critical parameters that were unavailable
before, we develop a new model that accounts for the effect of bubble–turbulence
interactions during bubble collision and coalescence. This model integrates additional
effects identified in our study, including clustering (I.1), biased sampling (I.2) and eddy-
driven bubble separation (I.4), which are introduced in the following sections. In addition,
the key variables such as Fc and Ecc are denoted with a superscript T to emphasise that
they are different in turbulent flows whose effects will be measured and modelled in
this work. To place our findings in context, we compare them with the classical model
of coalescence efficiency, originally developed by Ross (1971), Coulaloglou (1975) and
Chesters (1975), hereafter referred to as the RCC model.

2. Three-dimensional bubble tracking at high image densities
Bubble collision and coalescence can be affected by both turbulence and buoyancy. To
simplify the problem and focus on the turbulence effect, we constructed a unique setup
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Figure 2. Experimental facility and 3-D Lagrangian bubble tracking. (a) Schematic of the experimental
set-up, (b) schematic of the test section including the jet array and the bubble generator, (c) the second-
order longitudinal structure function of turbulence in the test section, (d) trajectories of a colliding bubble
pair coloured by velocity magnitude in the presence of background bubbles tracked at the same time and
(e) consecutive bubble images before and after the moment of coalescence along with the 3-D reconstruction
of the two bubbles and the merging interface in between.

that features intense turbulence, as depicted in figures 2(a) and 2(b), known as V-ONSET
(Masuk et al. 2019b; Tan et al. 2023a). The jet array injects powerful jets, producing
turbulence with a high Taylor Reynolds number, Reλ = u′λ/ν = 493, where u′ is the
root-mean-squared fluctuation velocity, the Taylor microscale λ is

√
15ν/εu′ and ν is the

kinematic viscosity of the fluid, enabling a wide scale separation from the Kolmogorov
scale η of 0.07 mm to the integral scale L of 110 mm. The turbulent kinetic energy is
k = 0.29 m2 s−2. Figure 2(c) illustrates the second-order longitudinal structure function,
DL L(r), which displays a distinct scaling law of r2/3, aligning with the well-established
Kolmogorov theory for fully developed turbulence (Kolmogorov 1949). The turbulence
energy dissipation rate estimated from the structure function is 0.03 m2 s−3 and the Taylor
microscale is calculated to be 2.9 mm. Bubbles were produced by an ultra-fine bubble
generator at the bottom of the octagonal test section. The bubble size distribution is
presented in figure 3(a) and the diameter ranges from 0.2 to 2 mm (3η−30η). The rise
velocity for bubbles in this range is approximately 0.1 m s−1 (Salibindla et al. 2020), and
its ratio to u′ is around 1, yielding a bubble Reynolds number of the order of 100. The void
fraction, α, in our experiments is approximately 0.04 %. The detailed setup parameters and
flow control specifications are provided in Appendix A.

At the moderate Reynolds number, the Strouhal number, Str, is approximately 0.18,
leading to a vortex shedding time scale of τ f = db/(vbStr) ≈ 55 ms. In comparison, the
eddy turnover time at the same length scale can be estimated as τdb = d2/3

b /ε1/3 ≈ 3.2 ms,
which is an order of magnitude smaller than the bubble vortex shedding time scale. This
suggests that the wake structures generated by the bubbles are rapidly convected by the
surrounding turbulent eddies, and the bubble motion is mostly governed by the turbulence.
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Figure 3. (a) Bubble size distribution for all bubbles, and only those in collision and coalescence events. The
shaded probability density function (PDF) is fitted with a log-normal distribution function for better illustration.
(b) The collision kernel representing the clustering effect as a function of two Stokes numbers based on two
different time scales, the Stη Kolmogorov scale and Stdb based on the bubble-sized eddies.

Furthermore, the rate of potential energy injection to turbulence by bubble buoyancy,
given by αgwb (where wb is the bubble rise velocity), is estimated to be approximately
0.0003 m2 s−3 as the void fraction α ≈ 0.04 % is very small. In comparison, the energy
dissipation rate is 0.03 m2 s−3, much larger than the buoyancy effect, suggesting the
modulation by bubbles to turbulent background flows is negligible.

Four cameras positioned at the periphery of the test section, as illustrated in figure 2(a),
are used to capture the bubble motion. As the bubble concentration increases to acquire
sufficient collision and coalescence events, the occurrence of overlapping bubble images
increases, leading to challenges in tracking bubbles pairs in close proximity (Katz &
Sheng 2010; Xue, Qu & Wu 2013; Lebon et al. 2016; Mathai et al. 2018; Masuk et al.
2019a; Salibindla et al. 2020; Shao et al. 2020; Song et al. 2022; Wu et al. 2020). To
address this challenge, a new method is developed to utilise temporal information (bubble
images may not overlap prior to the moment when they do) to predict the bubble location
and then cross-correlated the predicted images against the captured ones to identify the
most probable location of the bubble (a brief overview of this new method is provided in
Appendix B). The tracked bubble locations correspond to the centroids of the bubbles,
as those within the specified size range are spherical. Velocity and acceleration are
determined by convolving the position data with a Gaussian kernel (Mordant, Crawford &
Bodenschatz 2004; Ni, Huang & Xia 2012) to eliminate noise.

By applying this method, we were able to track bubbles with high image densities with
up to 87 % of the area overlapped with neighbours (Tan et al. 2023b). Figure 2(d) shows
trajectories, coloured by velocity magnitude, of a sample pair of bubbles that collide with
each other, in the presence of a high concentration of background bubbles. The time series
of the coalescence moment is shown in figure 2(e). The reconstructed position of bubbles
can achieve a high level of precision at around 10 µm, reaching sub-pixel accuracy through
the utilisation of bilinear interpolation (Press et al. 2007) in close proximity to the peak of
the image cross-correlation. This technique allows us to determine the bubble pairs when
they are as close as 20 µm, even allowing for 3-D reconstruction of the merging interface,
as shown in figure 2(e). So the separation that can be resolved is close to four orders of
magnitude from 20 µm to 5 cm.
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From the experimental images of bubble motion, we identified around 3.85 × 106

individual bubbles and their corresponding trajectories. Any two bubbles appearing
simultaneously within the view volume were considered a potential bubble pair, resulting
in approximately 7 × 108 pairs in our datasets, which is sufficient for calculating the
bubble structure function and approach velocity of collision, as detailed in the following
section.

3. Size distribution and size ratio
The bubble size distribution, computed from 3.85 × 106 tracked bubbles, is presented as
a black solid line in figure 3(a), spanning from 3η to 30η with a peak located at 7η.
Based on the trajectories of these bubbles, collision events were identified when the film
thickness between two bubbles, |r − db|, fell below 0.2db (Gong et al. 2020). Finally, only
those events when the film thickness was below 10 µm were checked manually against
experimental images to identify bubble pairs that ultimately coalesce.

The representative size of bubble pairs involved in bubble collisions and coalescence is
characterised by the equivalent bubble diameter, defined as deq = 2db1db2/(db1 + db2). As
we will show later, the collision and coalescence are dominated by events with two similar-
sized bubbles. For simplicity, db is used in place of deq wherever deq is intended. The
size distribution of db of bubble pairs undergoing collision events is shown in figure 3(a)
as blue dots. The blue curve with the shaded area represents the log-normal fit to the
PDF. It is evident that the PDF for collision events peaks at a larger size compared with
the overall bubble distribution. This shift may be attributed to preferential concentration,
where bubbles of certain sizes tend to cluster due to inertial effects, leading to locally
elevated concentrations in turbulence – especially in the intermediate Stokes number
range (Rensen, Luther & Lohse 2005; Calzavarini et al. 2008). To quantify this clustering
behaviour, we introduce a size-dependent clustering function gCL(db), which describes
how the likelihood of collisions between bubbles of diameter db deviates from what would
be expected under a random, uniform distribution. Specifically, we relate the measured
size distribution of collided bubble pairs, f c

d (db), to the overall bubble size distribution
fd(db) via

f c
d (db) = f 2

d (db) gCL(db)∫ ∞
0 f 2

d (db) gCL(db) ddb
. (3.1)

Here, f 2
d (db) is the expected distribution of randomly selected bubble pairs, and gCL(db)

accounts for the enhanced probability of collisions due to clustering. From (3.1), gCL(db)

can be directly computed using the measured distributions fd(db) (black solid line)
and f c

d (db) (blue) shown in figure 3(a). The resulting values are plotted as blue dots
in figure 3(b). In addition, the blue solid line represents a smoothed curve of gCL by
using the fitted PDF of collision events. Since the Stokes number is widely used in the
analysis of the clustering effect (Loth 2000), the x-axis is presented in terms of the Stokes
number, St = d2

b/36ντ f b, where τ f b represents the characteristic time scale of the flows
around bubbles. There are two possible time scales for τ f , the Kolmogorov time scale,
τη = (ν/ε)1/2, which is used in the study by Mathai et al. (2016) for micro-bubbles, and
the bubble-sized eddy turnover time, τdb = d2/3

b /ε1/3. The Stokes numbers based on both
flow time scales, Stη and Stdb , are also shown as the top and bottom x-axes in figure 3(b),
respectively.

Interestingly, instead of Stη, the curve of gCL(Stdb) exhibits a peak near Stdb = 1, which
suggests that Stdb is more appropriate to characterise the preferential concentration effect
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Figure 4. The PDF of the bubble size ratio ξ for bubble pairs with sizes db1 and db2, respectively, in collision
and coalescence events, as well as distant bubble pairs.

of bubbles in turbulence. The dimensionless function gCL(Stdb) expressed in terms of Stdb

should be applicable to other bubbly flows, provided that bubble–turbulence modulation
remains negligible, as discussed in § 2.

By using gCL, the bubble collision frequency in turbulence can be estimated as follows:

FT
c (db) = n2 f c

d (db)ddbπd2
bδv‖

c (db), (3.2)

where n is the number density of all bubbles in the flows. The parameter f c
d (db)ddb

represents the probability of colliding bubble pairs with size db ± ddb, and f c
d (db) is

obtained through (3.1) in terms of gCL and fd(db).
The PDF for coalescence is also shown as yellow symbols in figure 3(a), which is

considerably narrower than that for collision events, indicating that the efficiency of
coalescence is probably also size dependent. It will be further examined in § 6.

In addition to the size distribution, since collision and coalescence may occur between
bubble pairs of different sizes, the size ratio, defined as ξ = db1/db2, was also computed.
The resulting distributions are shown as blue and yellow histograms in figure 4. It is
evident that both collision and coalescence are dominated by similar-sized pairs. To ensure
that this is not a result of the size distribution alone, a PDF of bubble pairs that are at 80η

away is shown as green dots, which shows a flatter distribution, indicating more uneven
sized pairs. At this far distance, the dynamics of the bubbles becomes less correlated and
the distribution becomes almost random. If we assume the bubble locations are completely
random, the probability of finding a pair with a certain size ratio based solely on the
bubble size distribution, is represented by the green solid line in figure 4, which is close,
although not perfect, to the experimental measurement, suggesting that these pairs are
close to random at large enough separations.

The bias of the PDF for collisions from that of distant bubble pairs is likely due to
the preferential concentration effect in turbulence, where bubbles of similar sizes tend
to cluster within eddies of similar size, increasing their likelihood of collision. The
distribution for coalescence events (yellow histogram) closely follows that of collisions
but is slightly more constrained, suggesting that coalescence is even more probable when
the size ratio is closer to unity.
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Figure 5. The second-order longitudinal bubble velocity structure function between bubbles with similar
size, normalised (a) with the turbulent fluctuation velocity u′ and (b) with bubble-scaled kinematic energy
(db/λ)

2/3(εdb)
2/3, versus the bubble separation normalised (a) with the Kolmogorov scale and the integral

length scale and (b) with the bubble diameter.

To be more quantitative, 98 % of collision events occur within ξ < 2. Consequently, in
the subsequent analysis, the discussion focuses on the collision and coalescence of bubble
pairs with common size.

4. Bubble structure function and bubble approach velocity
For 7 × 108 bubble pairs, we project their velocity differences in the direction of their
separation, δrv

‖(r) = v‖(x + r) − v‖(x). The collision velocity is defined as δrv
‖(r) at

r = 1.2db, which is the separation when the film between two bubbles starts to be drained
(Gong et al. 2020). Nevertheless, to fully understand the entire bubble dynamics, in this
section, we extend the relative velocity to a wide range of separations, which is similar to
the structure function studied in single-phase turbulence.

The second-order bubble structure function is defined as DB
L L(r) ≡ 〈δrv

2‖〉. The
measured bubble structure functions are presented in figure 5(a). Bubbles are divided into
four groups based on their size. Each curve in figure 5(a) represents the statistics of bubble
pairs in the same bubble group.

Two distinct scalings can be observed. When two bubbles are sufficiently far apart, r >

2db, the structure function DB
L L follows r2/3, similar to the inertial-range scaling observed

in single-phase turbulence. This similarity arises because the motion between bubbles
with a large separation is predominantly influenced by large-scale turbulent transport. As
the separation between bubbles decreases below 2db, DB

L L , transitions to a scaling of 2.
Unlike the Kolmogorov scale η, which marks the transition between the dissipative and
inertial ranges, the bubble structure function transitions between two scalings at 2db. This
transition scaling with bubble size suggests that the r2 scaling is not due to the turbulence’s
dissipative range but rather to the linear dependence of the bubble relative velocity on
separation. A plausible explanation for this linear dependence is the entrainment of bubble
pairs by a common vortex, causing their relative acceleration to scale as δa ∼ r . The
value of δa can be expressed in terms of δv as δa = δvdδv/dr , which finally leads to
δv2 ∼ r2.

More importantly, a noticeable observation is the upward shift of the curves as the
bubble size increases, despite the fact that the structure functions are normalised by
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turbulence scales, which indicates that the bubble dynamics does not simply mirror that
of the surrounding eddies, as incorrectly assumed in many models. The key missing piece
is the biased sampling, i.e. bubbles preferentially get entrained in eddies of similar sizes
(Wang et al. 2024). Subsequently, by further non-dimensionalising DB

L L with the eddy
energy that scales as (db/λ)

2/3, we obtain the normalised plot presented in figure 5(b).
The curves exhibit a reasonable collapse in both limits, i.e. r2 and r2/3, providing support
to the biased sampling argument. By utilising the collapse observed in figure 5(b), we can
readily formulate the bubble structure function as follows:

DB
L L(r, db) =

{
C0(db/λ)

2/3(εdb)
2/3(r/db)

2 for r � 2db,

C1(db/λ)
2/3(εdb)

2/3(r/db)
2/3 for 2db < r � L,

(4.1)

where C0 and C1 are constants. From the data plotted in figure 5, C0 and C1 are estimated
to be 1.73 and 4.36, respectively, both of which are the order of unity, suggesting that the
additional term of biased sampling is reasonable.

Equation (4.1) readily provides the estimation of the approach velocity which is defined
as the relative bubble velocity before the lubrication pressure slows them down, which
begins at around r = 1.2db (Gong et al. 2020). The approach velocity, δv

‖
c , can then be

determined by setting r = 1.2db in the bubble structure function

〈
δv‖

c (db)
〉 ≡ [〈

δrv
2‖(r = 1.2db)

〉]1/2 = 1.2C1/2
0 (ε/λ)1/3d2/3

b . (4.2)

Equation (4.2) clearly shows that the approach velocity, instead of following d1/3
b as

proposed in the classical framework, scales as d2/3
b . The additional 1/3 scaling highlights

the missing biased sampling effect that was overlooked before.
Note that the approach velocity refers to the relative velocity between two bubbles at

a particular separation scale. In most classical models – and in our work here – it is
taken to be the relative velocity at r = 1.2db, i.e. when the bubbles are nearly in contact.
However, an alternative choice is to define it at larger separations, such as at the mean inter-
bubble distance determined by the local bubble concentration. In the idealised case where
particles move ballistically – with constant velocity magnitude and direction – the relative
velocity would be the same regardless of the separation r at which it is measured, and the
two definitions would yield identical results. However, this assumption does not hold in
turbulent flows, where the relative velocity between bubbles varies with separation r , as
shown in figure 5. In turbulence, the approach velocity should therefore be interpreted
as a weighted average of the relative velocity over a range of separations – from the
mean separation (approximately 12db) down to contact. Since this range lies within the
inertial subrange, the averaging does not affect the scaling with respect to bubble diameter
db, although it introduces a prefactor. This prefactor depends on a weighting function
that reflects the probability that two bubbles remain on a collision course over a given
separation r . This probability is near one at small separations r ≈ db, and rapidly decays at
larger values of r , since the likelihood of continued approach over long distances becomes
negligible. Consequently, evaluating the approach velocity at r = 1.2db provides a good
approximation, as the weighting function gives higher importance to bubble pairs that are
already close to contact. This makes the choice of selecting relative velocity at r = 1.2db
both physically reasonable and consistent with prior modelling approaches. Future work is
needed to determine the exact correction prefactor introduced by the weighting function,
in order to improve quantitative accuracy.
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Figure 6. Bubble contact time. (a) Schematic of trajectories of a bubble pair through collision, (b–c) the time
series of the separation between these two bubbles and their relative acceleration along with the extracted
contact times τd and τa , (d) the contact time normalised by the Kolmogorov time scale as a function of the
bubble diameter and (e) the relative longitudinal acceleration as a function of the bubble diameter.

5. Contact time
Once the bubble pairs get sufficiently close and the film begins to drain, the contact time
can be calculated based on two different methods, as depicted in figure 6. Figures 6(a), 6(b)
and 6(c) show the trajectories, distance r and longitudinal relative acceleration δr a‖ of a
bubble pair with bubble diameters of 0.44 and 0.46 mm, respectively. One definition of
contact time, td

ct , is based on the distance, which measures the duration between bubbles
when the gap between the two interfaces falls within 0.2db. Another definition of the
contact time, denoted as ta

ct , focuses on measuring the duration over which the longitudinal
relative acceleration δr a‖ becomes positive, indicating a repulsive force between the two
bubbles from the lubrication pressure, until r reaches the minimum.

The contact time results based on both the distance (td
ct ) and the longitudinal relative

acceleration (ta
ct ) are presented in figure 6(d). The contact time determined by either

criterion shows no clear trend with the bubble size. These results are clearly different from
the prediction either based on the dimensional analysis, i.e. d2/3

b /ε1/3, or another relation,
(ρd3

b/σ)1/2, where ρ and σ are the fluid density and bubble surface tension, derived by
Chesters (1991) through the balance between the surface energy and kinetic energy. This
difference suggests that larger bubble sizes do not necessarily result in a longer contact
time or increased chances for coalescence in turbulence. In the analysis of coalescence
efficiency in the following section, ta

ct is adopted as the representative contact time, as it is
more directly related to the drainage process.

To explain this difference, an alternative way to estimate the contact time is through
〈δrv‖〉/〈δr a‖〉, which is the time scale that it takes for the approach velocity to decelerate
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Figure 7. The coalescence efficiency and the PDF of collision velocity. (a) The PDF of the coalescence and
collision velocity calculated from all collision and coalescence events, along with the ratio in between which is
defined as the coalescence efficiency (red symbols). Our model is plotted with a red solid line, to be compared
with the one by Coulaloglou (1975) plotted with a blue solid line. (b) The PDF of δv

‖
c for different bubble sizes

normalised by the velocity scale 〈δv‖
c 〉 predicted by (4.2). They all collapse and can be modelled based on the

log-normal distribution of the turbulence energy dissipation rate fε (black solid line).

to zero. With both bubbles tracked simultaneously, the relative acceleration between two
bubbles at a given separation can be computed. The separation r = 1.1db, or film thickness
0.1db, is chosen, which is the midpoint between the start of the film drainage (r = 1.2db)
to the point of contact r = db. The dependence of 〈δr a‖(r = 1.2db)〉 on bubble size is
illustrated in figure 6(e). It is evident that 〈δr a‖〉 scales with d2/3

b , suggesting that larger
bubble pairs experience stronger repulsive forces. The large repulsive force indicates a high
pressure within the film which likely results in local deformation for larger bubbles. With
the access to both 〈δrv‖〉 and 〈δr a‖〉 experimentally, it is then straightforward to derive the
relationship

τct ≈ 〈
δrv‖

〉/〈
δr a‖

〉 ∝ r2/3/r2/3 ∼ r0, (5.1)

which explains the finding in figure 6(d) that the contact time remains nearly constant
regardless of the variation in bubble size.

So far, we have measured the critical parameters used in traditional models to predict
collision and coalescence. The scaling of the collision velocity and contact time with
the bubble size was hypothesised to be d1/3

b and d2/3
b , respectively, in traditional models

(Coulaloglou 1975; Lee et al. 1987; Prince & Blanch 1990a; Luo 1995). However, we have
shown that these hypotheses are not correct. The corrected scalings should be d2/3

b and d0
b .

Such deviation stems from the additional dimensionless number that accounts for the size
ratio db/λ between bubble and turbulence, which measures the effect of biased sampling
that was missed in the models.

6. Coalescence rate in turbulence
The PDFs of the collision velocity normalised by the model prediction 〈δv‖

c 〉 in (4.2)
for both collision and coalescence events are computed and shown as coloured bars in
figure 7(a). Although the PDFs appear similar, the peak of the coalescence PDF is shifted
towards a higher relative velocity than that of the collision PDF. The bubble coalescence
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efficiency, ET
cc, is calculated by dividing the number of coalescence events (Ncc, the

subscript cc represents ‘collision then coalescence’) by the number of collision events
(Nc), i.e. ET

cc = Ncc/Nc. The value of ET
cc is plotted as red dots in figure 7(a) as a function

of the collision velocity δv
‖
c ; ET

cc(δv
‖
c ) exhibits a peak at an intermediate collision velocity,

a Goldilocks zone for coalescence, approaching zero for both small and large collision
velocities.

This Goldilocks zone for coalescence efficiency contrasts sharply with the well-adopted
traditional model (Coulaloglou 1975; Chesters 1991; Doubliez 1991; Duineveld 1996;
Lehr & Mewes 2001; Lehr et al. 2002), which is shown as the blue line in figure 7.
The traditional model is expressed as ET

cc(δv
‖
c ) = exp(−tdr/tct ) (Ross (1971)), where

tct ≈ 1.7 ms is taken from our experimental result (figure 6d) and the drainage time model
proposed by Chesters (1975, 1991) and Luo (1995) is adopted:

tdr = Cdrρcδv
‖
c d2

b/σ, (6.1)

where ρc represents the density of the carrier fluid and σ the surface tension of bubbles.
The prefactor Cdr is introduced in the model to account for detailed interfacial properties,
such as bubble surface mobility, the onset time of the drainage process and surfactant
effects. In our study, we tried our best to use reverse osmosis water but the surfactant
concentration in the entire tunnel may not be perfectly zero so we determined Cdr by fitting
the coalescence efficiency model ET

cc(δv
‖
c ) to our experimental measurements, yielding a

value of approximately 7.5. The model prediction is shown as a blue solid line. Although
the prediction clearly departs from the measured ET

cc(δv
‖
c ), the classical model seems to

converge with the data at large collision velocities, i.e. δv
‖
c > 5〈δv‖

c 〉. At low collision
velocities, however, the model predicts nearly 100 % coalescence efficiency yet the data
suggest that the coalescence efficiency should continue to decline down to zero.

This mismatch resides in the assumption of the model that the collision velocity is
persistent over tdr for the liquid film to be drained. In turbulence, however, the relative
velocity between bubbles is affected by the surrounding eddies carrying their own
characteristic scales. If the collision velocity is smaller than the eddy velocity, the collision
takes too long, longer than the decorrelation time of the flow. In this case, the drainage
process is interrupted by the chaotic motion of surrounding eddies in random directions,
causing bubble pairs to be driven apart.

As a result, the coalescence efficiency has to account for an additional probability, P ,
of the bubble collision velocity δv

‖
c being large enough to keep bubble pairs together for

coalescence to occur before eddies with velocity scale of |ul | separate them. If |ul | � δv
‖
c ,

P should approach one since the eddy velocity is too slow to interrupt coalescence and the
process proceeds as if the surrounding flow is frozen. At the opposite limit when |ul | 

δv

‖
c , P approaches zero, suggesting that the coalescence cannot happen without sufficient

time to drain the film, as is the case for the left tail of curve for ET
cc in figure 7(a). Between

these two limits, there should exist a critical velocity, κδv
‖
c . Then P can be expressed as

P(|ul | < κδv‖
c

) =
∫ κδv

‖
c

−κδv
‖
c

fu(ul)dul , (6.2)

where fu(ul) is the PDF of the eddy velocity at the bubble scale which can be
approximated by a Gaussian distribution with zero mean and a deviation C2(εdb)

2/3 since
db is in the inertial range (Kolmogorov 1949). The final model of ET

cc by including P and
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the Ross (1971) model is

ET
cc

(
δv‖

c

) =P(|ul | < κδv‖
c

)
exp

(−Cdrρcδv
‖
c d2

b/σ tct
)
. (6.3)

The model prediction using the mean bubble diameter from experiments db = 12η is
shown as a red curve in figure 7(a), which matches well with the experimental results
using the fitting parameters κ = 0.14 constrained mostly by the left tail and Cdr = 7.5
constrained by the right tail.

Since the coalescence efficiency shows non-trivial dependence on the collision velocity,
the PDF of the collision velocity in turbulence becomes important for modeling of
coalescence rate, which is also calculated and plotted with symbols in figure 7(b) for three
different groups of bubble sizes db = 8.46η, 12.32η and 16.72η. The collision velocities
are normalised by their respective mean based on (4.2), v∗ = δv

‖
c/〈δv‖

c 〉. Since bubbles are
transported through eddies across multiple scales, the PDF of the collision velocity can
be derived based on the log-normal distribution of the normalised energy dissipation rate
ε∗ = εr/〈ε〉 given by (Kolmogorov 1962; Meneveau & Sreenivasan 1987)

fε(ε
∗) = 1

ε∗
√

2πσ 2
lnε

exp

[
−(lnε∗ − μlnε)

2

2σ 2
lnε

]
, (6.4)

where σ 2
lnε = A + μln(L/r) and μlnε = −σ 2

lnε/2 such that the mean of ε∗ given by this
distribution is 1. The parameter μ = 0.25 is the intermittency exponent and A is a
parameter determined by the specific flow conditions. After normalisation, v∗ solely
scales with ε∗1/3, which can be modelled as v∗ = ζ ε∗1/3, where ζ is a coefficient that
is left out in the non-dimensionalisation. The PDF for v∗ can be readily derived as
f c
v (v∗) = 3v∗2 fε((v∗/ζ )3)/ζ 3, where fε is evaluated at r = db. We determined both ζ and

A by fitting f c
v (v∗) to the PDF of v∗ from experiments, which are 2.8 and 1, respectively.

The model of the PDF of v∗ based on (6.4) is plotted as a solid black line in figure 7(b),
which shows a good agreement with experimental data. We also plotted the dimensional
δv

‖
c in the inset of figure 7(b) to confirm the agreement between the model and the

measured PDF at different sizes.
With the derived PDF of the collision velocity and the coalescence effi-

ciency, the PDF of the coalescence velocity can be formulated as f cc
v (δv

‖
cc) =

ET
cc(δv

‖
c ) f c

v (δv
‖
c )/

∫ ∞
0 ET

cc(δv
‖
c ) f c

v (δv
‖
c )dδv

‖
c , where f c

v (δv
‖
c ) is the PDF of collision veloc-

ity, and f cc
v (δv

‖
cc) the PDF of collision velocity for coalescing bubble pairs, δv‖

cc. Then the
average coalescence velocity can be calculated as 〈δv‖

cc〉 = ∫ ∞
0 v f cc

v (v)dv. In figure 8(a),
the model-predicted 〈δv‖

cc〉 is shown as a red solid line. It is important to note that the
calculation of ET

cc(δv
‖
c ) from (6.3) uses a constant contact time for all bubble sizes, as

demonstrated in figure 6. To validate our model prediction, we divided the coalescing bub-
ble pairs into groups with four different sizes, and calculated their mean collision velocity
and corresponding 95 % confidence intervals, plotted as scattered squares with error bars.

As shown in figure 8(a), our model prediction aligns reasonably with the experimental
measurement. Note that symbols represent the statistics of only the coalesced bubbles
and the line came from the integration of several quantities, including the new
‘Goldilocks effect’ of coalescence efficiency, the nearly constant contact time and the
PDF of the collision velocity derived from the log-normal distribution of the turbulence
energy dissipation rate. For comparison, the prediction by the traditional hypothesised
model based on the previous studies (Ross 1971; Chesters 1975; Coulaloglou 1975),
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Figure 8. The mean coalescence velocity 〈|δv‖
cc|〉 and the size distribution of bubble pairs undergoing

coalescence. (a) The mean 〈|δv‖
cc|〉 calculated from the coalescence efficiency ET

cc and the PDF of δv
‖
c .

Predictions by our model and the RCC model (Ross 1971; Chesters 1975; Coulaloglou 1975) are shown for
comparison. The experiment measured 〈|δv‖

cc|〉 is also plotted to validate our model. (b) The size distribution
of bubble pairs involved in coalescence events predicted by our model and the RCC model.

specifically the RCC model, where δv
‖
c = [C2(εdb)

2/3]1/2 and tct = d2/3
b /(C1/2

2 ε1/3),
is also calculated and plotted as a blue solid line. The resulting coalescence velocity is
much lower than both our model prediction and experimental measurement because of the
lack of bubble–eddy interactions in several key quantities.

Our model can be further validated by calculating the bubble size distribution for bubble
pairs involved in coalescence events. The number of coalescence events, Ncc(db), for the
given number of collision events, Nc(db), can be estimated as

Ncc(db) =
∫ ∞

0
Nc(db)ET

cc

(
δv‖

c

)
f c
v

(
δv‖

c

)
dδv‖

c . (6.5)

Since Nc(db) is not a function of δv
‖
c , it can be factored out of the integral;

Nc(db) can be presented by the bubble size distribution of collision events f c
d (db) as

Nc(db) = N f c
d (db)ddb, where N is the total number of collision events and f c

d (db)

is shown as the blue solid line in figure 3(a). Defining the integral as ϑ(db) =∫ ∞
0 ET

cc(δv
‖
c ) f c

v (δv
‖
c )dδv

‖
c , the size distribution of coalescence events can be expressed as

f cc
d (db) = f c

d (db)ϑ(db)/
∫ ∞

0 f c
d (db)ϑ(db)ddb. Since we do not have a model for the size

distribution of collision events, we fitted f c
d (db) by a log-normal distribution in figure 3(a)

with a mean and deviation of 2.6 and 0.12, and focus on the effect of chosen model of ET
cc,

which can uses either the RCC model (blue line) or the revised Goldilocks zone model
(red line in figure 8b).

The RCC model clearly deviates from the experimental measurement. Our model shows
good agreement with the experimental measurement shown with the red symbols, further
demonstrating the validity of our model in predicting coalescence efficiency and collision
velocity.

7. Discussion
The data analysis and modelling in the previous sections demonstrate that turbulence
significantly influences bubble coalescence through four key mechanisms: clustering,
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Quantities RCC models Our models Eq number

Collision velocity δv
‖
c (εdb)

1/3 1.2C1/2
0 (ε/λ)1/3d2/3

b (4.2)
Contact time tct d2/3

b /ε1/3 d0
b (5.1)

Coalescence efficiency ET
cc exp(−tdr/tct ) P(ul < κδv

‖
c )exp(−tdr/tct ) (6.3)

Table 1. Comparison between the RCC models and our models.

biased sampling, constant contact time and eddy-driven separation. These mechanisms,
highlighted in orange in figure 1, collectively shape the coalescence dynamics by
modifying collision rates and coalescence efficiency. The comparison between the
traditional models (RCC models) and our models is summarised in table 1.

The biased sampling effect enhances bubble collisions by increasing the collision
frequency for larger bubbles. Since larger bubbles extract more energy from their
corresponding bubble-sized eddies, their collision velocity scales with a larger exponent
to the bubble size than previously expected, which results in a higher collision frequency
as bubble size increases.

Another key is the clustering effect, which increases the local concentration of similar-
sized bubbles with the Stokes number Stdb close to 1, leading to preferential interactions
among bubbles within a specific size range dictated by the background turbulence. In
contrast to biased sampling, clustering does not favour the smallest or largest bubbles, but
instead creates an optimal size range for bubble collisions. In our study, we computed gCL
in (3.1) to represent the clustering effect shown in figure 3(b).

After two bubbles collide, the observed contact time between them is completely
different from the commonly believed bubble-sized eddy turnover time. This discrepancy
suggests that the bubble contact time is less dependent on surrounding turbulent vortices
and instead more influenced by bubble–bubble interaction. In comparison with the
eddy turnover time, the model by Chesters (1991) provides a better order of magnitude
estimation as their model focused on the time scale of the energy transfer from the bubble
kinetic energy to the bubble surface energy. But their predicted scaling with bubble size
still fails to match the experimental results. Our results indicate that the deceleration during
the collision exhibits almost the same scaling with bubble size as the bubble collision
velocity. As a result, the contact time shows little dependence on the bubble size since the
contact time scales with the ratio between relative velocity and deceleration.

In addition to the contact time, turbulence brings in another key mechanism that alters
the coalescence efficiency – the eddy-driven bubble separation. As a result, coalescence
efficiency is peaked within an optimal collision velocity range, creating a ‘Goldilocks’
zone where coalescence occurs when collision velocities are neither too fast nor too slow.

It is important to acknowledge that, apart from the turbulence effect, the interfacial
property also can significantly modify the coalescence efficiency. For example, adding
surfactants to the carrier flow can further reduce the bubble coalescence rate (Takagi &
Matsumoto 2011). Surfactants lower the surface tension σ , which increases the drainage
time and, consequently, decreases the coalescence efficiency, as described by (6.3).
Additionally, surfactants affect bubble surface mobility, further prolonging the drainage
time. Both effects can be incorporated into our model by adjusting Cdr and σ . If the
surfactant concentration gradient exists on the bubble’s surface, the Marangoni effect
becomes significant. This effect resists film thinning and increases the drainage time. The
extent of this resistance depends on the surfactant concentration gradient and the film
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thickness (Oolman & Blanch 1986; Prince & Blanch 1990a), introducing a more complex
influence than surface tension alone, which requires further investigation.

Similar to surfactants, dissolved salts significantly impact bubble coalescence through
distinct physicochemical mechanisms (Martínez-Mercado et al. 2007). Beyond a critical
salt concentration, electrolytes inhibit coalescence, stabilising foam (Craig, Ninham &
Pashley 1993; Weissenborn & Pugh 1996; Firouzi et al. 2015). Proposed mechanisms
include (i) electrostatic repulsion from ion-specific adsorption (Duignan 2021), (ii) Gibbs–
Marangoni stresses resisting film thinning (Henry et al. 2007; Yaminsky et al. 2010),
(iii) hydrophobic interactions preventing film rupture (Yaminsky & Ninham 1993) and
(iv) interfacial viscosity effects slowing drainage (Marrucci 1969; Prince & Blanch 1990a;
Weissenborn & Pugh 1996). While these mechanisms explain key observations, they fail
to predict the sharp transition at the critical salt concentration (Lessard & Zieminski
1971) or its dependence on the collision velocity, as observed in dynamic coalescence
experiments (Li et al. 2025). The complex role of salts in bubble coalescence remains
poorly understood, making quantitative modelling challenging.

Nevertheless, for simplified interfacial properties, with all turbulence effects included,
the bubble coalescence rate between bubble pair with size db can be expressed as

ṅ(db) =
∫ ∞

0
4n2 f c

d (db)ddbπd2
bδv‖

cET
cc

(
δv‖

c

)
f c
v

(
δv‖

c

)
dδv‖

c , (7.1)

which completes the modelling of bubble coalescence in turbulence. From a simulation
perspective, the coalescence rate at time t is determined by taking inputs, such as
the instantaneous bubble size distribution (III) and turbulence characteristics (I), and
interfacial properties such as surface tension (II.1) and ion concentration (II.2). The new
effects of turbulence discovered in our study, such as the clustering effect (I.1), biased
sampling (I.2), constant contact time (I.3) and eddy-driven bubble separation (I.4) during
time �t , govern the bubble coalescence dynamics in turbulence. Once the coalescence
rate ṅ (IV) is obtained, it is incorporated into the population balance equation, updating
the bubble size distribution from time t to t + �t . This iterative process allows for
the continuous evolution of the bubble population, providing insights into the statistical
dynamics of coalescence in turbulent flows.

8. Conclusion
In this study, with the new breakthrough in experimental methods, for the first time,
we measured the collision and coalescence dynamics of bubbles in turbulence in three
dimensions, covering both the collision and coalescence rates as well as the key statistics
that govern these processes. The classical models that have been widely adopted often
assume that bubble motion mirrors the surrounding eddies. The experimental data show
that the classical model misses several key quantities, as it fails to consider the biased
sampling of bubbles in eddies of comparable sizes and the eddy-induced separation
effect on bubble coalescence. By incorporating these factors, we successfully developed
new scalings for the bubble velocity and the coalescence efficiency model. Turbulence
influences the bubble dynamics in two opposing ways: it enhances collision for larger
bubbles through high-energy eddies of comparable size, while simultaneously inhibiting
coalescence by separating bubble pairs via surrounding eddies. As a result, it produces
a Goldilocks zone for bubble coalescence with both large and small collision velocities
resulting in low coalescence efficiency.
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Appendix A. Homogeneous isotropic turbulence
The turbulence is generated within an octagonal test section 23 cm in size (the diameter of
the inscribed circle) and 80 cm in height. As shown in figure 2(b), the jet array consists of
88 jet nozzles with a diameter of 5 mm that are connected to the side openings via internal
channels, and with 52 square through holes allowing co-flow from the tunnel top into
the test section. In the experiments, 22 jets spaced uniformly at 4.2 cm apart were actively
shooting downward. The jet velocity at the nozzle is 5.1 m s−1, complemented by a co-flow
velocity of 0.23 m s−1, resulting in a mean flow velocity of 0.1 m s−1 in the test section.
The cameras were positioned 23 cm downstream from the jet array, providing sufficient
distance for the jet flow to develop fully into homogeneous isotropic turbulence (Tan et al.
2023a). The view volume of all cameras was approximately 60 × 60 × 40 mm3, centred
within the test section. Bubbles generated by a bubble generator at the bottom of the test
section are sized from 0.4 to 2 mm in diameter, with a void fraction of around 0.04 %.
The rise velocity of generated bubbles is approximately 0.1 m s−1 (Salibindla et al. 2020),
counteracted by the mean flow in the test section to increase the residence time.

Appendix B. Three-dimensional measurements
In the experiments, the shadows of bubbles were projected onto all four cameras using
backlit LED panels. The bubbles were then reconstructed and tracked using our in-house
bubble-tracking algorithm (Tan et al. 2023b). This algorithm employs a similar tracking
framework to our OpenLPT code (Tan et al. 2019, 2020) but accounts for the finite size
of bubble images, leveraging both temporal and spatial information from bubble images,
which enables it to handle densely packed bubble images with overlap. Image cross-
correlation was used to accurately determine the 3-D bubble locations, achieving sub-pixel
precision through bilinear interpolation of the correlation. The resulting trajectories were
smoothed by convolution with a Gaussian kernel (Mordant et al. 2004; Ni et al. 2012). The
filter size was carefully chosen to preserve velocity and acceleration data while effectively
eliminating noise.
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