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Abstract

Let G be a semi-simple algebraic group over an algebraically closed field k, whose

characteristic is positive and does not divide the order of the Weyl group of G, and let

Ğ be its Langlands dual group over k. Let C be a smooth projective curve over k of genus

at least two. Denote by BunG the moduli stack of G-bundles on C and LocSysĞ the

moduli stack of Ğ-local systems on C. Let DBunG be the sheaf of crystalline differential

operators on BunG. In this paper we construct an equivalence between the bounded

derived category Db(QCoh(LocSys0
Ğ

)) of quasi-coherent sheaves on some open subset

LocSys0
Ğ
⊂ LocSysĞ and bounded derived category Db(D0

BunG
-mod) of modules over

some localization D0
BunG

of DBunG . This generalizes the work of Bezrukavnikov and

Braverman in the GLn case.
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1. Introduction

1.1 Geometric Langlands conjecture in prime characteristic

Let G be a reductive algebraic group over C and let Ğ be its Langlands dual group. Let C be

a smooth projective curve over C. Let BunG be the stack of G-bundles on C and LocSysĞ be

the stack of de Rham Ğ-local systems on C. The geometric Langlands conjecture (GLC), as

proposed by Beilinson and Drinfeld, is a conjectural equivalence between certain appropriately

defined category of quasi-coherent sheaves on LocSysĞ and certain appropriately defined category

of D-modules on BunG. A precise formulation of this conjecture (over C) can be found in the

recent work of Arinkin and Gaitsgory [AG12, Gai13].
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The geometric Langlands duality has a classical limit which amounts to the duality of Hitchin
fibrations. The classical duality is established ‘generically’ by Donagi and Pantev in [DP12]
over C.

In this paper, we establish a ‘generic’ characteristic p version of the geometric Langlands
conjecture. Namely, let G be a semi-simple algebraic group over an algebraically closed field k of
characteristic p that does not divide the order of the Weyl group of G, and let Ğ be its Langlands
dual group, defined over k. Let C be a smooth projective curve over k of genus at least two.1

Then we establish an equivalence of bounded derived category

Db(D-mod(BunG)0) ' Db(QCoh(LocSysĞ)0), (1.1.1)

where D-mod(BunG)0 (respectively QCoh(LocSysĞ)0) is a certain localization of the category
of D-modules on BunG (respectively a localization of the category of quasi-coherent sheaves on
LocSysĞ). We call (1.1.1) a ‘generic’ version of the GLC.

One remark is in order. Recall that over a field of positive characteristic, there are different
objects that can be called D-modules. In this paper, we use the notion of crystalline D-modules,
i.e., D-modules are quasi-coherent sheaves with a flat connection. Likewise, the stack LocSysĞ
is the stack of Ğ-bundles on C with a flat connection.

1.2 Summary of the construction
The case G = GLn has been considered by Bezrukavnikov and Braverman in [BB07] (see [Gro12,
Tra11] for various extensions). The main observation is that the geometric Langlands duality in
characteristic p formulated in the above form can be thought as a twisted version of its classical
limit. Since the classical duality holds ‘generically’, they proved a ‘generic’ version of the GLC
in the case when G = GLn.

Our generalization to any semi-simple group G is based on the same observation, but some
new ingredients are needed in this general situation.

One of the main difficulties for general G is that the classical duality is more complicated.
For G = GLn, the generic fibers of the Hitchin fibration are the Picard stacks of line bundles on
the corresponding spectral curves and the duality of Hitchin fibrations in this case essentially
amounts to the self-duality of the Jacobian of an algebraic curve. However, for general G, the
fibers of the Hitchin fibration involve more general Picard stacks, such as the Prym varieties
etc., and the duality of the Hitchin fibrations for G and Ğ over C are the main theme of [DP12]
(see [HT03] for the case G = SLn). As commented on by the authors, the arguments in [DP12]
use transcendental methods in an essential way and therefore cannot be applied to our situation
directly.

Our first step is to extend the classical duality to any reductive group G over any algebraically
closed field k whose characteristic does not divide the order of the Weyl group of G. Let us first
give its statement, and leave the details to § 3. For a reductive group G and a smooth projective
curve C over k, and a positive line bundle L on C, let HiggsG,L→ B denote the corresponding
Hitchin fibration, on which the Picard stack PL → B acts (see § 2 for a review). There is an
open subset B0 ⊂ B such that PL|B0 is a Beilinson 1-motive (a Picard stack that is essentially
an abelian variety, see Appendix A). Fixing a non-degenerate bilinear form on the Lie algebra g
of G, one can identify the Hitchin base B and the corresponding open subset B0 for G and Ğ.
The classical duality is the following assertion.

1 The assumptions on the genus of C and on the semi-simplicity of G should not be essential. We impose them to
avoid the DG structure on moduli spaces.

396

https://doi.org/10.1112/S0010437X16008113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008113


Geometric Langlands in prime characteristic

Theorem 1.2.1. For a positive line bundle L on C, there is a canonical isomorphism of Picard
stacks

Dcl : (PL|B0)∨ ' P̆L|B0 , (1.2.1)

where (PL|B0)∨ is the dual Picard stack of PL|B0 (as defined in Appendix A).

Now assume that the characteristic of k is positive. In addition, assume that the genus of
C is at least two and that L = ωC is the canonical bundle. We will omit the subscript ωC and
write P = PωC etc. The second step then is to construct a twisted version of the above classical
duality in this situation. To explain its meaning, let us first introduce a notation: if X is a stack
over k, we denote by X ′ its Frobenius twist, i.e., the pullback of X along the absolute Frobenius
endomorphism of k. Let FX : X → X ′ denote the relative Frobenius morphism. We will replace
both sides of (1.2.1) by certain torsors under P ′∨ and P̆ ′.

We begin to explain the P̆ ′-torsor H̆ , which was introduced in [CZ15]. There is a smooth
commutative group scheme J̆ ′ on C ′ × B′ and P̆ ′ in fact classifies J̆ ′-torsors. Let us denote by
J̆p the pullback of J̆ ′ along the relative Frobenius FC′×B′/B′ : C×B′→ C ′×B′. This is a group

scheme with a canonical connection along C, and therefore it makes sense to talk about J̆p-local
systems on C ×B′ and their p-curvatures (see [CZ15, Appendix] for generalities). Let H̆ be the
stack of J̆p-local systems with some specific p-curvature τ̆ ′. This is a P̆ ′-torsor.

Next we explain the P ′∨-torsor TD(θm). According to general nonsense (Appendix A), such
a torsor gives a multiplicative Gm-gerbe D on P ′ and vice versa. So it is enough to explain
this multiplicative Gm-gerbe D(θm) on P ′. First recall that the sheaf of crystalline differential
operators on P can be regarded as a Gm-gerbe DP on the cotangent bundle T ∗P ′. We will
construct a 1-form θm on P ′, which is multiplicative (in the sense of §C.2). Now, D = D(θm) is
the gerbe on P ′ obtained via pullback of DP along the map θm : P ′

→ T ∗P ′.
The twisted version of the classical duality is the following assertion.

Theorem 1.2.2. Over B
′0, there is a canonical isomorphism of P ′∨ ' P̆ ′-torsors

D : TD(θm)|B′0 ' H̆ |B′0 .

The final step towards (1.1.1) is to establish two abelianization theorems. Another difference
between the geometric Langlands correspondence for GLn and for a general group G is that
in the latter case, there is no canonical equivalence in general. As is widely known to experts
(e.g. see [FW08]), the geometric Langlands correspondence for general G should depend on a
choice of theta characteristic of the curve C.

Let us fix a square root κ of ωC . Then the Kostant section of Higgs′G → B′ induces a map
εκ′ : P ′

→ Higgs′G. The first abelianization theorem asserts a canonical isomorphism

ε∗κ′DBunG ' D(θm),

where DBunG is the Gm-gerbe (on Higgs′G = T ∗Bun′G) of crystalline differential operators on
BunG and D(θm) is the Gm-gerbe on P ′ mentioned above.

On the dual side, we constructed a canonical morphism in [CZ15]

C : H̆ ×P̆′ Higgs′
Ğ
→ LocSysĞ,

and the Kostant section of Higgs′
Ğ
→ B′ induces an isomorphism

Cκ : H̆ ' LocSysreg

Ğ
,

where LocSysreg

Ğ
is a certain open substack of LocSysĞ (see [CZ15, Remark 3.14]).
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Combining the above three steps and a general version of the Fourier–Mukai transform

(Appendix A) will give the desired equivalence (1.1.1).

Let us mention that the morphism C was obtained in [CZ15] as a version of Simpson

correspondence for smooth projective curves in positive characteristic.

Finally in §§ 5.5 and 5.6, we discuss how the equivalence constructed above depends on the

choice of the theta characteristic. This can be regarded as a verification of the predictions of

[FW08, § 10] in our settings.

1.3 The Langlands transform

To claim that the above equivalence is the conjectural geometric Langlands transform, one

needs to verify several properties that it is supposed to satisfy. We will only briefly discuss these

properties (see [Gai13] for more details), and leave the verifications to our next work.

The first property is that the equivalence should intertwine the action of the Hecke operators

on the automorphic side and the action of the Wilson operators on the spectral side. Recall that

in the case k = C, both categories D(D-mod(BunG)) and D(Qcoh(LocSysĞ)) admit actions of

a family of commuting operators, labeled by points x on the curve and representations V of the

group Ğ. Namely, for x ∈ C and V ∈ Rep(Ğ), there is the so-called Wilson operator WV,x acting

on Qcoh(LocSysĞ) by tensoring with the locally free sheaf VEuniv |LocSysĞ×{x}. On the other

side, there is the Hecke operator HV,x acting on D-mod(BunG) via certain integral transform

(e.g. see [BD91, § 5]). The second property is that the equivalence should satisfy the Whittaker

normalization. Namely, the Whittaker D-module FΨ on BunG is supposed to transformed to the

structure sheaf OLocSysĞ
.

In the positive characteristic, it is yet not clear how to define Hecke operators (except those

corresponding to minuscule coweights) due to lack of the notion of intersection cohomology

D-modules. Our observation is that by the geometric Casselman–Shalika formula [FGV01], the

two properties together will imply that the Whittaker coefficients of D-modules on BunG can be

calculated by applying the Wilson operators on their Langlands transforms and then taking the

global sections. This is a well formulated statement in characteristic p and we will verify in the

future work that this is satisfied by the equivalence constructed here.

The third property is that the equivalence should be compatible with Beilinson and Drinfeld’s

construction of automorphic D-modules via opers [BD91]. In the case G = GLn this property

has been verified in [BT16]. We plan to return to this in the future work.

1.4 Structure of the article

Let us now describe the contents of this paper in more detail.

In § 2 we collect some facts about Hitchin fibrations that are used in this paper. Main

references are [Ngô06, Ngô10].

In § 3 we prove the classical duality, i.e., the duality of Hitchin fibrations. This extends the

work of [DP12] (over C) to any algebraically closed field whose characteristic does not divide the

order of the Weyl group of G. In § 3.7, we discuss the compatibility of the classical duality with

twisting by Z(Ğ)-torsors. This is used to study the dependence of the equivalence (1.1.1) on the

choice of the theta characteristic in §§ 5.5 and 5.6.

In § 4 we construct a canonical multiplicative 1-form θm on P ′.

In § 5 we deduce our main Theorem 5.0.1 from the twisted duality (see § 5.2) and the two

abelianization theorems (see § 5.3).

There are three appendices at the end of the paper.
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In Appendix A we collect some basic facts about Beilinson 1-motives and duality on Beilinson
1-motives. In particular, we state a general version of Fourier–Mukai transforms for Beilinson
1-motives.

In Appendix B we recall the basic theory of D-modules over varieties and stacks in positive
characteristic, following [BMR08, BB07, OV07, Tra11].

In Appendix C we prove the abelian duality for good Beilinson 1-motives. It asserts that the
derived category of D-modules on a ‘good’ Beilinson 1-motive A is equivalent to the derived
category of quasi-coherent sheaves on the universal extension A \ by vector groups of its dual A ∨.

1.5 Notations
1.5.1 Notations related to algebraic stacks. Our terminology of algebraic stacks follows the

book [LB00]. Let k be an algebraically closed field and let p be the characteristic component
of k. Let S be a Noetherian scheme over k. In this paper, an algebraic stack X over S is a stack
such that the diagonal morphism

∆S : X →X ×S X

is representable and quasi-compact and such that there exists a smooth presentation, i.e., a
smooth, surjective morphism X →X from a scheme X.

An algebraic stack X is called smooth over S if for every S-scheme U mapping smoothly to
X , the structure morphism U → S is smooth.

For any algebraic stack X , we denote by XÉt the big étale site of X . We denote by Xsm

the smooth site on X , i.e., the site for which the underling category has objects consisting of
S-schemes U together with a smooth morphism U → X and has morphisms V → U smooth
2-morphisms over X and for which covering maps are smooth surjective maps of schemes. If X
is a Deligne–Mumford stack, we denote by Xét the small étale site of X .

Let Y →X be a quasi-projective morphism of algebraic stacks, with X smooth and proper
over S. We denote by SectS(X ,Y ) the stack of ‘sections’ of Y over X , i.e., for any u : U → S
we have

SectS(X ,Y )(U) = HomX (X ×S U,Y ).

If the base scheme S = Spec(k), we write Sect(X ,Y ) = SectS(X ,Y ).
If X is a smooth algebraic stack over S, we define the relative tangent stack T (X /S) as the

stack that assigns every SpecR→ S, the groupoid

T (X /S)(R) := X (R[ε]/ε2).

It is algebraic and the natural inclusion R→ R[ε]/ε2 induces a morphism

τX : T (X /S)→X .

It is known that T (X /S) is a relative Picard stack over X . Therefore, one can associate to it
a complex in D[−1,0](X ,Z), called the relative tangent complex:

T •X /S = {TX /S → TX }.

The relative cotangent stack is then defined as

T ∗(X /S) := SpecX (SymOX
H0(T •X /S)).
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Let f : X → Y be a (representable) morphism between two algebraic stacks over S. We
denote the cotangent morphism as the following diagram of maps.

T ∗(Y /S)×Y X
fd //

fp
��

T ∗(X /S)

T ∗(Y /S)

(1.5.1)

1.5.2 Notations related to Frobenius morphism. Let S be a Noetherian k-scheme and X → S
be an algebraic stack over S. If pOS = 0, we denote by FrS : S→ S the absolute Frobenius map
of S. We have the following commutative diagram

X
FX /S //

##

X (S)
πX /S //

��

X

��
S

FrS // S

where the square is Cartesian. We call X (S) the Frobenius twist of X along S, and FX /S :

X →X (S) the relative Frobenius morphism. If the base scheme S is clear, X (S) is also denoted
by X ′ for simplicity.

1.5.3 Notation related to torsors. Let G be a smooth affine group scheme over X, and E be
a G-torsor on X. We denote by Aut(E) = E×GG the adjoint torsor and ad(E) or gE = E×GLieG
the adjoint bundle.

2. The Hitchin fibration

In this section, we review some basic geometric facts of Hitchin fibrations, following [Ngô06,
Ngô10]. Only § 2.7 is probably new.

2.1 Notations related to reductive groups

Let G be a reductive algebraic group over k of rank l. We denote by Ğ its Langlands dual group
over k. We denote by g (respectively by ğ) the Lie algebra of G (respectively Ğ). Let T denote
the abstract Cartan of G with its Lie algebra t. The counterparts on the Langlands dual side
are denoted by T̆ , t̆. We denote by W the abstract Weyl group of G, which acts on T and T̆ .
We denote by X•(T ) or simply by X• (respectively by X•(T ) or simply by X•) the character
(respectively the cocharacter) group of T . Let Φ ⊂ X•(T ) be the set of roots. Sometimes, we also
fix a set of simple roots {α1, . . . , αl} and an embedding t ⊂ g. Then for α ∈ Φ, let gα ⊂ g denote
the corresponding root subspace.

From now on, we assume that the char k = p is zero or p - |W|. We fix a W-invariant
non-degenerate bilinear form ( , ) : t× t→ k and identify t with t̆ using ( , ). This invariant form
also determines a unique G-invariant non-degenerate bilinear form g × g→ k, still denoted by
( , ). Let g ' g∗ be the resulting G-equivariant isomorphism.

2.2 Hitchin map
Let k[g] and k[t] be the algebras of polynomial functions on g and on t respectively. By
Chevalley’s theorem, we have an isomorphism k[g]G ' k[t]W. Moreover, k[t]W is isomorphic
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to a polynomial ring of l variables u1, . . . , ul and each ui is homogeneous in degree ei. Let
c = Spec(k[t]W). The natural Gm action on g induces a Gm-action on c and under the isomorphism
c ' Spec(k[u1, . . . , ul]) ' Al the action is given by

h · (a1, . . . , al) = (he1a1, . . . , h
elal).

Let χ : g→ c be the map induced by k[c] ' k[g]G ↪→ k[g]. It is a G × Gm-equivariant map
where G acts trivially on c. Similarly, let π : t→ c be the map induced by k[c] ↪→ k[t], which is
also Gm-equivariant. Let L be an invertible sheaf on C and L× be the corresponding Gm-torsor.
We denote by gL = g ×Gm L×, tL = t ×Gm L×, and cL = c ×Gm L× the Gm-twist of g, t, and c
with respect to the natural Gm-action.

Let HiggsG,L = Sect(C, [gL/G]) be the stack of sections of [gL/G] over C. That is, for each
k-scheme S the groupoid HiggsG,L(S) consist of maps

hE,φ : C × S → [gL/G],

or, equivalently, those maps
hE,φ : C × S → [g/G×Gm]

such that the composition of hE,φ with the projection [g/G × Gm] → BGm is given by the
Gm-torsor L×. Explicitly, HiggsG,L(S) consist of pairs (E, φ) (called Higgs bundles), where E is
an G-torsor over C × S and φ is an element in Γ(C × S, ad(E)⊗L) known as the Higgs field. If
the group G is clear from the context, we simply write HiggsL for HiggsG,L.

Let BL = SectSpec k(C, cL) be the scheme of sections of cL over C. That is, for each k-scheme
S, BL(S) is the set of sections

b : C × S → cL,

or, equivalently, those maps
b : C × S → [c/Gm]

such that the composition of b with the projection [c/Gm]→ BGm is given by L×. It is called
the Hitchin base of G.

The natural G-invariant projection χ : g→ c induces a map

[χL] : [gL/G]→ cL,

or more generally
[χ/G×Gm] : [g/G×Gm]→ [c/Gm]. (2.2.1)

The map [χL] induces a natural map

hL : HiggsL = Sect(C, [gL/G])→ Sect(C, cL) = BL.

Definition 2.2.1. We call hL : HiggsL→ BL the Hitchin map associated to L.

For any b ∈ BL(S) we denote by HiggsL,b the fiber product S ×BL
HiggsL.

Observe that the invariant bilinear form t×t→ k induces a canonical isomorphism t ' t∗ =: t̆,
compatible with the W-action. Therefore, there is a canonical isomorphism c ' c̆ and BL ' B̆L.
In what follows, we will identify them.

Let ω = ωC be the canonical line bundle of C. We are mostly interested in the case L = ω. For
simplicity, from now on we denote B = Bω, Higgs = Higgsω, h = hω : Higgs→ B, and Higgsb =
HiggsωC ,b. We sometimes also write HiggsG for Higgs to emphasize the group G. Observe that the
bilinear form as in § 2.1 together with the Serre duality induces an isomorphism Higgs ' T ∗BunG
(cf. [Hit87]).

401

https://doi.org/10.1112/S0010437X16008113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008113


T.-H. Chen and X. Zhu

2.3 The Kostant section
In this section, we recall the construction of the Kostant section of the Hitchin map hL. For each
simple root αi we choose a non-zero vector fi ∈ g−αi . Let f =

⊕l
i=1 fi ∈ g. We complete f into

an sl2 triple {f, h, e} and denote by ge the centralizer of e in g. A theorem of Kostant says that
f+ge consist of regular elements in g and the restriction of χ : g→ c to f+ge is an isomorphism
onto c. We denote by

kos : c ' f + ge

the inverse of χ|f+ge . Let ρ(Gm) denote the following Gm-action on g: it acts trivially on t, and
on gα by ρ(t)x = tht(α)x where ht(α) =

∑
ni if α =

∑
niαi. We have ρ(t)f = t−1f and ρ(t)e = te,

in particular ge is invariant under ρ(Gm). We define a new Gm-action on g by ρ+(t) = tρ(t).
Then ρ+(t)f = f and ρ+(Gm) preserves f + ge. With respect to this action, the isomorphism
kos : c ' f + ge is Gm-equivariant.

The diagonal map Gm→ Gm ×Gm induces a map

[g/ρ+(Gm)]→ [g/Gm × ρ(Gm)].

By precomposing with the map [c/Gm]
kos' [f + ge/ρ+(Gm)]→ [g/ρ+(Gm)] we obtain

[c/Gm]→ [g/Gm × ρ(Gm)].

If the action of ρ(Gm) on g factors through the adjoint action of G, for example when G is
adjoint, then there is a map [g/Gm × ρ(Gm)]→ [g/Gm ×G] which defines a section

[c/Gm]→ [g/Gm × ρ(Gm)]→ [g/Gm ×G]

of (2.2.1), and in particular, we get a section of hL. In general, the action ρ(Gm) does not
necessarily factor through G, but its square does since it is given by the cocharacter 2ρ : Gm→ G

where 2ρ is the sum of positive coroots. So if we denote G[2]
m → Gm the square map (so G[2]

m is
isomorphic to Gm, but regarded as its the double cover), we get a map

η1/2 : [c/G[2]
m ]→ [g/G[2]

m × ρ(G[2]
m )]→ [g/G[2]

m ×G].

Let L1/2 be a square root of L. Then every b : S × C → [c/Gm] in BL(S) factors through a

unique map b1/2 : S × C → [c/G[2]
m ]. Therefore, by composing with η1/2, we get a lift of b:

η1/2(b) : S × C b1/2−→ [c/G[2]
m ]

η1/2

−→ [g/G[2]
m ×G]→ [g/Gm ×G].

The assignment b→ η1/2(b) defines a section

ηL1/2 : BL→ HiggsL

of the Hitchin map hL.
We fix a square root κ = ω1/2 (called a theta characteristic) of ω and write κ = ηκ : B →

Higgs.

2.4 Cameral curve

For any b ∈ BL(S), the cameral curve C̃b is defined as the fiber product, as follows.

C̃b //

πb

��

tL

��
C × S b // cL

When b = id : BL → BL, the corresponding cameral curve C̃L := C̃b is called the universal
cameral curve. For simplicity, we will write C̃ = C̃ω, π = πb : C̃ → C ×B.
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2.5 The universal centralizer group schemes
Consider the group scheme I over g consisting of pairs

I = {(g, x) ∈ G× g | Adg(x) = x}.

We define J = kos∗I, where kos : c → g is the Kostant section. This is called the universal
centralizer group scheme of g (see Proposition 2.5.1). To study it, it is convenient to introduce
two auxiliary group schemes. We define J1 = Rest/c(T )W and let J0 to be the neutral component
of J1. All the group schemes J , J0 and J1 are smooth commutative group schemes over c. The
following proposition is proved in [Ngô06] (see also [DG02]).

Proposition 2.5.1.

(1) There is a unique morphism of group schemes a : χ∗J → I ⊂ G × g, which extends the
canonical isomorphism χ∗J |greg ' I|greg .

(2) There are natural inclusions J0 ⊂ J ⊂ J1.

(3) The inclusion J ⊂ J1 = Rest/c(T )W in part (2) defines a morphism

j1 : π∗J → T × t

of group schemes over t, which is an isomorphism over trs.

All the above constructions can be twisted. Namely, there are Gm-actions on I, J , J1 and
J0. Moreover, the Gm-action on I can be extended to a G×Gm-action given by (h, t) · (x, g) =
(t · hxh−1, hgh−1). The natural morphisms J → c and I → g are Gm-equivariant, and therefore
we can twist everything by the Gm-torsor L× to get JL → cL, IL → gL where JL = J ×Gm L×

and IL = I ×Gm L×. Similarly, we have J0
L→ cL and J1

L→ cL, and there are natural inclusions
J0
L ⊂ JL ⊂ J1

L. The group scheme IL over gL is equivariant under the G-action, hence it descends
to a group scheme [IL] over [gL/G].

2.6 Symmetries of Hitchin fibration
Let b : S → BL be an S-point of BL, corresponding to a map b : C × S → cL. Pulling back
JL→ cL along this map, we obtain a smooth group scheme Jb = b∗J over C × S.

Let Pb be the Picard category of Jb-torsors over C × S. The assignment b→Pb defines a
Picard stack over B, denoted by PL. Let us fix b ∈BL(S), and let (E, φ) ∈ HiggsL,b corresponding
to the map hE,φ : C × S → [gL/G]. Observe that the morphism χ∗J → I in Proposition 2.5.1
induces [χL]∗JL→ [IL] of group schemes over [gL/G]. Pulling back to C × S using hE,φ, we get
a map

aE,φ : Jb→ h∗E,φ[I] = Aut(E, φ) ⊂ Aut(E), (2.6.1)

which allows us to twist (E, φ) ∈ HiggsL,b by a Jb-torsor. This construction defines an action of
PL on HiggsL over BL.

Let Higgsreg
L be the open stack of HiggsL consisting of (E, φ) : C → [gL/G] that factors

through C → [(greg)L/G]. If (E, φ) ∈ Higgsreg
L , then aE,φ above is an isomorphism. The Kostant

section ηL1/2 : BL → HiggsL factors through ηL1/2 : BL → Higgsreg
L . Following [Ngô06, § 4], we

define B0
L as the open sub-scheme of BL consisting of b ∈ BL(k) such that the image of the map

b : C → cL intersects the discriminant divisor transversally. The following proposition can be
extracted from [DG02, DP12, Ngô06].
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Proposition 2.6.1.

(1) The stack Higgsreg
L is a PL-torsor, which can be trivialized by a choice of a Kostant section

ηL1/2 .

(2) One has Higgsreg
L ×BL

B0
L = HiggsL×BL

B0
L.

(3) The restriction of the universal cameral curve C̃L|B0 → B0
L to B0

L is smooth. The restriction
PL|B0

L
to B0

L is a Beilinson 1-motive.

Remark 2.6.2. Let Disc : t→ k be the discriminant function defined by

Disc =
∏
α∈Φ

dα,

where Φ is the set of roots of G. The function Disc is W-invariant, and thus descends to a
function Disc on c. Moreover, the function Disc : c → k is Gm-equivariant where Gm acts on
k via the character t→ tN and N = |Φ|. Let DiscL : cL → LN be the twist of Disc. For any
b : C → cL, we get a section

sb ∈ Γ(C,LN ).

The zeros of sb is the branch loci B of the cameral cover πb : C̃b → C. If b ∈ B0
L(k), then B is

multiplicity free. Note that if deg L > 0 the branch loci B is non-empty.

2.7 The tautological section τ : c→ Lie J
Recall that by Proposition 2.5.1, there is a canonical isomorphism χ∗J |greg ' I|greg . The sheaf of
Lie algebras Lie (I|greg) ⊂ greg × g admits a tautological section τ̃ : greg

→ Lie (I|greg) given by
x 7→ x ∈ Lie Ix for x ∈ greg. This section descends to a tautological section τ : c→ Lie J .2 Recall
the following property of τ [CZ15, Lemma 2.2].

Lemma 2.7.1. Let x ∈ g, and ax : Jχ(x)→ Ix ⊂G be the homomorphism as in Proposition 2.5.1(1).
Then dax(τ(x)) = x, where dax denotes the differential of ax.

Let us regard Lie J as a scheme over c. Besides the section τ , there is a canonical map
c : LieJ → c such that cτ = id. Namely, if we regard Lie (I|greg) as a scheme, then there is a
natural map Lie (I|greg)→ c given by

Lie (I|greg) ⊂ g× greg
→ c× greg

→ c,

which also descends to a morphism c : Lie J → c.
The morphisms τ and c have global counterparts (see also [CZ15, § 2.3]). Observe that

Gm acts on g × greg via natural homotheties on both factors, and therefore on χ∗Lie J |greg '
Lie (I|greg) ⊂ g× greg. This Gm-action on χ∗Lie J |greg descends to a Gm-action on Lie J , and for
any line bundle L on C the L×-twist (Lie J) ×Gm L× is Lie JL ⊗ L, where JL is introduced in
§ 2.5. In addition, both maps τ and c are Gm-equivariant with respect to this Gm-action on Lie J
and the natural Gm-action on c. Therefore, if we define a vector bundle BJ,L over BL, whose
fiber over b ∈ BL is Γ(C,Lie Jb ⊗ L), then by twisting τ and c by L, we obtain

τL : BL→ BJ,L, (2.7.1)

2 Indeed, one can check that τ is equal to kos∗(τ̃), the pullback of τ̃ along the Kostant section kos : c→ greg.
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which is a canonical section of the projection pr : BJ,L→ BL, and a canonical map

cL : BJ,L→ BL (2.7.2)

such that cLτL = id. As before, we omit the subscript L if L = ω for brevity.
Likewise, we introduce the vector bundleB∗J,L overBL whose fiber over b is Γ(C, (Lie Jb)

∗⊗L).
Observe that B∗J,L is not the dual of BJ,L. Rather, when L = ω, it is the pullback e∗T ∗(PL/BL)
of the cotangent bundle of PL → BL along the unit section e : BL → PL and will also be
denoted by T∗e(PL) interchangeably later on. We construct a section

τ∗L : BL→ B∗J,L (2.7.3)

as follows. The non-degenerate bilinear form ( , ) we fixed in 2.1 induces g ' g∗, which restricts
to a map Lie Ix→ (Lie Ix)∗ for every x ∈ greg. This map descends to give

ι : Lie J → (Lie J)∗, (2.7.4)

which is Gm-equivariant. We define τ∗L as the twist of c
τ
→ Lie J

ι
→ (Lie J)∗. As before, we omit

the subscript L if L = ω.
We give another interpretation of this map. Observe that the Kostant section κ induces the

map
vκ : P → HiggsG→ BunG×B

over B, and therefore we have the following.

T ∗(BunG)×BunG P
(vκ)d //

(vκ)p
��

T ∗(P/B)

T ∗BunG

Lemma 2.7.2. The map

P
κ×id
→ T ∗(BunG)×BunG P

(vκ)d
→ T ∗(P/B) ' T∗eP ×B P,

can be identified with

P
pr×id
→ B ×P

τ∗×id−→ T∗eP ×B P.

Proof. For b ∈ B, we write the restriction of vκ over b by vκ,b : Pb → BunG. We need to show
that for x ∈Pb, the image of the point

κ(x) ∈ T ∗vκ,b(x) BunG→ T ∗xPb ' (T∗eP)b

coincides with τ∗(b). Let E denote the G-bundle vk,b(x).
Observe that there is a universal G-torsor Euniv over [g/G] given by g → [g/G], and that

ad(Euniv)→ [g/G] is canonically isomorphic to [g/G]×BG [g/G]
pr1
→ [g/G]. The cotangent map

(vκ,b)d : T ∗vκ,b(x) BunG→ T ∗xPb

is induced by twisting
kos∗(ad(Euniv))∗→ (Lie J)∗

by the (G×Gm)-torsor (E × ω×). Therefore, it is enough to show that

κ(x) ∈ T ∗vκ,b(x) BunG = Γ(C, gE ⊗ ω)

can be identified with the image of b under

τ(b) ∈ Γ(C,Lie Jb ⊗ ω)→ Γ(C, gE ⊗ ω).
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Let us consider the universal situation. Therefore, we need to show that

c
τ
→ Lie J → kos∗ad(Euniv) ' c×BG [g/G]

is the same as

c
id×kos
→ c×BG [g/G].

However, the composition

[g/G]
[χ]∗(τ)
→ [χ]∗Lie J → ad(Euniv) ' [g/G]×BG [g/G]

restricts to a map [greg/G]→ [greg/G]×BG [g/G], which is easily checked to be the diagonal map
using the definition of τ . By pulling back this identification along kos : c→ [greg/G], we obtain
the claim. 2

By the similar argument, we have the following lemma, which will be used in § 4. Let j1 :
π∗J → T × t be the map in Proposition 2.5.1, and let

dj1 : π∗Lie J → t× t (2.7.5)

denote its differential. Consider the pullback π∗τ : t→ π∗Lie J of τ : c→ Lie J along π : t→ c.

Lemma 2.7.3. The composition

δ : t
π∗τ
→ π∗Lie J

dj1

→ t× t

is equal to the diagonal map ∆ : t→ t× t.

Proof. For an embedding t ⊂ g, the restriction of dj1 to treg = t∩greg is just the restriction to treg

of the isomorphism Lie J |greg ' Lie (I|greg). This follows from the construction of j1 as in [Ngô10,
Proposition 2.4.2]. Therefore, the restriction of δ to treg is just the diagonal map. The lemma
then follows. 2

3. Classical duality

In this section, we fix a smooth projective curve C over k and a line bundle L on C such that
degL > 0. Except § 3.7, we also fix a connected reductive group G over k. We assume that
p = char k does not divide the order of the Weyl group of G. We show that the P̆L ' P∨

L

as Picard stacks over B0. Note that this duality for k = C is the main theorem of [DP12] (for
G = SLn, see [HT03]). However, as mentioned by the authors, transcendental arguments are
used in [DP12] in an essential way, and therefore cannot be applied directly to our situation.
Our argument works for any algebraically closed field k of characteristic zero or p with p - |W|.

In fact, it is not hard to construct a canonical isogeny Dcl between P̆L and P∨
L . If the

adjoint group of G does not contain a simple factor of type B or C, then to show that Dcl is an
isomorphism is relatively easy. It is to show that Dcl is an isomorphism in the remaining cases
that some complicated calculations are needed.

Observe in this section, we do not need to assume that L = ωC . We only need the assumption
that deg L is positive. However, to simplify the notations, we still omit the subscript L.
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3.1 Galois description of P
We first introduce several auxiliary Picard stacks.

Let C̃ → B be the universal cameral curve. There is a natural action of W on C̃. For a

T -torsor ET on C̃, and an element w ∈ W, there are two ways to produce a new T -torsor.

Namely, the first is via the pullback w∗ET = C̃ ×
w,C̃

ET , and the second is via the induction

ET ×T,w T . We denote

w(ET ) = ((w−1)∗ET )×T,w T.

Clearly, the assignment ET 7→ w(ET ) defines an action of W on BunT (C̃/B), i.e., for every

w,w′ ∈W, there is a canonical isomorphism w(w′(ET )) ' (ww′)(ET ) satisfying the usual cocycle

conditions.

Example 3.1.1. Let us describe w(ET ) more explicitly in the case G = SL2. Let s be the unique

non-trivial element in the Weyl group, acting on the cameral curve s : C̃b → C̃b. If we identify

T = Gm-torsors with invertible sheaves L, then

s(L) = s∗L−1.

Let BunW
T (C̃/B) (or BunW

T for simplicity) denote the Picard stack of strongly W-equivariant

T -torsors on C̃/B. By definition, for a B-scheme S, BunW
T (C̃/B)(S) is the groupoid of (ET , {γw,

w ∈ W}), where ET is a T -torsor on C̃S , and γw : w(ET ) ' ET is an isomorphism, satisfying

the natural compatibility conditions. Another way to formulate these compatibility conditions

is provided in [DG02]. Namely, for a T -torsor ET , let AutW(ET ) be the group consisting of

(w, γw), where w ∈W and γw : w(ET )' ET is an isomorphism. Then there is a natural projection

AutW(ET )→W. Then an object of BunW
T (C̃/B)(S) is a pair (ET , γ), where γ : W→ AutW(ET )

is a splitting of the projection.

For later purpose, it is worthwhile to give another description of BunW
T . Namely, there is a

non-constant group scheme T = C̃×W T on the stack [C̃/W]. Then the pullback functor induces

an isomorphism from the stack BunT of T-torsors on [C̃/W ] to BunW
T .

In [DG02], a Galois description of P in terms of BunW
T is given. We here refine their

description.

Let P1 be the Picard stack over B classifying J1-torsors on C × B. First, we claim that

there is a canonical morphism

j1,P : P1
→ BunW

T (C̃/B). (3.1.1)

To construct j1,P , recall that J1 = (π∗(T × C̃))W , where π : C̃ → C ×B is the projection, and

therefore, for any J1-torsor EJ1 on C × S (where b : S → B is a test scheme), one can form a

T -torsor on C̃S by

ET := π∗EJ1 ×π∗J1
T. (3.1.2)

Clearly, ET carries on a strongly W-equivariant structure γ, and j1(EJ1) = (ET , γ) defines the

morphism j1,P .

The morphism j1,P , in general, is not an isomorphism. Let us describe the image. Let α ∈ Φ

be a root and let iα : C̃α → C̃ be the inclusion of the fixed point subscheme of the reflection

sα. Let Tα = T/(sα− 1) be the torus of coinvariants of the reflection sα. Then sα(ET )|
C̃α
×T Tα
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is canonically isomorphic to ET |C̃α ×
T Tα and therefore γsα |C̃α induces an automorphism of the

Tα-torsor ET ×T Tα. In other words, there is a natural map

r =
∏
α∈Φ

rα : BunW
T (C̃/B)→

(∏
α∈Φ

Res
C̃α/B

(Tα × C̃α)

)W

.

It is easy to see that r ◦ j1,P is trivial, and one can show the following.

Lemma 3.1.2. We have P1 ' ker r. In other words, P1(S) consists of those strongly W-
equivariant T -torsors (ET , γ) such that the induced automorphism of ET ×T Tα|C̃α is trivial
for every α ∈ Φ.

Proof. We shall show that every strongly W-equivariant T -torsor (ET , γ) such that r(ET , γ) = 1
is Zariski locally on C̃ isomorphic to the trivial one, i.e., the trivial T -torsor together with the
canonical W-equivariance structure. If this is the case, then the inverse map from ker r→P1 is
given as follows. For every strongly W-equivariant T -torsor (ET , γ), π∗ET carries on an action
of W. Namely, let x : S→ C be a point and m : S×C C̃b→ ET be a point of π∗ET over x. Then
w(m) is the point of π∗ET over x given by

S ×C C̃b
1×w−1

→ S ×C C̃b
w−1(m)
→ (w−1)∗ET → w(ET )

s(w)
→ ET .

This W-action on π∗ET is compatible with the action of π∗(T × C̃) in the sense that w(mt) =
w(m)w(t). Now let EJ1 = (π∗ET )W , then as (E, γ) is locally isomorphic to the trivial one, EJ1

is locally isomorphic to J1, and therefore is a J1-torsor on C.
To prove the local triviality, we follow the argument as in [DG02, Proposition 16.4]. One

reduces to prove the statement for a neighborhood around a point x ∈ ∩αC̃α. By replacing C̃
by the local ring around x, one can assume that ET is trivial. Pick up a trivialization, then
the W-equivariance structure on ET amounts to a 1-cocycle W → T (C̃). By evaluating T (C̃)
at the unique closed point x, there is a short exact sequence 1 → K → T (C̃) → T (k) → 1.
The condition r(ET , γ) = 1 would mean that the cocycle takes value in K. Since there exists a
filtration on K, such that the associated graded is an Fp-vector space and p - |W|, this cocycle
is trivial. 2

Recall that in [DG02, Ngô06], an open embedding J → J1 is constructed. To describe the
cokernel, we need some notations. Let ᾰ ∈ Φ̆ be a coroot. Let

µᾰ := ker(ᾰ : Gm→ T ).

This is either trivial, or µ2, depending on whether ᾰ is primitive or not. Let µᾰ × C̃α be the
constant group scheme over C̃α, regarded as a sheaf of groups over C̃α, and let (iα)∗(µᾰ × C̃α)
be its push forward to C̃. Now, the result of [DG02, §§ 11 and 12] can be reformulated as follows:
there is a natural exact sequence of sheaves of groups on C.

1→ J → J1
→ π∗

(⊕
α∈Φ

(iα)∗(µᾰ × C̃α)

)W

→ 1. (3.1.3)

As a result, we obtain a short exact sequence of Picard stacks (see §A.2)

1→

(∏
α∈Φ

Res
C̃α/B

(µᾰ × C̃α)

)W

→P →P1
→ 1. (3.1.4)
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To simplify the notation, we will denote Res
C̃α/B

(µᾰ × C̃α) by µᾰ(C̃α) in what follows.

Consider the composition

j : P →P1
→ BunW

T (C̃/B).

Combining Lemma 3.1.2 and (3.1.4), we recover a description of P in terms of BunW
T (C̃/B) as

given in [DG02, § 16.3]. Namely, given a strongly W-equivariant T -torsor (ET , γ), one obtains a
canonical trivialization

Eᾰ◦αT := (ET |C̃α)×T,α Gm ×Gm,ᾰ T ' E0
T |C̃α , (3.1.5)

given by (ET |C̃α) ×T,α Gm ×Gm,ᾰ T ' ET |C̃α ⊗ sα(E−1
T )|

C̃α
. The condition that rα(E, γ) = 1 is

equivalent to the condition that (3.1.5) comes from a trivialization

cα : EαT := (ET |C̃α)×T,α Gm ' Gm × C̃α. (3.1.6)

In addition, the set of all such cα form a µᾰ-torsor. Consider the following Picard stack
BunW

T (C̃/B)+: for any B-scheme S, its S-points form the Picard groupoid of triples

BunW
T (C̃S)+ := (ET , γ, cα, α ∈ Φ), (3.1.7)

where (ET , γ) is a strongly W-equivariant T -torsor on C̃S , and cα : (ET |C̃α)×T,αGm ' Gm× C̃α
is a trivialization, which induces (3.1.5) and is compatible with the W-equivariant structure. We
call those trivializations {cα}α∈Φ a +-structure on (ET , γ). Note that, by Lemma 3.1.2, we have
the following short exact sequence of Picard stacks:

1→

(∏
α∈Φ

Res
C̃α/B

(µᾰ × C̃α)

)W

→ BunW
T (C̃/B)+

→P1
→ 1. (3.1.8)

Lemma 3.1.3 [DG02, Proposition 16.4]. We have P ' BunW
T (C̃/B)+.

Proof. Indeed, the exact sequence (3.1.3) implies that, for any J-torsor EJ ∈ P the image
j(EJ) ∈ BunW

T (C̃/B) carries a canonical +-structure. This defines a morphism P →

BunW
T (C̃/B)+ and one can check that it is compatible with the short exact sequences (3.1.4)

and (3.1.8). The lemma follows. 2

Here is an application of the above discussion. Observe there is the norm map

Nm : BunT (C̃/B)→ BunW
T (C̃/B), ET 7→

(⊗
w∈W

w(ET ), γcan

)
.

We claim that Nm admits a canonical lifting

NmP : BunT (C̃/B)→P. (3.1.9)

To show this, we need to exhibit a canonical trivialization

cα :
⊗
w∈W

w(ET )|
C̃α
×T,α Gm ' Gm × C̃α

compatible with the strongly W-equivariant structure. However, for any T -torsor ET , there is a
canonical isomorphism (ET |C̃α ⊗ sα(ET )|

C̃α
) ×T,α Gm ' Gm × C̃α, and therefore, we obtain cα

by writing ⊗
w∈W

w(ET )|
C̃α
×T,α Gm '

⊗
w∈sα\W

(w(ET )|
C̃α
⊗ sαw(ET )|

C̃α
)×T,α Gm,

where sα\W denotes the quotient of W by the subgroup generated by sα. The compatibility of
the collection {cα} with the W-equivariant structure is clear.
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3.2 Galois description of P-torsors

The above description of P in terms of BunW
T (C̃/B) can be generalized as follows. Let D be a

J-gerbe on C ×B. Similarly to (3.1.2), we define

DT := (π∗D)j
1

as the T -gerbe on C̃ induced from D using maps π : C̃→ C×B and j1 : π∗J → T × C̃ (see §A.5

and §A.6 for the notion of gerbes and functors between them). Since the map j1 is W-equivariant

the gerbe DT is strongly W-equivariant. Equivalently, this means that DT descends to a T-gerbe

on [C̃/W].

Let TD be the stack of splittings of D over B. By definition, for every S→ B, TD(S) is the

groupoid of the splittings of the gerbe D |C×S . This is a (pseudo) P-torsor. On the other hand,

let T W
DT

denote the stack of strongly W-equivariant splittings of DT , i.e., T W
DT

(S) is the groupoid

of the splittings of DT |[C̃/W]×BS . Our goal is to give a description of TD in terms of T W
DT

.

Let α ∈ Φ. Similarly to EαT and Eᾰ◦αT as defined in (3.1.5) and (3.1.6), let Dα
T , D ᾰ◦α

T denote

the restrictions to C̃α of the Gm- and T -gerbes on C̃ induced from DT using the maps α : T →Gm

and ᾰ ◦ α : T → T respectively. The strongly W-equivariant structure on DT implies that the

T -gerbe D ᾰ◦α
T has a canonical splitting F 0

α. Moreover, by a similar argument in § 3.1, one can

show that: (i) there is a canonical splitting E0
α of the Gm-gerbe Dα

T , which induces F 0
α via the

canonical map Dα
T → D ᾰ◦α

T and: (ii) for any strongly W-equivariant splitting (E, γ) of DT there

is a canonical isomorphism of splittings

Eᾰ◦α|
C̃α
' F 0

α, (3.2.1)

where Eᾰ◦α is the splitting of D ᾰ◦α
T induces by E via the canonical map Dα

T → D ᾰ◦α
T . We define

T W,+
DT

as the stack over B whose S-points consist of

T W,+
DT

(S) := (E, γ, tα, α ∈ Φ),

where (E, γ) is a strongly W-equivariant splittings of DT and

tα : Eα|
C̃α
' E0

α

is an isomorphism of splittings of Dα
T , which induces (3.2.1) and is compatible with the W-

equivariant structure. It is clear that T W,+
DT

is a P = BunW
T (C̃/B)+-torsor.

Lemma 3.2.1. There is a canonical isomorphism of P-torsors TD ' T W,+
DT

.

Proof. Let E ∈ TD be a splitting of D . Then ET := (π∗(E))j
1

defines a splitting of DT . Since both

maps j1 and π are W-equivariant the splitting ET has a canonical W-equivariant structure, which

we denote by γ. Moreover, by the same reasoning as in § 3.1, there is a canonical isomorphism of

splittings tα : EαT |C̃α ' E0
α such that the induced isomorphism Eᾰ◦αT |

C̃α
' (E0

α)α ' F 0
α is equal

to the one coming from the W-equivariant structure γ. The assignment E → (ET , γ, tα, α ∈ Φ)

defines a morphism TD → T W,+
DT

, which is compatible with their P-torsor structures and hence

is an isomorphism. 2

410

https://doi.org/10.1112/S0010437X16008113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008113


Geometric Langlands in prime characteristic

3.3 The Abel–Jacobi map
From now on till the end of this section, we restrict to the open subset B0 of the Hitchin base.
To simplify the notations, we use B to denote B0 unless specified. Recall from Proposition 2.6.1
that the cameral curve C̃ is smooth over B0.

Let
AJ : C̃ × X•(T )→ BunT (C̃/B)

be the Abel–Jacobi map given by (x, λ̆) 7→ O(λ̆x) := O(x)×Gm,λ̆ T . By composition with NmP ,
we obtain a morphism

AJP : C̃ × X•(T )→P.

It is W-equivariant, where W acts on C̃×X•(T ) diagonally and on P trivially, and is commutative
and multiplicative with respect to the group structures on X•(T ) and on P. Observe that for
any x ∈ C̃α, AJP(x, ᾰ) is the unit in P. This follows from⊗

w∈W
wO(ᾰx) '

⊗
w∈W/sα

wO(ᾰx+ sα(ᾰ)x)

being canonically trivialized, and the trivialization is compatible with the W-equivariant
structure. Here, as before, W/sα is the quotient of W by the subgroup generated by sα.

By pulling back the line bundles, we thus obtain

(AJP)∨ : P∨
→ Picm(C̃ × X•(T ))W,

where Picm(C̃ × X•(T ))W denotes the Picard stack over B of W-equivariant line bundles on
C̃ × X•(T ) which are multiplicative with respect to X•(T ). Observe that there is the canonical
isomorphism BunW

T̆
(C̃/B)→ Picm(C̃ × X•(T ))W given by (ET̆ , γ) 7→ L, where L|(x,λ̆) = Eλ

T̆
|x.

Therefore, we can regard (AJP)∨ as a morphism

(AJP)∨ : P∨
→ BunW

T̆
(C̃/B).

We claim that (AJP)∨ canonically lifts to a morphism

Dcl : P∨
→ P̆.

Let L be a multiplicative line bundle on P. We thus need to show that

(AJP)∗L|
(C̃α,ᾰ)

admits a canonical trivialization, which is compatible with the W-equivariance structure.
However, this follows from AJP((x, ᾰ)) is the unit of P and a multiplicative line bundle on
P is canonically trivialized over the unit. To summarize, we have constructed the following
commutative diagram.

P∨ Dcl //

(AJP)∨ ""

P̆

j̆||
BunW

T̆

(3.3.1)

Now, the classical duality theorem reads as follows.

Theorem 3.3.1. The morphism Dcl is an isomorphism.

The proof of this theorem occupies §§ 3.4–3.6 below.
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3.4 First reductions
We first show that Dcl induces an isomorphism

π0(Dcl) : π0(P∨)→ π0(P̆).

For any S-point b ∈ B0, Pb is a Beilinson 1-motive (Appendix A). We have

Aut(e) ' H0(C, Jb), π0(Pb) = Pb/W1Pb.

Observe that

H0(C, Jb) ' ker

(
TW
→

(∏
α∈Φ

Res
C̃α/b

(µᾰ × C̃α)

)W)
= Z(G).

By Corollary A.4.3
π0(P∨) ' (AutP(e))∗.

Let us also recall the description of π0(P) as given in [Ngô10, §§ 4.10 and 5.5]. As we restrict
P to B0, the answer is very simple. Namely, the Abel–Jacobi map

AJP : C̃ × X•(T )→P

induces a surjective map
π0(C̃ × X•(T )) ' X•(T )� π0(P),

which induces
π0(P)∗ ' Z(Ğ) ⊂ T̆W.

Therefore, as abstract groups, π0(P∨) ' π0(P̆).
Since π0(P∨) ' π0(P̆) are finitely generated abelian groups and are isomorphic abstractly,

to show that π0(Dcl) is an isomorphism, it is enough to show the following.

Lemma 3.4.1. The induced map π0(Dcl) is surjective.

Proof. According to the above description, it is enough to construct a morphism C̃×X•(T )→P∨

making the following diagram is commutative.

C̃ × X•(T )

yy

AJP̆

$$
P∨ Dcl // P̆

To this goal, observe that there is the universal line bundle Luniv on (C̃ × X•(T )) × BunT .
Then the pullback of this line bundle to (C̃ × X•(T )) ×P gives rise to the desired map. The
commutativity of this diagram is an easy exercise. 2

Next, we see that
W0(Dcl) : W0P

∨
→W0P̆

is an isomorphism. Indeed, we can construct AJP̆ : C̃×X•(T )→ P̆, and therefore D̆cl : P̆∨
→P.

By the same argument, it induces an isomorphism π0(D̆cl) : π0(P̆∨)→ π0(P). It is easy to check
that D̆cl = D∨cl, and therefore W0(Dcl) is also an isomorphism.

Therefore, it is enough to show thatDcl :P∨→ P̆ is an isomorphism, where P (respectively P̆ )
is the neutral connected component of the coarse moduli space of P (respectively P̆), and
Dcl is the map induced by Dcl. We can prove this fiberwise, and therefore we fix b ∈ B(k).
However, to simplify the notation, in the following discussion we write C̃,P instead of
C̃b,Pb, etc.
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3.5 The calculation of the coarse moduli
We introduce a few more notations. Let P0 be the Picard stack of J0-torsors on C, and let
P 0 (respectively P 1) be the neutral connected components of the coarse moduli space of P0

(respectively P1).
We first understand P 1. Let Jac denote the Jacobi variety of C̃. Then Jac⊗X• is the neutral

connected component of the coarse moduli space of BunT .

Lemma 3.5.1. The map P 1
→ Jac⊗X• is an embedding, and P 1 can be identified with

(Jac⊗X•)W,0, the neutral connected component of the W-fixed point subscheme of Jac⊗X•.

Proof. We first show that P 1
→ Jac⊗X• is injective at the level of k-points. Indeed, up to

isomorphism, the strongly W-equivariant structures on a trivializable T -torsor on C̃ are classified
by H1(W, T (k)). By Lemma 3.1.2, the kernel of P 1

→ Jac⊗X• can be identified with the kernel
of the natural map

H1(W, T (k))→
⊕
C̃α

Tα(C̃α).

Therefore, it is enough to show that this latter map is injective. Over B0, C̃α is non-empty for
every root α.3 Then the injectivity is a consequence of the following lemma applied to M = T (k).

Lemma 3.5.2. Let M be a W-module satisfying the following condition: for some (and therefore
any) choice of a set of simple roots {α1, . . . , αl}, the natural map

M →
l∏

i=1

(1− sαi)M, m 7→ ((1− sα1)m, . . . , (1− sαl)m)

is surjective. Then the natural map

H1(W,M)→
∏

16i6s

M/(1− sβi)M, [c] 7→
∏

16i6s

(c(sβi) mod (1− sβi)M)

is injective for any choice of a set {β1, . . . , βs} ⊂ Φ of representatives of Φ/W.

Proof. Let c : W → M be a cocycle. It follows from the cocycle condition that if c(sβi) ∈
(1 − sβi)M , then c(sw(βi)) ∈ (1 − sw(βi))M . Therefore, a class [c] is in the kernel of the map in
the lemma only if c(sαi) ∈ (1 − sαi)M for a set of simple roots {α1, . . . , αl}. However, by our
assumption of M , there exists m ∈M such that c(sαi) = (1− sαi)m for all 1 6 i 6 l. Then using
the cocycle condition, one can show by induction on the length of w that c(w) = (1 − w)m for
every w ∈W. This means, however, that c is a coboundary. 2

To complete the proof, observe that the restriction of the norm map

Nm : Jac⊗X•→ P → P 1
→ (Jac⊗X•)W

to Nm : (Jac⊗X•)W
→ (Jac⊗X•)W is the multiplication by |W|. Therefore, the image of

P 1
→ Jac⊗X• is (Jac⊗X•)W,0. In addition, P 1

→ (Jac⊗X•)W,0 is a prime-to-p isogeny and
therefore its kernel is étale. Then this kernel must be trivial since its underlying group of k-points
is trivial. 2

3 Indeed, the same argument in Remark 2.6.2, with the discriminant function Disc replaced by the W-invariant
function

∏
β∈Wα dβ : t→ k, shows that the fixed point C̃α is non-empty.
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As a result, for any prime ` 6= p,

T`P
1 ' (H1(C̃,Z`(1))⊗ X•)W.

In addition, observe that from the definition of Dcl, the map P 1 ⊂ Jac⊗X•
Nm
→ P 1 factors as

P 1 ⊂ Jac⊗X• ' (Jac⊗X•)∨→ (P̆ 1)∨→ P̆∨
D̆cl
→ P → P 1.

Therefore Dcl is a prime-to-p isogeny. In addition, the map

T`Nm : T`(Jac⊗X•)� T`(P̆
1)∨ ↪→ T`P

1

can be identified with

Nm : H1(C̃,Z`(1))⊗ X• � (H1(C̃,Z`(1))⊗ X•)W/(torsion) ↪→ (H1(C̃,Z`(1))⊗ X•)W.

On the other hand, as J0 is connected, the norm map Nm : π∗T → J1 = (π∗T )W factors as
π∗T → J0

→ J1. Therefore, Nm : Jac⊗X•→ P 1 also factors as

Nm : Jac⊗X•→ P 0
→ P 1.

It follows that P 0
→ P 1 is also a prime-to-p isogeny, and for ` 6= p there is a factorization

Nm : H1(C̃,Z`(1))⊗ X•→ T`P
0 ↪→ (H1(C̃,Z`(1))⊗ X•)W.

We need the following key result.

Proposition 3.5.3. The two isogenies (P̆ 1)∨→ P 1
← P 0 induce an isomorphism (P̆ 1)∨ ' P 0.

Proof. By the above considerations, the lemma is equivalent to saying that the induced map of
Tate modules T`Nm : T`(Jac⊗X•)→ T`P

0 is surjective for every ` 6= p.
Note that we have the following commutative diagram

(Jac⊗X•)[`n] = H1(C, π∗(X• ⊗ µ`n)) //

��

P 0[`n]

�� ��
H1(C, J0[`n]) // // H1(C, J0)[`n]

where the left vertical arrow is induced by π∗T [`n] = π∗(X•⊗µ`n)→ J0[`n], and the bottom row
is induced by the Kummer sequence for J0 and therefore is surjective. Since π0(P0) = H1(C,
J0)/P 0 is finitely generated, passing to the inverse limit gives

lim
←−n H1(C, π∗(X• ⊗ µ`n)) //

��

T`P
0

��
'
��

lim
←−n H1(C, J0[`n]) // // lim

←−n H1(C, J0)[`n]

where the bottom arrow is surjective. So it is enough to show that the left vertical arrow is also
surjective.
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Let y ∈ C, and choose a point ỹ ∈ C̃ lying over y. Let Wỹ ⊂ W denote the stabilizer of ỹ

under the action of W on C̃. Note that Wỹ = 〈sα〉 if ỹ ∈ C̃α and is trivial otherwise. Then the
inclusion of J0[`n] ⊂ J1[`n] at y can be identified as

J0[`n]y ' TWỹ ,0[`n] = XWỹ
• ⊗ µ`n ⊂ J1[`n]y ' TWỹ [`n] = (X• ⊗ µ`n)Wỹ . (3.5.1)

Therefore, the cokernel of the inclusion J0[`n] ⊂ J1[`n] = π∗(X• ⊗ µ`n)W is a sheaf supported
on the ramification loci of π : C̃ → C, and whose stalk at y can be identified with H1(Wỹ,
X•)[`n]⊗ µ`n . Since H1(Wỹ,X•) is a finite group, passing to the inverse limit gives

lim
←−n H1(C, J0[`n]) ' lim

←−n H1(C, π∗(X• ⊗ µ`n)W).

Therefore, it is enough to show that the inverse limit of the system of maps

Nm : H1(C, π∗(X• ⊗ µ`n))→ H1(C, π∗(X• ⊗ µ`n)W)

is surjective.
Let j : U ⊂ C be the complement of the ramification loci of π : C̃ → C and let j̃ : Ũ → C̃

be its preimage in C̃. Let i : C\U → C be the closed embedding of ramification loci. Then
Ln := π∗(X•⊗µ`n)|U is a locally free Z/`n-module on U with an action of W, and the norm map
Nm : Ln→ LW

n is surjective. Let Fn denote its kernel. Note that since j̃∗(X• ⊗ µ`n) = X• ⊗ µ`n ,
we have

π∗(X• ⊗ µ`n) = j∗Ln, π∗(X• ⊗ µ`n)W = j∗L
W
n .

Now, let Nn = i∗j∗L
W
n be the restriction of j∗L

W
n over the ramification loci. Taking

cohomology of 0→ j!L
W
n → j∗L

W
n → Nn→ 0 then induces the following commutative diagram

with rows and columns exact.

H1
c(U,Ln) //

Nm
��

H1(C, π∗(X• ⊗ µ`n))

Nm
��

// 0

H0(C,Nn)
∂n // H1

c(U,L
W
n ) //

qn

��

H1(C, π∗(X• ⊗ µ`n)W) //

��

0

H0(C,Nn)
δn // ∆n

��

// Qn //

��

0

0 0

Here ∆n and Qn denote the cokernels of the norm maps. Recall that we want to show lim
←−Qn = 0.

From this diagram, this is equivalent to the surjectivity of lim
←−nδn.

It is easier to first describe the Pontrjagin dual of ∂n and qn. Note that the distinguished
triangle i∗j∗L

W
n → j!L

W
n [1]→ j∗L

W
n [1]→ is the Verdier dual of the natural distinguished triangle

j∗((L
W
n )∗ ⊗ µ`n)[1]→ Rj∗((L

W
n )∗ ⊗ µ`n)[1]→ R1j∗((L

W
n )∗ ⊗ µ`n)→ .

Therefore, the dual of ∂n is the natural restriction map

res : H1(U, (LW
n )∗ ⊗ µ`n)→

⊕
y∈C−U

H1(SpecOhC,y\{y}, (LW
n )∗ ⊗ µ`n), (3.5.2)

where OhC,y denotes the henselization of OC,y.
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Let η̄ denote a geometric generic point of Ũ . Its image in U under π is still denoted by η̄.
Then we have

(Ln)η̄ ' Z[W]⊗ (X• ⊗ µ`n),

and the monodromy representation ρ : π1(U, η̄)→ GL((Ln)η̄) is given by

ρ(γ)(a⊗ b) = ρ(γ)a⊗ b.

There is another action of W on (Ln)η̄ given by

w(a⊗ b) = aw−1 ⊗ wb,

which gives rise to the W-action on Ln. Then there is a canonical isomorphism

X• ⊗ µ`n ' (LW
n )η̄, λ 7→

∑
w∈W

w ⊗ w−1λ. (3.5.3)

Now we have the following commutative diagram

((Ln)∗η̄ ⊗ µ`n)W // ((Fn)∗η̄ ⊗ µ`n)W // H1(W,X•/`n) //
� _

ρ∗

��

0

��
((Ln)∗η̄ ⊗ µ`n)π1(U,η̄) // ((Fn)∗η̄ ⊗ µ`n)π1(U,η̄) // H1(π1(U, η̄),X•/`n) // H1(π1(U, η̄), (Ln)∗η̄ ⊗ µ`n)

where the second row is the long exact sequence of étale cohomology for locally free Z/`n-modules
0 → (LW

n )∗ ⊗ µ`n → L∗n ⊗ µ`n → F ∗n ⊗ µ`n → 0 on U , and the first row is the long exact
sequence of the group cohomology for their stalks at η̄, regarded as W-modules. Here, we use:
(i) H1(W, (Ln)∗η̄) = 0 by Shapiro’s lemma; (ii) under the isomorphism (3.5.3), the π1(U, η̄)-action

on (LW
n )η̄ corresponds to the natural action of W = ρ(π1(U, η̄)) on X• ⊗ µ`n ; (iii) ρ∗ is injective

since it is induced by the surjective map π1(U, η̄)→W. Therefore, it follows from the Poincaré
duality on U that the Pontrjagin dual of qn is ρ∗.

Putting these considerations together, we see that the dual of δn is res ◦ρ∗. Now we choose a
geometric generic point η̄ỹ of SpecOhC,y\{y} over η̄. Then ρ(π1(SpecOhC,y\{y}), η̄ỹ) = 〈sαỹ〉 ⊂W
for some root αỹ (depending on η̄ỹ), and there is the following commutative diagram

H1(W,X•/`n)
res //

� _

ρ∗

��

δ∗n

++

H1(〈sαỹ〉,X•/`n)
� _

ρ∗

��
H1(π1(U, η̄),X•/`n)

res // H1(π1(SpecOhC,y\{y}, η̄ỹ),X•/`n),

with vertical arrows injective. Therefore, it remains to show that⊕
y∈C−U

lim
←−H1(〈sαỹ〉,X•/`n)∗→ lim

←−H1(W,X•/`n)∗

is surjective. Note

lim
←−n H1(W,X•/`n)∗ = Hom

(
lim−→n

H1

(
W,

1

`n
X•/X•

)
,Q`/Z`

)
. (3.5.4)

416

https://doi.org/10.1112/S0010437X16008113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008113


Geometric Langlands in prime characteristic

Using 0→ H1(W,X•)/`n → H1(W,X•/`n)→ H2(W,X•)[`n]→ 0, and the fact that H1(W,X•)
is finite, we have

lim−→n
H1

(
W,

1

`n
X•/X•

)
= H2(W,X•)[`∞] = H1(W,X• ⊗Q`/Z`).

So it reduces to show that

H1(W,X• ⊗Q`/Z`)→
⊕

y∈C−U
H1(〈sαỹ〉,X• ⊗Q`/Z`)

is injective. As mentioned in the proof of Lemma 3.5.1, C̃α is non-empty for every α ∈ Φ. Hence
{αỹ} contain a set of representatives of Φ/W. Now we can apply Lemma 3.5.2 to M = X•⊗Q`/Z`
to finish the proof of the proposition. 2

Now, let A′ = ker(P 0
→ P ), and A = ker(P → P 1). Then by the above proposition,

kerDcl = A′/(Ă)∗.

As both A′ and Ă are finite étale groups, it is enough to show that |A′| = |Ă|, where for a finite
group Γ, |Γ| denotes the number of its elements. This is the subject of the next subsection.

3.6 Calculation of finite groups
Let us understand A. In fact, it is better to pick up ∞ ∈ C away from the ramification loci.
Let O∞ denote the completed local ring of C at ∞. Let J∞ be the dilatation of J along the
unit of the fiber of J at ∞. By definition (see [BLR90, § 2] for details), J∞ is the unique smooth
group scheme over C equipped with a natural map J∞→ J , which is an isomorphism away from
∞ and induces an isomorphism from J∞(O∞) to the first congruence subgroup of J(O∞). Let
P∞ be the Picard stack of J∞-torsors on C. One can also interpret P∞ as the Picard stack of
J-torsors on C together with a trivialization at ∞. Observe that P∞ is in fact a scheme. Let
P∞ denote the neutral connected component of P∞. Similarly, one can define J0

∞, J
1
∞, P

0
∞, P

1
∞

etc. Let A∞ = ker(P∞→ P 1
∞) and A′∞ = ker(P 0

∞→ P∞).

Lemma 3.6.1. There are the following two exact sequences

1→ A∞→ Γ(C, J1/J)→ π0(P)→ π0(P1)→ 1

and
1→ AutP(e)→ AutP1(e)→ A∞→ A→ 1.

Similarly,
1→ A′∞→ Γ(C, J/J0)→ π0(P0)→ π0(P)→ 1

and
1→ AutP0(e)→ AutP(e)→ A′∞→ A′→ 1.

Proof. Consider the following commutative diagram.

1 // J∞

��

// J1
∞

��

// J1
∞/J∞

��

// 1

1 // J // J1 // J1/J // 1
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Taking RΓ(C,−), we obtain the following.

1 // Γ(C, J1
∞/J∞)

��

//P∞

��

//P1
∞

��

// 1

1 // Γ(C, J1/J) //P //P1 // 1

(3.6.1)

Since P∞ and P1
∞ are schemes, the first row of (3.7.1) gives

1→ A∞→ Γ(C, J1
∞/J∞)→ π0(P∞)→ π0(P1

∞)→ 1.

Since J1
∞/J∞ = J1/J and π0(P∞) = π0(P), π0(P1

∞) = π0(P1), we obtain the first exact
sequence of the lemma. In addition, combining with the second row of (3.7.1), we obtain the
short exact sequence of Beilinson 1-motives

1→ A∞→W1P →W1P
1
→ 1,

which in turn gives the second exact sequence of the lemma. The proof of the last two exact
sequences of the lemma is similar (by considering RΓ of the short exact sequence 1 → J0

∞ →
J∞→ J∞/J

0
∞→ 1). 2

As a corollary, we can write

|A| = |Γ(C, J1/J)|
|coker(AutP(e)→ AutP1(e))||ker(π0(P)→ π0(P1)|

,

and

|A′| = |Γ(C, J/J0)|
|coker(AutP0(e)→ AutP(e))||ker(π0(P0)→ π0(P))|

.

Therefore to show that |Ă| = |A′|, it is enough to show that:

(1) |Γ(C, J̆1/J̆)| = |Γ(C, J/J0)|;
(2) |coker(AutP̆(e)→ AutP̆1(e))| = |coker(π0(P)∗→ π0(P0)∗)|;
(3) |ker(π0(P̆)→ π0(P̆1))| = |ker(AutP(e)∗→ AutP0(e)∗)|.

We first prove (1). By (3.1.3),

Γ(C, J̆1/J̆) =

(⊕
α

µα(C̃α)

)W

. (3.6.2)

Observe that µα 6= 0 if and only if α is not a primitive root, i.e., α/2 ∈ X•. On the other hand,
from

1→ J/J0→ J1/J0→ J1/J → 1,

one can see that the character group of Γ(C, J/J0) is (
⊕

x∈tC̃α(Qα ∩ X•)/Zα)W. Then (1) follows.
Next, we prove (2). In fact, it follows from § 3.4 and [Ngô10, § 4.10] that both maps can be

identified with the natural inclusion Z(Ğ)→ T̆W.
Finally, we show (3). Recall that AutP(e) = {t ∈ T | α(t) = 1, α ∈ Φ}. On the other hand,

from the above description of Γ(C, J/J0)∗,

AutP0(e) = {t ∈ T | λ(t) = 1 if λ ∈ Qα ∩ X•, α ∈ Φ)}.
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Therefore,

ker(AutP(e)∗→ AutP0(e)∗) =

∑
α∈Φ(Qα ∩ X•)

ZΦ
.

To calculate ker(π0(P̆)→ π0(P̆1)), we choose ỹ ∈ C̃αỹ above y ∈ C − U for every point in

the ramification loci. The restriction of 1→ J̆ → J̆1
→ J̆1/J̆ → 0 at y then can be identified

with

1→ ker(ᾰỹ)→ T̆ sαỹ
ᾰỹ
→ µαỹ '

Qαỹ ∩ X•

Zαỹ
→ 1.

It follows that the coboundary map Γ(C, J̆1/J̆)→ H1(C, J̆) can be identified with⊕
y∈C−U

Qαỹ ∩ X•

Zαỹ
→ H1(C, J̆), λỹ ∈

Qαỹ ∩ X•

Zαỹ
7→ AJP̆(ỹ, λỹ),

where AJP̆ is the Abel–Jacobi map introduced before. Of course, this map does not really depend

on the choice of liftings of y ∈ C − U since AJP̆(ỹ, λỹ) = AJP̆(wỹ, wλỹ).
Now, as in the proof of Lemma 3.6.1, we have a right exact sequence

Γ(C, J̆1/J̆)→ π0(P̆)→ π0(P̆1)→ 0.

Since the Abel–Jacobi map induces X•/ZΦ ' π0(P̆), we deduce that

ker(π0(P̆)→ π0(P̆1)) = Im(Γ(C, J̆1/J̆)→ π0(P̆)) =

∑
α∈Φ(Qα ∩ X•)

ZΦ
.

Therefore, (3) follows and the proof of Theorem 3.3.1 is complete. 2

Remark 3.6.2. As a byproduct of the proof, we obtain

π0(P̆1) =
X•∑

α∈Φ(Qα ∩ X•)
.

It seems that this expression of π0(P̆1) did not appear in literature before.

3.7 A property of Dcl

In this subsection, we assume that G is semi-simple. We show that the classical duality Dcl

intertwines certain homomorphisms of Picard stacks over the Hitchin base B0. As before, we
omit the subscript 0.

Let Z(Ğ)-tors(C) denote the Picard stack of Z(Ğ)-torsors on C. We start with the
construction of two homomorphisms

lJ : Z(Ğ)-tors(C)×B→P∨, l̆J : Z(Ğ)-tors(C)×B→ P̆. (3.7.1)

The definition of l̆J is easy. It is induced by the natural map of group schemes

Z(Ğ)× (C × S)→ J̆b,

for every b : S → B. For K ∈ Z(Ğ)-tors(C), let

KJ := l̆J({K} ×B) ∈ P̆(B).
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Next we define lJ . For the purpose, we need to generalize a construction of [BD91, § 4.1]. Let
π : C→ B be a smooth proper relative curve over an affine base B (later on C = C ×B). Let

0→ Π(1)→ G̃→ G→ 0

be an extension of smooth affine group schemes on C with Π commutative finite étale. Let
Π∨ = Hom(Π,Gm) be its Cartier dual, which is assumed to be étale as well (in particular,
the order of Π is prime to char k), and let Π∨-tors(C/B) denote the Picard stack (over B) of
Π∨-torsors on C relative to B. We construct a Picard functor

lG : Π∨-tors(C/B)→ Pic (BunG(C/B))

of Picard stacks over B as follows. First, let Π-gerbes(C/B) denote the Picard 2-stack of Π-gerbes
on C relative to B, regarded as a Picard stack. Then there is the generalized (or categorical)
Chern class map

c̃G : BunG(C/B)→ Π(1)-gerbes(C/B)

that assigns every B-scheme S and a G-torsor E on CS , the Picard groupoid of the lifting of E
to a G̃-torsor. We have the following.

Lemma 3.7.1. The dual of the Picard stack Π-gerbes(C/B) (as defined in §A.3) is canonically
isomorphic to Π∨-tors(C/B).

We follow [BD91, § 4.1.5] for a ‘scientific interpretation’ of this lemma and refer to [BD91,
§§ 4.1.2–4.1.4] for the precise construction. As explained in §A.1, the Picard stack Π-gerbes(C/B)
is incarnated by the complex τ>−1Rπ∗Π[2](1), and Π∨-tors(C/B) is incarnated by the complex
τ60Rπ∗Π

∨[1]. Let µ′∞ denote the group of prime-to-p roots of unit. Note that π!µ′∞ ' µ′∞[2](1).
Then by the Verdier duality,

RHom(Rπ∗Π[2](1), µ′∞) ' Rπ∗RHom(Π[2](1), π!µ′∞) ' Rπ∗Π∨.

By shifting by [1] and truncating τ60, one obtains the lemma. As explained in [BD91, § 4.1.5],
working in the framework of derived categories is not enough to turn the above heuristics into a
proof. One can either give a concrete construction as in [BD91, §§ 4.1.2–4.1.4] or understand the
above argument in the framework of stable ∞-categories.

Therefore, each K ∈ Π∨-tors(C/B) defines a morphism

lG,K : BunG(C/B)
c̃G
→ Π(1)-gerbes(C/B)

〈,K〉
→ BGm

or equivalently a line bundle LG,K on BunG(C/B) and the assignment K → LG,K defines a
homomorphism of Picard stacks

lG : Π∨-tors(C/B)→ Pic(BunG(C/B)),

which factors through the n-torsion of Pic(BunG)(C/B) where n is the order of Π∨.
Note that in the above discussion we do not assume that G is commutative. But if G is

commutative, BunG(C/B) has a natural structure of Picard stack over B and one can check that
lG factors through a homomorphism lG : Π∨-tors(C/B)→ (BunG(C/B))∨.

Now let C = C × B, where B is the Hitchin base as before. Let G = Jb and G̃ = (Jsc)b,
where b : B → B is the identity map, and Jsc is the universal regular centralizer for Gsc, the
simply connected cover of G. Then Π(1) = ΠG(1) is the fundamental group and Π∨G is canonical
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isomorphic to the center Z(Ğ) of Ğ. Therefore, the above construction gives lJ as promised
in (3.7.1).

Note that similarly we can set G = G × C and G = T × C in the above construction so we
obtain

lG : Z(Ğ)-tors(C)→ Pic(BunG), lT : Z(Ğ)-tors(C)→ (BunT )∨.

For K ∈ Z(Ğ)-tors(C), let LG,K := lG(K) ∈ Pic(BunG), LJ,K := lJ({K} ×B) ∈ (P)∨(B). The
following lemma will be used in § 5.6.

Lemma 3.7.2. Let κ be a square root of ω. Then the pullback of LG,K along the map P
εκ
→

Higgs
pr
→ BunG is isomorphic to LJ,K , i.e., we have LJ,K ' ε∗κ ◦ pr∗LG,K .

Proof. It is enough to show that the composition

P
εκ
→ Higgs

pr
→ BunG

c̃G
→ ΠG(1)-gerbes(C)

is isomorphic to

P
c̃J
→ ΠG-gerbes(C)×B→ ΠG(1)-gerbes(C).

Let P ∈P and (E, φ) := εκ(P ). We need to construct a functorial isomorphism between c̃J(P )
and c̃G(E) where c̃J(P ) (respectively c̃G(E)) is the ΠG(1)-gerbe of liftings of P to Jsc-torsors
(respectively Gsc-torsors).

Note that the G-torsor Eκ given by the Kostant section has a natural lifting Ẽκ ∈ BunGsc ,
since the cocharacter 2ρ : Gm → G has a natural lifting to Gsc. Thus any lifting P̃ ∈ c̃J(P )
defines a lifting Ẽ := P̃ ×Jsc Ẽκ ∈ BunGsc of E = P ×J Eκ and the assignment P̃ → Ẽ defines a
functorial isomorphism between c̃J(P ) and c̃G(E). The lemma follows. 2

We write lG, lT , lJ for the induced maps between the corresponding coarse moduli spaces.
The following lemma is a specialization of our construction of the duality given in Lemma 3.7.1.

Lemma 3.7.3. Let n be a positive integer such that p - n. Let

l : T̆ [n]-tors(C)→ (BunT )∨[n]

be the tensor functor given by the extension 0→ T [n]→ T
n
→ T → 0.4 Then the induced map

l : H1(C, T̆ [n])→ H1(C, T [n])∨ between the coarse moduli spaces is the same the as map given
by the Poincare duality.

Now we are ready to state the result in this subsection.

Proposition 3.7.4. There is a natural isomorphism of functors Dcl ◦ lJ ' l̆J . In particular, we
have Dcl(LJ,K) ' KJ .

Proof. Let Ğad denote the adjoint group of Ğ. Note that it is the Langlands dual group of Gsc.
Let J̆ad be the universal centralizer for Ğad, and n̆ad denote the Picard stack of J̆ad-torsors. We
first claim that the composition

Z(Ğ)-tors(C)×B lJ
→P∨ Dcl' P̆ → P̆ad

4 Recall that we have a canonical isomorphism T̆ [n] ' (T [n])∨.

421

https://doi.org/10.1112/S0010437X16008113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008113


T.-H. Chen and X. Zhu

is trivial. From the construction of Dcl, we have the following commutative diagram.

P∨ Dcl //

��

P̆

��
(Psc)

∨ Dcl // P̆ad

Thus the above composition can be identified with

Z(Ğ)-tors(C)×B lJ
→ (P)∨→ (Psc)

∨ Dcl' P̆ad.

This is trivial since the composition of the first two maps is the dual of

Psc→P
c̃J
→ ΠG(1)-gerbes(C)×B,

which is trivial by the construction of c̃J .
On the other hand, the short exact sequence 0→ Z(Ğ)×B → J̆ → J̆ad→ 0 induces a left

exact sequence of Picard stacks

0→ Z(Ğ)-tors(C)×B l̆J
→ P̆ → P̆ad.

That is, Z(Ğ)-tors(C)×B is identified as the kernel of P̆→ P̆ad. Therefore, there is a morphism

i : Z(Ğ)-tors(C)×B→ Z(Ğ)-tors(C)×B

such that Dcl ◦ lJ ' l̆J ◦ i. We now show that i is isomorphic to the identity morphism. As
argued in § 3.4, we reduce to show that i induced the identity map on the coarse moduli space
H1(C,Z(Ğ))×B.

Let i : H1(C,Z(Ğ)) × B → H1(C,Z(Ğ)) × B, lJ : H1(C,Z(Ğ)) × B → P∨ and l̆J : H1(C,
Z(Ğ))×B→ P̆ be the induced maps on the corresponding coarse moduli spaces. Our goal is to
show that i = id. Since Γ(C ×B, J̆ad) = 0, l̆J is injective. Therefore, it suffices to show that

l̆J ◦ (i− id) : H1(C,Z(Ğ))×B→ P̆

is zero. As in § 3.4, we can prove this fiberwise, and therefore we fix b ∈ B0(k). Again, to simplify
notations, in the following discussion we write C̃, J, P, P̆ instead of C̃b, Jb, Pb, P̆b, etc.

Let j̆1 : P̆ → H1(C̃, T̆ ) be the map induced by the morphism j̆1 : π∗J̆ → T̆ . Then the
composition j̆1 ◦ l̆J : H1(C,Z(Ğ)) → H1(C̃, T̆ ) is also injective (note that j̆1 ◦ l̆J is induced
by the natural map Z(Ğ) → T̆ ). Thus it is enough to show that j̆1 ◦ l̆J ◦ (i − id) = 0. Since
Dcl ◦ lJ = l̆J ◦ i, it is equivalent to show that

j̆1 ◦Dcl ◦ lJ − j̆1 ◦ l̆J = 0. (3.7.2)

Let us consider the following diagram

H1(C,Z(Ğ))
lJ //

id
��

H1(C, J)∨

Dcl

��

Nm∨ // H1(C̃, T )∨

��

H1(C,Z(Ğ))
l̆J // H1(C, J̆)

j̆1 // H1(C̃, T̆ )
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where Nm∨ is the dual of (3.1.9), and the right vertical map is (Jac⊗X•)∨ ' Jac⊗X•. The right
rectangle in the above diagram is commutative by the construction of Dcl in § 3. Therefore it is
enough to show that the outer diagram is also commutative.

Let n be the order of Z(Ğ). Then j̆1 ◦ l̆J and Nm∨ ◦ lJ will factor through H1(C̃, T̆ )[n] '
H1(C̃, T̆ [n]) and H1(C̃, T )∨[n] ' H1(C̃, T [n])∨.5 Thus the outer diagram factors as

H1(C,Z(Ğ))
Nm∨ ◦lJ //

id
��

H1(C̃, T [n])∨

��

H1(C,Z(Ğ))
j̆1◦l̆J // H1(C̃, T̆ [n])

where the right vertical arrow is now given by the Poincare duality. Unraveling the definition of
lJ , one sees that Nm∨ ◦ lJ can be identified with

H1(C,Z(Ğ))→ H1(C̃, T̆ [n])→ H1(C̃, T [n])∨

where the first map is induced by the natural morphism Z(Ğ)→ T̆ [n] and the second map is the
map l in Lemma 3.7.3. Then the commutativity of above diagram follows from Lemma 3.7.3. 2

4. Multiplicative 1-forms

In this section, we establish a technical result. Namely, we show that the pullback of the canonical
1-form θcan on T ∗BunG along P → T ∗BunG induced by a Kostant section κ is multiplicative
in the sense of §C.2.

4.1 Lie algebra valued 1-forms
In this subsection, we restrict everything to B0 and therefore omit the subscript 0 from the
notation. Recall that there is a group scheme T = C̃ ×W T over [C̃/W] and Proposition 2.5.1
says that there is a homomorphism [j1] : [π]∗J → T where [π] : [C̃/W]→ C×B is the projection.
It induces the following commutative diagram.

[π]∗(ΩC×B ⊗ Lie J)

��

// [π]∗(ΩC×B/B ⊗ Lie J)

��
Ω

[C̃/W ]
⊗ LieT // Ω

[C̃/W ]/B
⊗ LieT

Note that, due to the product structure on C×B, the arrow in the upper row admits a canonical
splitting. Therefore, the tautological section in (2.7.1)

(τ : B→ BJ) ∈ Γ(C ×B,ΩC×B/B ⊗ Lie J)

can be regarded as a section of [π]∗(ΩC×B ⊗ Lie J), which in turn gives

θ
C̃
∈ Γ([C̃/W],Ω

[C̃/W]
⊗ LieT) = Γ(C̃,Ω

C̃
⊗ t)W. (4.1.1)

We denote by θ̆
C̃
∈ Γ(C̃,Ω

C̃
⊗ t̆)W the corresponding section for the dual group.

We shall give an alternative description of θ
C̃

. We denote by

δω : tω → tω ×C tω

5 Note that p - n.

423

https://doi.org/10.1112/S0010437X16008113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008113


T.-H. Chen and X. Zhu

the Gm-twist by ω of the map δ as in Lemma 2.7.3. We regard tω and tω ×C tω (via the first
projection) as schemes over cω and define

δ
C̃

: C̃ = e∗tω → e∗(tω ×C tω) = C̃ ×C (T ∗C ⊗ t)

to be the base change of δω via the evaluation map e : C ×B→ cω. By Lemma 2.7.3, δ
C̃

is just
the pullback of the diagonal map tω → tω ×C tω along e : C ×B→ cω.

By construction, the section θ
C̃
∈ Γ(C̃,Ω

C̃
⊗ t)W is equal to the composition

C̃
δ
C̃
→ C̃ ×C (T ∗C ⊗ t)→ T ∗C̃ ⊗ t (4.1.2)

where the last map is the cotangent map for the projection C̃ → C.
The description of θ

C̃
in (4.1.2) implies the following relation between θ

C̃
and θ̆

C̃
.

Lemma 4.1.1. Let σ : Γ(C̃,Ω
C̃
⊗ t)W ' Γ(C̃,Ω

C̃
⊗ t̆)W be the canonical isomorphism induced by

the non-degenerate invariant form ( , ) on t. We have σ(θ
C̃

) = θ̆
C̃

.

Remark 4.1.2. The 1-form θ
C̃

is related to the canonical 1-form ωC of C in the following way. Let

ẽ : C̃→ T ∗C⊗ t (= tω) be the natural W-equivariant map (see § 2.4). The natural W-equivariant
pairing X• × t→ k induces a W-equivariant map

ν : C̃ × X• ẽ×id
→ (T ∗C ⊗ t)× X•→ T ∗C, (4.1.3)

where W acts diagonally on C̃×X•. Now the pullback of the canonical 1-form ωC on T ∗C along
ν defines a section ν∗ωC ∈ Γ(C̃,Ω

C̃
⊗ t)W, and using the description of θ

C̃
in (4.1.2) one can

check that θ
C̃

= ν∗ωC .

4.2 Canonical 1-form
Let us denote by T ∗Bun0

G the maximal smooth open substack of T ∗BunG. Then there is a
tautological section

θcan : T ∗Bun0
G→ T ∗(T ∗Bun0

G).

Note that T ∗BunG×BB0 ⊂ T ∗Bun0
G. From now on, we restriction everything to the open part

B0 and therefore will omit 0 from the subscript. Note that for a choice of the Kostant section
κ, we have an isomorphism εκ : P ' T ∗BunG, and therefore we may regard θcan as a section
P → T ∗P, denoted by θκ.

Let AJP : C̃ × X•→P be the Abel–Jacobi map. Write the pullback as

(AJP)∗θκ = {θκ,λ}λ∈X• ∈ Γ(C̃ × X•,ΩC̃
)W,

where θκ,λ ∈ Γ(C̃,Ω
C̃

) is the restriction of (AJP)∗θκ to C̃×{λ}. A section {αλ}λ∈X• ∈ Γ(C̃×X•,
Ω
C̃

) (respectively Γ(C̃ ×X•,ΩC̃/B
)) is called X•-multiplicative if it satisfies αλ+µ = αλ +αµ, for

any λ, µ ∈ X•. Clearly, any X•-multiplicative section {αλ}λ∈X• corresponds to a t̆-valued section
α ∈ Γ(C̃,Ω

C̃
⊗ t̆) (respectively Γ(C̃,Ω

C̃/B
⊗ t̆)). The rest of the section is mainly devoted to the

proof of the following result.

Proposition 4.2.1. The 1-form (AJP)∗θκ is X•-multiplicative. Moreover, if we regard (AJP)∗θκ
as a section of Γ(C̃,Ω

C̃
⊗ t̆)W, we have

(AJP)∗θκ = θ̆
C̃
,

where θ̆
C̃

is the section defined in § 4.1.

424

https://doi.org/10.1112/S0010437X16008113 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16008113


Geometric Langlands in prime characteristic

We have the following corollary. Recall the notion of multiplicative sections P → T ∗P as
defined in §C.2.

Corollary 4.2.2. The section θκ is multiplicative in the sense of §C.2. In addition, it is
independent of the choice of Kostant section κ.

Proof. We first show that θκ is multiplicative. Consider the section

m∗θκ : P ×B P → T ∗P ×P (P ×B P)→ T ∗(P ×B P),

where the first map is the base change of θκ along the multiplication m : P ×B P → P, and
the second map is the differential md of m. On the other hand, consider

(θκ, θκ) : P ×B P → (T ∗P × T ∗P)|P×BP → T ∗(P ×B P).

We need to show that (θκ, θκ) = m∗θκ.
We first have the following lemma, whose proof is independent of Proposition 4.2.1.

Lemma 4.2.3. The projection of θκ along T ∗P → T ∗(P/B) is multiplicative. More precisely,
the images of m∗θκ and (θκ, θκ) in T ∗(P ×B P/B) are the same.

Proof. Consider the following short exact sequence of vector bundles on P ×B P

0→ T ∗B ×B (P ×B P)→ T ∗(P ×B P)→ T ∗(P ×B P/B)→ 0.

As the projection of θκ along T ∗P → T ∗(P/B) is identified with τ∗ × id (cf. Lemma 2.7.2),
the restriction of θκ to each fiber Pb is given by the ‘constant’ 1-form τ∗|b ∈ Γ(C, (Lie Jb)

∗⊗ω).
Therefore, (θκ, θκ) = m∗θκ in T ∗(P ×B P/B). 2

Therefore, their difference can be regarded as a section

m∗θκ − (θκ, θκ) ∈ Γ(P ×B P, pr∗ΩB) = (π0(P)× π0(P))× Γ(B,ΩB).

The Abel–Jacobi map AJP : C̃ × X•→P induces a map

AJP,2 : C̃ × X• × X•→P ×B P.

It is enough to show that the pullback of m∗θκ − (θκ, θκ) in

Γ((C̃ × X• × X•), pr∗ΩB) = (X• × X•)× Γ(B,ΩB)

vanishes. By Proposition 4.2.1, the one form (AJP)∗θκ = {θκ,λ}λ∈X• is X•-multiplicative, and
thus for any λ, µ ∈ X• we have

(AJP,2)∗(m∗θκ − (θκ, θκ))|
C̃×{λ}×{µ} = θκ,λ+µ − (θκ,λ + θκ,µ) = 0.

This finishes the proof of multiplicative property of θκ. The independence of κ follows from
(AJP)∗θκ = θ̆

C̃
. 2

Notation. In what follows, we denote the multiplicative 1-form θκ on P by θm.

Remark 4.2.4. Let a := m ◦ (AJP × id) : (C̃ ×X•)×B P →P ×B P →P be the action map.
Then Remark 4.1.2 together with Corollary 4.2.2 implies that

a∗θm = ν̆∗(ωC)� θm.

Here ν̆ is the map in (4.1.3) for the dual group. In the case of G = GLn, (a variant of) this
identity was proved in [BB07, Theorem 4.12].
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4.3 Proof of Proposition 4.2.1: first reductions

Let θκ and θ̆
C̃

be the projections of (AJP)∗θκ and θ̆
C̃

along

Γ(C̃ × X•,ΩC̃
)→ Γ(C̃ × X•,ΩC̃/B

).

Lemma 4.2.3 implies that θκ is X•-multiplicative and can be regarded as an element in
Γ(C̃,Ω

C̃/B
⊗ t̆)W. Let us first show that θκ = θ̆

C̃
.

Recall in (2.7.4) we have introduced a morphism ι : LieJ → (Lie J)∗. It follows from the
definition of ι in loc. cit. that the following diagram is commutative

[π]∗Lie J
[π]∗ι //

��

[π]∗(Lie J)∗

LieT // Lie T̆

OO

where the arrow in the bottom row is the morphism LieT→ Lie T̆ induced by the invariant from
( , ) on t. (Recall (cf. § 4.1) that T := C̃ ×W T is a group scheme over [C̃/W ] and [π] : [C̃/W ]→
C ×B.) It induces the following commutative diagram.

Γ(C ×B,ΩC×B/B ⊗ Lie J)
ι∗ //

��

Γ(C ×B,ΩC×B/B ⊗ Lie J∗)

Γ(C̃,Ω
C̃/B
⊗ t)W σ // Γ(C̃,Ω

C̃/B
⊗ t̆)W

υ

OO

Recall the sections τ ∈ Γ(C ×B,ΩC×B/B ⊗ Lie J) and τ∗ ∈ Γ(C ×B,ΩC×B/B ⊗ Lie J∗) in § 2.7.
Note the map υ in the diagram above is an isomorphism6 and it identifies θκ with the section
τ∗. On the other hand, Lemma 4.1.1 implies the section θ̆

C̃
∈ Γ(C̃,Ω

C̃/B
⊗ t̆)W is equal to the

image of τ under the composition of the morphisms in the lower left corner of the above diagram.
Thus, υ(θ̆

C̃
) = ι∗(τ) = τ∗. Therefore both θ̆

C̃
and θκ map to τ∗ under the isomorphism υ, which

implies θ̆
C̃

= θκ.

As a consequence, difference θ̆
C̃
− (AJP)∗θκ can be regarded as a section

θ̆
C̃
− (AJP)∗θκ ∈ Γ(C̃ × X•, pr∗ΩB). (4.3.1)

We need to show that it is zero. Let Ũ ⊂ C̃ be the largest open subset such that Ũ → C ×B is
étale. It is enough to show that θ̆

C̃
−(AJP)∗θκ|Ũ×X• = 0. Note that for x̃ ∈ Ũ we have a canonical

decomposition Tx̃C̃ = TxC⊕TbB and by (4.3.1) it suffices to show that (θ̆
C̃
−(AJP)∗θκ)|TbB = 0.

As the section θ̆
C̃

is induced by the canonical splitting ΩC×B/B ⊗ Lie J̆ → ΩC×B ⊗ Lie J̆ , the

restriction of θ̆
C̃

to TbB is zero, so we reduce to show that (AJP)∗θκ|TbB = 0, i.e., for any λ ∈ X•
and v ∈ TbB we have

〈θκ,λ, v〉 = 〈(AJP)∗θκ|C̃×{λ}, v〉 = 0. (4.3.2)

For the later purpose, we introduce some notations. Let (Eκ, φκ) be the Higgs field on C × B
obtained by the pullback along the Kostant section κ. For every λ ∈ X• let AJP,λ : C̃ → P
denote the corresponding component of the Abel–Jacobi map and let

(Ex̃, φx̃) := AJP,λ(x̃)×Jb (Eκ, φκ)|C×{b},

6 It is the relative cotangent map of the isogeny P → BunW
T (C̃/B).
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be the image of x̃ under the map C̃
AJP,λ

→ P
εκ' T ∗BunG. We also define

aλ : C̃
AJP,λ

→ P
εκ' T ∗BunG→ BunG.

Since θκ = ε∗κθcan, we have

〈θκ,λ, v〉 = 〈(AJP,λ)∗ε∗κθcan, v〉 = 〈θcan, (εκ)∗(AJP,λ)∗v〉 = 〈φx̃, aλ∗v〉,

where aλ∗ : Tx̃C̃ → TEx̃ BunG ' H1(C, adEx̃) is the differential of aλ and the last pairing is
induced by the Serre duality H0(C, adEx̃ ⊗ ΩC) ' H1(C, adEx̃)∗.

Therefore we reduce to show the following.

Proposition 4.3.1. For any v ∈ TbB ⊂ Tx̃C̃ = TxC ⊕ TbB, the pairing 〈φx̃, aλ∗v〉 is zero.

4.4 Proof of Proposition 4.3.1: calculations of differentials
We shall need several preliminary steps. Recall that there is the Eκ-twist global Grassmannian
Gr(Eκ) which classify the triples (x,E, β) where x ∈ C, E is a G-torsor and β : Eκ|C−{x} '
E|C−{x} is an isomorphism. Given a dominant coweight µ (with respect to the set of simple
roots we choose), it makes sense to talk about the closed substack Gr6µ(Eκ), consisting of those
β : Eκ|C−{x} ' E|C−{x} having relative position less than or equal to µ at x (cf. [BD91, § 5.2.2]).
Let Grµ(Eκ) = Gr6µ(Eκ)−

⋃
λ<µ Gr6λ(Eκ). We have natural projection maps

BunG
pr1
← Gr6µ(Eκ)

pr2
→ C.

For any x ∈ C, let
Grx(Eκ) := Gr(Eκ)×C {x},

and similarly we have Grx,6µ(Eκ),Grx,µ(Eκ).

Note that for any x̃ ∈ C̃ the J-torsor AJP,λ(x̃) ∈ P has a canonical trivialization s over
C − x (here x is the image of x̃ in C), thus it induces a canonical isomorphism β : Eκ|C−x '
Ex̃|C−x (recall that Ex̃ := AJP,λ(x̃)×J Eκ). The assignment x̃→ (x,Ex̃, β) defines a morphism
ãλ : C̃ → Gr(Eκ). We have the following key lemma.

Lemma 4.4.1. Let µ be a dominant coweight and λ ∈W · µ. The morphism ãλ factors through
Gr6µ(Eκ), and the following diagram

C̃
ãλ //

aλ
##

Gr6µ(Eκ)

pr1

��
BunG

is commutative. Moreover, for any k-point x̃ ∈ Ũ(k), ãλ(x̃) ∈ Grµ(Eκ)(k).

The proof is given at the end of this subsection. We also need the following lemma about the
differential of ãλ.

Lemma 4.4.2. Let x̃ ∈ Ũ(k), and let ãλ(x̃) = (x,Ex̃, β) ∈ Grµ(Eκ)(k) (by Lemma 4.4.1). For

every v ∈ TbB ⊂ Tx̃C̃ = TxC ⊕ TbB, we have

u := (ãλ)∗v ∈ T(Ex̃,β)Grx,µ(Eκ) ⊂ T(x,Ex̃,β)Grµ(Eκ).
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Proof. The subspace T(Ex̃,β)Grx,µ(Eκ) ⊂ T(x,Ex̃,β)Grµ(Eκ) is equal to

Ker((pr2)∗ : T(x,Ex̃,β)Grµ(Eκ)→ TxC).

Therefore it is enough to show (pr2)∗(ãλ)∗v = 0. Recall that we have the following commutative
diagram (not Cartesian).

C̃
ãλ //

π

��

Gr6µ(Eκ)

pr2

��
C ×B prC // C

Thus we have (pr2)∗(ãλ)∗v = (prC)∗(π∗v) = (prC)∗v = 0. This finishes the proof. 2

Combining the above two lemmas we obtain that

〈θκ,λ, v〉 = 〈φx̃, aλ∗v〉 = 〈φx̃, (pr1)∗u〉 (4.4.1)

where u := (ãλ)∗v ∈ T(Ex̃,β)Grx,µ(Eκ). So we need show that the last pairing is zero. To calculate
it, we need a few more notations. For any x ∈ C we denote by Ox the completion of the local ring
of C at x and Fx its fractional field. Let ωOx (respectively ωFx) denote the completed regular
(respectively rational) differentials on SpecOx. We denote by

Res( , ) : g(ωFx)× g(Fx)→ k

the residue pairing induced by the G-invariant form ( , ) on g.
Let us fix a trivialization γκ : Eκ ' E0 on SpecOx. Then, for every trivialization γ of E on

SpecOx, we obtain

g = γ−1
κ βγ ∈ G(Fx).

In this way, γκ induces an isomorphism

Grx,µ(Eκ) ' Orbµ, (E, β) 7→ γ−1
κ βγG(Ox),

where Orbµ is the G(Ox)-orbit of µ · G(Ox) ∈ G(Fx)/G(Ox). Under the isomorphism, we have
the identification of the tangent spaces

T(E,β)Grx,µ(Eκ) ' g(Ox)/(Adg g(Ox) ∩ g(Ox)).

For any u ∈ T(E,β)Grx,µ(Eκ) and φ ∈ TE BunG the pairing 〈φ, (pr1)∗u〉 can be calculated as
follows. Let ũ ∈ g(Ox) be a lifting of u under the above isomorphism. Let φ(γ) denote the

φ : SpecOx→ adE ⊗ ωC
γ
→ g(ωFx). Now we have

〈φ, (pr1)∗u〉 = Res(φ(γ),Ad−1
g ũ).

In our case φ = φx̃ = AJP,λ(x̃) ×J φκ, the following lemma will imply the vanishing of 〈φx̃,
(pr1)∗u〉, and therefore will finish the proof of Proposition 4.3.1.

Lemma 4.4.3. We have Adg φx̃(γ) ∈ g(ωOx).

Proof. Indeed, unraveling the definitions, we have Adg φ(γ) = φκ(γκ), which is regular. 2
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It remains to prove Lemma 4.4.1. Let ãλ : C̃ → Gr(Eκ) be the morphism constructed
as in the lemma. Since C̃ is smooth and Ũ ⊂ C̃ is open dense, it is enough to show that
ãλ(Ũ(k)) ⊂ Grµ(Eκ)(k). Let x̃ ∈ Ũ(k) and ãλ(x̃) = (x,Ex̃, β) ∈ Gr(Eκ)(k) be its image, where
Ex̃ := AJP,λ(x̃) ×J Eκ and β : Eκ|C−x ' Ex̃|C−x is the isomorphism induced by the canonical
section s ∈ AJP,λ(x̃)(C − x). Let

rel : Grx(Eκ)→ X•/W

be the map sending an element (E, β) to the relative position of β (cf. [BD91, § 5.2.2]). We
have (Ex̃, β) ∈ Grx(Eκ) and we need to show that rel(Ex̃, β) = µ. For simplicity, we will denote
P := AJP,λ(x̃).

Let GrJ (respectively GrT ) be the global Grassmannian for the group scheme J
(respectively T ). By [Yun11, Lemma 3.2.5], the morphism j1 : π∗J → T × C̃ induces a
W-equivariant isomorphism

jGr : GrJ ×(C×B) Ũ ' GrT ×C Ũ

of group ind-schemes over Ũ . We denote by jx̃,Gr : Grx,Jb ' Grx,T the restriction of
jGr to x̃. We have (P, s) ∈ Grx,Jb(k) (here s ∈ P(C − x) is the canonical section) and one
can check that jx̃,Gr(P, s) = λ ∈ Grx,T (k) ' X•. The action of Grx,Jb on (Eκ, φκ) defines a map
aκ : Grx,Jb → Grx(Eκ). We claim that the following diagram is commutative

Grx,Jb(k)
aκ //

jx̃,Gr

��

Grx(Eκ)(k)

rel
��

Grx,T (k) ' X• // X•/W

(4.4.2)

Assuming the claim we see that rel(E, β) = rel(aκ(P, s)) is equal to the image of jx̃,Gr(P, s) =
λ ∈ X• in X•/W. But by assumption λ ∈W · µ. This finishes the proof of Lemma 4.4.1.

To prove the claim, recall that a trivialization γκ of Eκ on SpecOx defines an
isomorphism Grx(Eκ) ' G(Fx)/G(Ox). Moreover, under the canonical isomorphism Grx,Jb(k) '
Jb(Fx)/Jb(Ox), Grx,T (k) ' T (Fx)/T (Ox) and G(Ox)\G(Fx)/G(Ox) = X•/W, the diagram (4.4.2)
can be identified with

Jb(Fx)/Jb(Ox) //

��

G(Fx)/G(Ox)

pr

��
T (Fx)/T (Ox) // G(Ox)\G(Fx)/G(Ox)

where the upper arrow is induced by the homomorphism

Jb
aEκ,φκ' Aut(Eκ, φκ)→ Aut(Eκ)

γκ' G (4.4.3)

and the arrow in the left column is induced by the homomorphism j1 : π∗J → T × C̃. Let
bx ∈ crs(Ox) be the restriction of b to SpecOx. Using the definition of aEκ,φκ in (2.6.1), it is not
hard to see that the restriction of (4.4.3) to SpecOx is equal to

Jbx ' Ikos(bx) ↪→ G× SpecOx, (4.4.4)

up to conjugation by an element in G(Ox). Here kos(bx) : SpecOx
bx
→ c

kos
→ g ∈ greg(Ox) and the

first isomorphism is induced by the canonical isomorphism χ∗J |greg ' I|greg in Proposition 2.5.1.
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Therefore, to prove the claim, it is enough to show that the restriction7 of j1 to SpecOx is equal

to the map (4.4.4) up to left and right multiplication by elements in G(Ox). To see this, we first

observe that the point x̃ defines a lifting b̃x ∈ trs(Ox) of bx ∈ crs(Ox). Since the map G× grs→

grs×c g
rs, (y, v)→ (Ad y(v), v) is smooth, there exists g ∈ G(Ox) such that Ad g(kos(bx)) = b̃x.

The map Ad g induced an isomorphism ιg : Ikos(bx) ' Ib̃x = T × SpecOx, which is independent

of the choice of g, and according to [Ngô10, Proposition 2.4.2] the restriction of j1 to SpecOx is

given by

Jbx ' Ikos(bx)

ιg' T × SpecOx, (4.4.5)

where the first map is the canonical isomorphism mentioned before. The above description implies

the map (4.4.4) is equal to the map (4.4.5) up to left and right multiplication by elements in

G(Ox). This finishes the proof of the claim.

5. Main result

We assume that G is semi-simple over k whose characteristic p is positive and does not divide the

order of the Weyl group of G. Let C be a smooth projective curve over k, of genus at least two. In

this case, BunG is a ‘good’ stack in the sense of [BD91, § 1.1.1] (see also §B.5). Let DBunG be the

sheaf of algebras on Higgs′G in Proposition B.5.1. Denote by D0
BunG

:= DBunG |Higgs′G×B′B
′0

the restriction of DBunG to the smooth part of the Hitchin fibration. We define D-mod(BunG)0

as the category of D0
BunG

-modules. As explained in §B.5, the category D-mod(BunG)0 is a

localization of the category of D-modules on BunG and is canonical equivalent to the category

of twisted sheaves QCoh(D0
BunG

)1, where D0
BunG

= DBunG ×B′ B
′0 and DBunG is the gerbe of

crystalline differential operators on Higgs′G. On the dual side, let LocSysĞ be the stack of de

Rham Ğ-local systems on C. Recall that in [CZ15], we constructed a fibration

hp : LocSysĞ→ B′

from LocSysĞ to the Hitchin base B′, which can be regraded as a deformation of the usual

Hitchin fibration. We define

LocSys0
Ğ

:= LocSysĞ×B′B
′0.

Our goal is to prove the following theorem.

Theorem 5.0.1. Assume G is semi-simple and the genus of C is at least two. For a choice of a

square root κ of ωC , we have a canonical equivalence of bounded derived categories

Dκ : Db(D-mod(BunG)0) ' Db(QCoh(LocSys0
Ğ

)).

The proof of above theorem is divided into two steps. The first step, which involves the

Langlands duality, is to establish a twisted version of the classical duality (see § 5.2). The second

step, which does not involve the Langlands duality, is to establish two abelianization theorems

(see § 5.3) for which we need a choice of square root κ of ωC . Combining above two steps, our

main theorem follows from a general version of the Fourier–Mukai transform (see § 5.4).

7 Here we identify SpecOx̃ ' SpecOx and regard j1 as a map of group schemes over SpecOx.
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5.1 The P̆ ′-torsor H̆

We first recall that in [CZ15], we constructed a P̆ ′-torsor H̆ . It is defined via the following
Cartesian diagram.

H̆ //

��

LocSysJ̆p

��
B′

τ̆ ′ // B′
J̆ ′

(5.1.1)

Here J̆p is the pullback of the universal centralizer J̆ ′ over C ′ ×B′ along the relative Frobenius
map FC′×B′/B′ : C×B′→ C ′×B′. This is a group scheme with a canonical connection along C,

and therefore it makes sense to talk about the stack LocSysJ̆p of J̆p-torsors with flat connections.
In addition, it admits a map LocSysJ̆p → B′

J̆ ′
. We refer to [CZ15, Appendix] for generalities.

Recall that there is a description of P in terms of BunW
T (C̃/B). We give a similar description

of the P̆ ′-torsor H̆ in terms of a BunW
T̆

(C̃/B)′-torsor. Recall that τ̆ ′ is regarded as a section of

ΩC′×B′/B′⊗Lie J̆ ′, which defines a J̆ ′-gerbe D(τ̆ ′) on C ′×B′ (see §B.4) and according to [CZ15,

Proposition A.9], H̆ is isomorphic to TD(τ̆ ′), the stack of splittings of D(τ̆ ′) over B′. Therefore
by Lemma 3.2.1 we have

H̆ |B′0 ' T W,+
D(τ̆ ′)T̆

|B′0 , (5.1.2)

where D(τ̆ ′)T̆ := (π∗D(τ̆ ′))j̆
1

is the T̆ -gerbe on C̃ ′ induced from D(τ̆ ′) using maps π : C̃ ′→ C ′×B′

and j̆1 : π∗J̆ ′→ T̆ ′ × C̃ ′ (see §A.6 for the induction functor of gerbes).
On the other hand, using the definition of θ

C̃′ ∈ Γ(C̃ ′,Ω
C̃′ ⊗ t̆′)W in § 4.1 one can check that

j̆1
∗π
∗(τ̆ ′) = θ

C̃′ , where j̆1
∗π
∗(τ̆ ′) is the t̆′-valued 1-form induced from τ̆ ′ using maps π and j̆1.

Therefore, by Lemma B.4.1 we see that over B
′0 we have

D(τ̆ ′)T̆ := (π∗D(τ̆ ′))j̆
1 ' D(j̆1

∗π
∗(τ̆ ′)) ' D(θ

C̃′). (5.1.3)

Hence combining (5.1.2) and (5.1.3) we get the following Galois description of H̆ .

Corollary 5.1.1. There is a canonical isomorphism of P̆ ′-torsors H̆ |B′0 ' T W,+
D(θ

C̃′ )
|B′0 .

5.2 Twisted duality
Let us construct the twisted duality. Let θ′m : P ′

→ T ∗P ′ denote the canonical multiplicative
one form constructed in § 4.2. Let D(θ′m) denote the corresponding Gm-gerbe on P ′ obtained by
pullback of DP on T ∗P ′ by θ′m (see §B.4). According to §C.2, the gerbe D(θ′m) is canonically
multiplicative. Moreover, according to §A.7, the stack of multiplicative splittings of D(θ′m) over
B′ is a (P ′)∨-torsor TD(θ′m). Our goal is to prove the following theorem.

Theorem 5.2.1. There is a canonical isomorphism of P ′∨ ' P̆ ′-torsors

D : TD(θ′m)|B′0 ' H̆ |B′0 .

For the rest of this subsection we will restrict everything to B
′0. Recall the Abel–Jacobi map

AJP′ : C̃ ′×X•→P ′. By Proposition 4.2.1 we have (AJP′)∗θ′m = θ
C̃′ . Therefore, Lemma B.4.1

implies that
(AJP′)∗D(θ′m) = D(θ

C̃′).
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Since the Abel–Jacobi map AJP′ is W-equivariant, pullback via AJP′ defines a functor

D̃ : TD(θ′m)→ T W
D(θ

C̃′ )
.

We claim that D̃ canonically lifts to a morphism

D : TD(θ′m)→ T W,+
D(θ

C̃′ )
' H̆ ,

where the second isomorphism is Corollary 5.1.1. Let E ∈ TD(θ′m) be a tensor splitting of D(θ′m).
We need to show that the splitting

(D̃(E))α|
C̃′α

= (AJP′)∗E|
(C̃′α,ᾰ)

admits a canonical isomorphism compatible with the canonical splitting E0
α of D(θ

C̃′)
α|
C̃′α

=

(AJP′)∗D(θ′m)|
(C̃′α,ᾰ)

. However, this follows from the fact that AJP′((x, ᾰ)) is the unit of P ′ for

x ∈ C̃ ′α and a tensor splitting E of a multiplicative Gm-gerbe D(θ′m) is canonically isomorphic
to the canonical splitting E0

α of D(θ′m) over the unit. To summarize, we have constructed the
following commutative diagram.

TD(θ′m)
D //

D̃ $$

H̆

For
||

T W
D(θ

C̃′ )

(5.2.1)

By construction, the morphism D is compatible with the P ′∨ ' P̆ ′-action, and hence is an
equivalence. This finishes the proof of Theorem 5.2.1.

5.3 Abelianization theorems
We need to fix a square root κ of ωC . Then the Kostant section for Higgs′G→ B′ induces a map

εκ′ : P ′ ' Higgs′G
reg ⊂ Higgs′G,

where Higgs′G
reg

is the smooth sub-stack consisting of regular Higgs fields. The first abelianization
theorem is the following.

Theorem 5.3.1. We have a canonical isomorphism ε∗κ′DBunG ' D(θ′m), where DBunG is the
Gm-gerbe on Higgs′G of crystalline differential operators. Moreover, the pullback along the map
εκ′ defines an equivalence of categories of twisted sheaves

Aκ : Db(D-mod(Bun0
G)) ' Db(QCoh(D0

BunG
))1

ε∗
κ′' Db(QCoh(D(θ′m)|B′0))1.

Proof. By Proposition B.3.3, the restriction of DBunG to Higgs′G
reg

is isomorphic to the gerbe
D(θ′can) defined by the canonical 1-form θ′can on Higgs′G

reg
. On the other hand, it follows from

the construction of θm in § 4.2 that we have ε∗κ′θ
′
can = θ′m. Hence

ε∗κ′DBunG ' ε
∗
κ′D(θ′can) ' D(ε∗κ′θcan) ' D(θ′m).

The last statement follows from the fact that the base change of εκ′ : P ′
→ Higgs′G to B

′0 is an
isomorphism (see Proposition 2.6.1). 2
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To state the second abelianization theorem, recall that in [CZ15] we constructed a canonical
isomorphism

C : H̆ ×P̆′ Higgs′
Ğ
' LocSysĞ .

Moreover, by [CZ15, Remark 3.14] the choice of the theta characteristic κ defines an isomorphism
εκ′ : P ′ ' Higgs′G

reg
, and hence induces an isomorphism

Cκ : H̆ ' LocSysreg

Ğ
⊂ LocSysĞ .

Here LocSysreg

Ğ
is the open substack consisting of Ğ-local systems with regular p-curvature, and

we have LocSysreg

Ğ
|B′0 = LocSys0

Ğ
. It implies the following.

Theorem 5.3.2. For each choice of a square root κ of ωC , we have a canonical isomorphism of
P̆ ′-torsors Cκ|B′0 : H̆ |B′0 ' LocSys0

Ğ
and it induces an equivalence of categories

C∗κ : Db(QCoh(LocSys0
Ğ

)) ' Db(QCoh(H̆ |B′0)).

5.4 Proof of Theorem 5.0.1
We deduce our main theorem from the twisted duality and above two abelianization theorems. By
the twisted duality we have an isomorphism of P ′∨ ' P̆ ′-torsors TD(θ′m)|B′0 ' H̆ |B′0 . Therefore
the twisted Fourier–Mukai transform (Theorem A.7.2) implies an equivalence of categories

D : Db(QCoh(D(θ′m)|B′0))1 ' Db(QCoh(H̆ |B′0)).

Now combining Theorems 5.3.1 and 5.3.2 we get the desired equivalence

Dκ = (C∗κ)−1 ◦D ◦ Aκ : Db(D-mod(Bun0
G)) ' Db(QCoh(LocSys0

Ğ
)).

5.5 A µ2-gerbe of equivalences
In this subsection we study how those equivalences Dκ : Db(D-mod(BunG)0) ' Db(QCoh
(LocSys0

Ğ
)) in Theorem 5.0.1 depend on the choices of the theta characteristics κ. Our discussion

is very similar to [FW08] and can be regarded as a verification of the predictions of [FW08] in
our setting.

Let ω1/2(C) be the groupoid of square roots of ωC . The groupoid ω1/2(C) is a torsor over
the Picard category µ2-tors(C) of µ2-torsors on C. Let GLC be the groupoid of equivalences
between Db(D-mod(BunG)0) and Db(QCoh(LocSys0

Ğ
)), i.e., objects in GLC are equivalences

E : Db(D-mod(BunG)0) ' Db(QCoh(LocSys0
Ğ

)) and morphisms are isomorphisms between
equivalences. We first construct an action of µ2-tors(C) on GLC.

Let Z = Z(G) be the center ofG. We have a map α : µ2→ Z(G) by restricting the cocharacter
2ρ : Gm → G to µ2 (see [BD91, § 3.4.2]). Thus for each χ ∈ µ2-tors(C) and (E,∇) ∈ LocSysG
we can twist (E,∇) by χ using the map

µ2→ Z → Aut(E,∇)

to get a new G-local system (E⊗χ,∇E⊗χ) ∈ LocSysG. The assignment (χ,E,∇) → (E⊗χ,
∇E⊗χ) defines a geometric action

actG : µ2-tors(C)× LocSysG→ LocSysG .

Likewise, there is actG : µ2-tors(C)×BunG→ BunG. For χ ∈ µ2-tors(C), let aχ,G : BunG ' BunG
(respectively, bχ,G : LocSysG ' LocSysG) be the automorphisms of BunG (respectively LocSysG)
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given by aχ,G(E) := E ⊗ χ, (respectively bχ,G(E,∇) = actG(χ,E,∇)). They induce auto-
equivalences a∗χ,G and b∗χ,G of Db(D-mod(BunG)) and Db(QCoh(LocSysG)) respectively. Note
that for the definition of a∗χ,G and b∗χ,G, there is no restriction of the characteristic of k. However,
if chark = p - |W|, we have the following.

Lemma 5.5.1.

(1) The equivalence a∗χ,G preserves the full subcategory Db(D-mod(BunG)0).

(2) The equivalence b∗χ,G preserves the full subcategory Db(QCoh(LocSys0
G)).

Proof. This lemma will be clear after we give alternative descriptions of a∗χ,G and b∗χ,G.

First, recall that in §B.3 we introduce a Gm-gerbe DBunG over T ∗Bun′G and the category
QCoh(DBunG)1 of twisted sheaves on DBunG such that there is an equivalence of categories
between D-mod(BunG) and QCoh(DBunG)1. Let f := da′χ,G : T ∗Bun′G ' T ∗Bun′G be the
differential of a′χ,G. The map f preserves the canonical one form θ′can, and thus by Lemma B.4.1,

there is a canonical 1-morphism M : f∗DBunG ∼ DBunG of gerbes on T ∗Bun′G. The 1-morphism
M induces an equivalence M : QCoh(f∗DBunG)1 ' QCoh(DBunG)1 and it follows from definitions
that the functor a∗χ,G is isomorphic to the composition

Db(QCoh(DBunG)1)
f∗

' Db(QCoh(f∗DBunG)1)
M' Db(QCoh(DBunG)1). (5.5.1)

Recall that the category D-mod(BunG)0 is by definition the category of twisted sheaves on
D0

BunG
= DBunG |B′0 . Therefore, part (1) follows.

To prove part (2), note that the map actG : µ2-tors(C) × LocSysG → LocSysG can be also
described as follows. There is a map of group schemes (µ2)C′×B′ → Z(G)C′×B′ → J ′ over C ′×B′,
which induces a morphism of Picard stacks

lµ2 : µ2-tors(C)×B′→P ′, (5.5.2)

and the action map actG can be identified with

actG : µ2-tors(C)× LocSysG
lµ2×id
→ P ′ ×B′ LocSysG→ LocSysG (5.5.3)

where the last map is the action of P ′ on LocSysG defined in [CZ15, Proposition 3.5]. In
particular, if we endow B′ with the trivial : µ2-tors(C) action, the p-Hitchin map LocSysG→ B′

is : µ2-tors(C)-equivariant. Therefore LocSys0
G is invariant under the action of bχ,G, and part (2)

follows. 2

From now on we regard a∗χ,G and b∗χ,G as automorphisms of the category Db(D-mod(BunG)0)

and Db(Qcoh(LocSys0
G)).

For each χ ∈ µ2 tors(C) and E ∈ GLC we define

χ ·E := b∗
χ,Ğ
◦E ◦ a∗χ,G ∈ GLC.

The following lemma follows from the construction of b∗
χ,Ğ

and a∗χ,G.

Lemma 5.5.2. The functor µ2-tors(C)×GLC→GLC given by (χ,E)→ χ ·E defines an action
of the Picard category µ2-tors(C) on GLC.
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Now let C1 and C2 be two categories acted by a Picard category G . A G -module functor from
C1 to C2 is a functor N : C1 → C2 equipped with functorial isomorphisms N(a · c) ' a · N(c)
satisfying the natural compatibility condition. Here is the main result of this subsection.

Proposition 5.5.3. The assignment κ→ Dκ defines a µ2-tors(C)-module functor

Φ : ω1/2(C)→ GLC.

Proof. Given χ ∈ µ2-tors(C) and κ ∈ ω1/2(C) we need to specify a functorial isomorphism
Dχ·κ ' χ · Dκ satisfying the natural compatibility condition. First, observe that the maps εκ′ ,
εκ′1 : P ′

→ Higgs′G induced by κ, κ1 := χ · κ ∈ µ2-tors(C) differ by a translation of the section
lµ2({χ} × B′) ∈ P ′(B′), where lµ2 is the map in (5.5.2). Then it follows from the construction
of Aκ and Cκ in § 5.3 that there are canonical functorial isomorphisms Aχ·κ ' Aκ ◦ a∗χ,G and
C∗κ ◦ b∗χ,Ğ ' C∗χ·κ. Therefore we get a functorial isomorphism

Dχ·κ = (C∗χ·κ)−1 ◦D ◦ Aχ·κ ' b∗χ,Ğ ◦ (C∗κ)−1 ◦D ◦ Aκ ◦ a∗χ,G = χ ·Dκ,

and one can check that it satisfies the natural compatibility condition. 2

Remark 5.5.4. The above construction suggests that the geometric Langlands correspondence
should be a µ2-gerbe of equivalences between Db(D-mod(BunG)) and Db(QCoh(LocSysĞ)). This
gerbe is trivial, but is not canonically trivialized. One obtains a particular trivialization of this
gerbe, and hence a particular equivalence Dκ, for each choice of a square root of the canonical
line bundle of C. A similar µ2-gerbe also appears in the work of Frenkel and Witten [FW08, § 10],
where the geometric Langlands correspondence is interpreted as gauge theory duality between
the twisted A-model of HiggsG and the twisted B-model of HiggsĞ.

5.6 The actions a∗χ,G and b∗χ,G as tensoring of line bundles
In this subsection we show that, under the equivalence Dκ, the geometric actions a∗χ,G and b∗χ,G
constructed in the previous subsection become functors of tensoring with certain line bundles.

Recall that in § 3.7 we associated to every Z(Ğ)-torsor K on C a line bundle LG,K on BunG.
For any χ ∈ µ2-tors(C) let KG,χ := χ ×µ2 ZG ∈ Z(G)-tors(C) be the induced Z(G)-torsor via
the canonical map 2ρ : µ2 → Z(G). We denote by LG,χ and LĞ,χ be the line bundles on BunG
and BunĞ corresponding to KĞ,χ and KG,χ. Since the line bundle LG,χ carries a canonical
connection with zero p-curvature, tensoring with LG,χ defines an auto-equivalence LG,χ⊗? of
Db(D-mod(BunG)0).

For any κ ∈ ω1/2(C) let Dκ : Db(D-mod(BunG)0) ' Db(QCoh(LocSys0
Ğ

)) be the equivalence
in Theorem 5.0.1.

Theorem 5.6.1. We have the following.

(1) The equivalence Dκ intertwines the auto-equivalence LG,χ⊗? of Db(D-mod(BunG)0) and
the auto-equivalence b∗

χ,Ğ
on Db(QCoh(LocSys0

Ğ
)) constructed in § 5.5.

(2) The equivalence Dκ intertwines the auto-equivalence a∗χ,G of Db(D-mod(BunG)0) as in § 5.5

and the auto-equivalence LĞ,χ⊗? on Db(QCoh(LocSys0
Ğ

)) (here we regard LĞ,χ as a line

bundle on LocSys0
Ğ

via the projection LocSysĞ→ BunĞ).

Remark 5.6.2. Similar actions by tensoring line bundles on LocSysG and on HiggsG also appear
in the work of Frenkel and Witten [FW08, § 10.4]. Moreover, the authors also predict that the
geometric Langlands correspondence should interchange these actions.
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Combining Theorems 5.5.3 and 5.6.1 we have the following.

Corollary 5.6.3. Let κ1, κ2 ∈ ω1/2(C). Then there is a natural isomorphism of equivalences

Dκ1 ' (LĞ,χ⊗ ?) ◦Dκ2 ◦ (LG,χ⊗ ?).

Here χ ∈ µ2-tors(C) such that κ1 = χ · κ2 and LG,χ⊗ ? (respectively LĞ,χ⊗ ?) is the functor of

tensoring with the line bundle LG,χ (respectively LĞ,χ).

The rest of this subsection is devoted to the proof of this theorem.
We first introduce a morphism of Picard stack

l̃ : Z(G)-tors(C)×B′→ Pic(H̆ )

and prove a twisted version of Proposition 3.7.4. We begin with the construction of l̃. Let BunJp

be the Picard stack of Jp-torsors over C. We have the generalized Chern class map c̃J̆p : BunJ̆p→
ΠĞ(1)-gerbes(X)×B′ and a Picard functor lJ̆p : Z(G)-tors(C)×B′→ Pic(BunJ̆p). We define

l̃ : Z(G)-tors(C)×B′
lJ̆p
→ Pic(BunJ̆p)→ Pic(H̆ )

where the last map is induced by the restriction map H̆ = LocSysJ̆p(τ
′)→ BunJ̆p .

Recall the morphism l̆J̆ : ZG-tors(C) × B′ → P ′ constructed in § 3.7. For any Z(G)-torsor
K over C, we define

LJ̆p,K := l̃({K} ×B′) ∈ Pic(H̆ ).

Let K ′ denote the Frobenius descendent of K (as Cét ' C ′ét), and let

K ′J ′ = l̆J̆({K ′} ×B′) ∈P ′(B′).

We will relate LJ̆p,K with K ′J ′ via the twisted duality. From the definition of θ′m in § 4.2, one

can easily check that the restriction of θ′m to K ′J ′ is zero. Thus the restriction of the Gm-gerbe
D(θ′m) to K ′J ′ is canonical trivial and we can regard the structure sheaf δK′

J′
∈ QCoh(P ′) as an

object in QCoh(D(θ′m))1. Let L̃K = D(δK′
J′

) ∈ Pic(H̆ ) be the image of δK′
J′

under the twisted

duality D : Db(QCoh(D(θ′)))1 ' Db(QCoh(H̆ )).

Lemma 5.6.4. We have L̃K ' LJ̆p,K .

Proof. Let Ğ := D(θ′m)∨. We have a short exact sequence of Beilinson 1-motives 0 → P̆ ′
→

Ğ
p
→ Z → 0 and H̆ = p−1(1). The construction of duality for torsors in §A.7 implies that

there is a multiplicative line bundle L̃
Ğ,K on Ğ such that L̃

Ğ,K |H̆ ' L̃K . Moreover, this line

bundle is characterized by the property that L̃
Ğ,K |P̆′ ' D̆−1

cl (K ′J ′). Observe that we have a

natural map Ğ → BunJ̆p of Picard stacks8 such that the composition H̆ → Ğ → BunJ̆p is

the natural inclusion. Thus the morphism l̃ : ZG-tors(C) × B′ → Pic(H̆ ) factors through a
morphism l̃

Ğ
: ZG-tors(C)×B′→ Ğ∨, and the corresponding multiplicative line bundle L

Ğ,K :=

l̃
Ğ
({K} ×B′) ∈ P̆∨(B′) satisfies L

Ğ,K |H̆ ' LJ̆p,K . It is enough to show that L̃
Ğ,K ' L

Ğ,K . From

the characterization of L̃
Ğ,K , it is enough to show that L

Ğ,K |P̆′ ' D̆−1
cl (K ′J ′). But this follows

from Proposition 3.7.4 and the fact that L
Ğ,K |P̆′ is isomorphic to LJ̆ ′,K′ . 2

8 We have Ğ = {(n, t)|n ∈ Z, t ∈ H̆ ⊗n} and H̆ ⊗n is isomorphic to LocSysJ̆p(n·τ ′), the base change of LocSysJ̆p →

BJ̆′ along the section n · τ ′ : B′ → BJ̆′ . Thus there is a natural map H̆ ⊗n
→ BunJ̆p and the map Ğ→ BunJ̆p is

given by Ğ→ H̆ ⊗n
→ BunJ̆p .
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Recall that a choice of κ ∈ ω1/2(C) defines an isomorphism Cκ : H̆ ' LocSysreg

Ğ
. More

precisely, we have Cκ(P,∇) = (P ⊗ F ∗CEκ′ ,∇P⊗F ∗CEκ′ ) where P ⊗ F ∗CEκ′ := P ×Jp F ∗CEκ′ and
∇P⊗F ∗CEκ′ is the product connection.

Lemma 5.6.5. The pullback of the line bundle LĞ,K along the map H̆
Cκ
→ LocSysĞ

pr
→ BunĞ is

isomorphic to L̃K . That is, we have L̃K ' C∗κ ◦ pr∗LĞ,K .

Proof. The proof is similar to the proof of Lemma 3.7.2. Recall that the line bundles LĞ,K and

L̃K ' LJ̆p,K are induced by the generalized Chern class map c̃Ğ, c̃J̆p . Therefore it is enough

to show that for any (P,∇) ∈ H̆ there is a canonical isomorphism c̃J̆p(P ) ' c̃Ğ(Cκ(P )) of

ΠĞ-gerbes, where Cκ(P ) = P ×Jp F ∗CEκ′ . Let P̃ ∈ c̃J̆p(P ) and Ẽκ′ be the canonical lifting of the

Kostant section appearing in Lemma 3.7.2. The Gsc-torsor P̃ ×(Jpsc) F ∗CẼκ′ is a lifting of Cκ(P )

and the assignment P̃ → P̃ ×(Jpsc)F ∗CẼκ′ defines an isomorphism between c̃Jp(P ) and c̃Ğ(Cκ(P )).
This finishes the proof. 2

Now we prove Theorem 5.6.1. Recall that we have Dκ = (C∗κ)−1 ◦D ◦ Aκ where Aκ and C∗κ
are equivalences constructed in § 5.3. It follows from the definition that under the equivalence C∗κ
the functor b∗

Ğ,χ
becomes the functor induced by the geometric action of K ′

Ğ,χ
∈ Z(Ğ)-tors(C ′)

on H̆ .9 Now Theorem A.7.2 implies, under the equivalence

D : Db(QCoh(D(θ′m)|B′0))1 ' Db(QCoh(H̆ |B′0)),

the above geometric action becomes the functor of tensoring with the line bundle L′J,χ :=

D−1
cl (K ′

Ğ,χ
) ∈ (BunJ ′)

∨.10 By Lemmas 3.7.2 and 3.7.4, the line bundle L′J,χ is equal to the

pullback of L′G,χ under the map P ′ ε
′
κ
→ Higgs′G→ Bun′G. On the other hand, since the equivalence

Aκ : Db(D-mod(Bun0
G)) ' Db(QCoh(D(θ′m)|B′0))1 is induced by pullback along the morphism

εκ : P → HiggsG, an easy exercise shows that under the equivalence Aκ the functor of tensoring
with L′J,χ becomes the functor of tensoring with LG,χ. This implies part (1) of Theorem 5.6.1.

The proof of part (2) of Theorem 5.6.1 is similar to part (1). Unraveling the definition
of a∗G,χ and the construction of Aκ, one sees that Aκ interchanges the functor a∗G,χ with the
functor of convolution product with δK′G,χ ∈ QCoh(P ′). Now Theorem A.7.2 implies that, under

the equivalence D, the above convolution action becomes the functor of tensoring with the
line bundle L̃KG,χ := D(K ′G,χ) ∈ Pic H̆ . By Lemmas 5.6.4 and 5.6.5, the line bundle L̃KG,χ is

isomorphic to the pullback of LĞ,χ under the map H̆
Cκ
→ LocSysĞ

pr
→ BunĞ. It implies that

C∗κ ◦ (pr∗LĞ,χ⊗?) ' (L̃KG,χ⊗?) ◦ C∗κ.
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Appendix A. Beilinson 1-motive

In this section, we review the duality theory of Beilinson 1-motives. The main references are

[Ari08, DP12, DP08, Lau96].

A.1 Picard stack

Let us first review the theory of Picard stacks. The standard reference is [Del73, § 1.4]. Let T be

a given site. Recall that a Picard Stack is a stack P over T together with a bi-functor

⊗ : P ×P →P,

and the associativity and commutative constraints

a : ⊗ ◦ (⊗× 1) ' ⊗ ◦ (1×⊗), c : ⊗ ' ⊗ ◦ flip,

such that for every U ∈ T, P(U) form a Picard groupoid (i.e., symmetrical monoidal groupoid

such that every object has a monoidal inverse). The Picard stack is called strictly commutative

if cx,x = idx for every x ∈P. In the paper, Picard stacks will always mean strictly commutative

ones.

Let us denote by PS/T the 2-category of Picard stacks over T. This means that if P1,P2

are two Picard stacks over T, HomPS/T(P1,P2) form a category. Indeed, PS/T is canonically

enriched over itself. For P1,P2 ∈ PS/T, we use Hom(P1,P2) to denote the Picard stack of

1-homomorphisms from P1 to P2 over T (cf. [Del73, § 1.4.7]). On the other hand, let C [−1,0]

be the 2-category of 2-term complexes of sheaves of abelian groups d : K−1
→ K0 with K−1

injective and 1-morphisms are morphisms of chain complexes (and 2-morphisms are homotopy

of chain complexes).11 Let K ∈ C [−1,0]. We associate to it a Picard prestack pch(K) whose U

point is the following Picard category.

(1) Objects of pch(K)(U) are equal to K0(U).

(2) If x, y ∈ K0(U), a morphism from x to y is an element f ∈ K−1(U) such that df = y − x.

Let ch(K) be the stackification of pch(K). Then a theorem of Deligne (cf. [Del73, Corollaire

1.4.17]) says that the functor

ch : C[−1,0]
→ PS/T

is an equivalence of 2-categories.

Let us fix an inverse functor ( )[ of the above equivalence. So for P a Picard stack, we

have a 2-term complex of sheaves of abelian groups P[ := K−1
→ K0. For example, if A is an

abelian group in T, then its classifying stack BA is a natural Picard stack and (BA)[ can be

represented by a 2-term complex quasi-isomorphic to A[1]. The following result of Deligne (cf.

[Del73, Construction 1.4.18]) is convenient for computations:

(Hom(P1,P2))[ ' τ60 R Hom(P[
1,P

[
2). (A.1.1)

11 The 2-category C [−1,0] is an enhancement of the subcategory D[−1,0] ⊂ D of the derived category consisting of
complexes concentrated in cohomological degrees [−1, 0]. That is, the homotopy category of C [−1,0] is equivalent
to D[−1,0].
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A.2 Short exact sequences of Picard stacks
Let a : P1→P2 be a homomorphism of Picard stacks. We define ker(a) as the fiber P1×P2 {e},
where e ∈P2 is the unit. Then ker(a) acquires a natural Picard stack structure. The next lemma
follows from the construction of ch.

Lemma A.2.1. There is a natural isomorphism ker(a)[ ' τ60C(a[)[−1], where C(a[) is the cone
of the morphism of complexes

a[ : P[
1→P[

2.

A left exact sequence of Picard stacks, usually denoted by

1→P1
a
→P2

b
→P3,

is a sequence of homomorphisms of Picard stacks that exhibits P1 as ker(b). If, in addition
locally on T, b is essentially surjective, we call such a sequence exact and denote it by

1→P1
a
→P2

b
→P3→ 1.

Sometimes, we also call P2 an extension of P3 by P1. The following lemma is used in several
places in the paper.

Lemma A.2.2. The sequence of homomorphisms P1→P2→P3 is exact if and only if

P[
1→P[

2→P[
3→

is a distinguished triangle.

A.3 Duality of Picard stacks
Let S be a Noetherian scheme. We consider the category Sch/S of schemes over S. We will endow
Sch/S with fpqc topology in the following discussion.

Definition A.3.1. For a Picard stack P, we define the dual Picard stack as

P∨ := Hom(P, BGm).

Example A.3.2. Let A → S be an abelian scheme over S. Then by definition A∨ := Hom(A,
BGm) = Ext1(A,Gm) classifies the multiplicative line bundles on A, is represented by an abelian
scheme over S, called the dual abelian scheme of A.

Example A.3.3. Let Γ be a finitely generated abelian group over S. By definition, this means
locally on S, Γ is isomorphic to the constant sheaf MS , where M is a finitely generate abelian
group (in the naive sense). Recall that the Cartier dual of Γ, denoted by D(Γ) is the sheaf
which assigns every scheme U over S the group Hom(Γ ×S U,Gm), which is represented by an
affine group scheme over S. We claim that Γ∨ ' BD(Γ). By (A.1.1), it is enough to show that
Ri Hom(Γ,Gm) = 0 if i > 0. This is clear since locally on S, Γ is represented by a 2-term complex
ZmS → ZnS .

Example A.3.4. Let G be a group of multiplicative type over S, i.e., G = D(Γ) for some finitely
generated abelian group Γ over S. Let P = BG, the classifying stack of G. We have

P∨ ' τ60 R Hom(BG,BGm) ' Hom(G,Gm) ' Γ.
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Definition A.3.5. Let P be a Picard stack. We say that P is dualizable if the canonical
1-morphism P →P∨∨ is an isomorphism.

By the above examples, abelian schemes, finitely generated abelian groups, and the classifying
stacks of groups of multiplicative type are dualizable.

Let P be a dualizable Picard stack. There is the Poincare line bundle LP over P ×S P∨.
Let Db(QCoh(P)) denote the bounded derived category of quasi coherent sheaves on P. We
define the Fourier–Mukai functor

ΦP : Db(QCoh(P))→ Db(QCoh(P∨)), ΦP(F ) = (R p2)∗(L p
∗
1F ⊗ LP).

Here p1 : P ×S P∨
→P and p2 : P ×S P∨

→P∨ denote the natural projections. It is easy
to see in the case when P is of the form given in the above examples, ΦP is an equivalence
of categories. Indeed, the case when P = A follows from the results of Mukai; the case when
P = Γ or BG is clear.

It is not clear to us whether ΦP is an equivalence for all dualizable Picard stacks. In the
following subsection, we select out a particular class of Picard stacks, called the Beilinson
1-motive (following [DP12] and Arinkin’s appendix to [DP08]), for which the Fourier–Mukai
transforms are equivalences.

A.4 Beilinson 1-motives
Let P1,P2 be two Picard stacks. We say that P1 ⊂P2 if there is a 1-morphism φ : P1→P2,
which is a faithful embedding.

Definition A.4.1. We called a Picard stack P a Beilinson 1-motive if it admits a two step
filtration W•P:

W−1 = 0 ⊂W0 ⊂W1 ⊂W2 = P

such that: (i) GrW0 ' BG is the classifying stack of a group G of multiplicative type; (ii) GrW1 ' A
is an abelian scheme; and (iii) GrW2 ' Γ is a finitely generated abelian group.

Lemma A.4.2. The dual of a Beilinson 1-motive is a Beilinson 1-motive and Beilinson 1-motives
are dualizable.

Proof. This is proved via the induction on the length of the filtration. We use the following fact.
Let

0→P ′
→P →P ′′

→ 0

be a short exact sequence of Picard stacks. Then

0→ (P ′′)∨→P∨
→ (P ′)∨

with the right arrow surjective if R2 Hom((P ′′)[,Gm) = 0.
If P = W0P, this is given by Example A.3.4. If P = W1P, we have the following exact

sequence
0→ BG→P → A→ 0.

Using the fact that Ext2(A,Gm) = 0 (see [Bre75, Remark 6]), we know that P is also a Beilinson
1-motive. In general, we have

0→W1P →P → Γ→ 0,

and the lemma follows from the fact Ext2(Γ,Gm) = 0 (see Example A.3.3). 2
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Corollary A.4.3. Let P be a Beilinson 1-motive, and P∨ be its dual. Then D(AutP(e)) =
π0(P∨), where e denotes the unit of P and π0 denotes the group of connected components
of P∨.

Lemma A.4.4. Let P be a Beilinson 1-motive. Then, locally on S,

P ' A×BG× Γ.

Proof. It is enough to prove that

Ext1(Γ, BG) = Ext1(Γ, A) = Ext1(A,BG) = 0.

Clearly, Ext1(Γ, BG) = Ext2(Γ, G) = 0. To see that Ext1(Γ, A) = 0, we can assume that Γ =

Z/nZ. Then it follows that A
n
→ A is surjective in the flat topology that Ext1(Γ, A) = 0.

To see that Ext1(A,BG) = 0, let P to the Beilinson 1-motive corresponding to a class in
Ext1(A,BG). Taking the dual, we have 0→ A∨ →P∨

→ D(G)→ 0. Therefore, locally on S,
P∨ ' A∨ ×D(G), and therefore, locally on S, P∨∨ ' A×BG. 2

Definition A.4.5 (Cf. [Ari08]). We say that a Picard stack P is good if it satisfies the following
two conditions.

(1) The Picard stack P is dualizable, i.e., the map r : P →P∨∨ is an isomorphism of Picard
stacks.

(2) The functor ΦP : Db(QCoh(P))→ Db(QCoh(P∨)) is an equivalence of categories.

As explained in §A.3 (see also [BB07]), examples of good Picard stacks include BG, Γ and
abelian schemes over S, as well as fiber products over S of such. More generally, we have the
following theorem.

Theorem A.4.6 [Ari08, Proposition A.6]. Let P be a Beilinson 1-motive. Then P is ‘good’ in
the sense of Definition A.4.5. In particular, the functor ΦP is an equivalence of categories.

Proof. Indeed, the property of being good is fpqc-local on S. This can be seen by lifting ΦP

to a functor between stable ∞-categories of quasi-coherent sheaves and then applying a descent
argument. Therefore, the theorem follows from Lemma A.4.4 and the above examples.

Alternatively, similarly to the usual Fourier–Mukai transform, one can show directly that in
our generality there is still an isomorphism of functors ΦP∨ ◦ ΦP ' ω−1

P/S ⊗ (−1)∗[−g], where

ωP/S is the canonical sheaf and g is the relative dimension of P/S.12 By the argument as in
[Muk85] (see also [Lau96]), one reduces to show that the kernel complex

R p12∗(L p
∗
13LP ⊗ L p∗23LP) ' m∗R p1∗LP

for the functor ΦP∨ ◦ ΦP is isomorphic to the kernel complex

σ∗(ω
−1
P/S)[−g] ' m∗e∗(e∗ω−1

P/S)[−g]

for ω−1
P/S ⊗ (−1)∗[−g]. Here pij are the projections of P ×S P ×S P∨ on the (i, j)-factors,

σ : P →P ×S P, x→ (x, x−1) and e : S →P is the unit morphism.

12 This argument was suggested to us by the referees.
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To prove this, we first observe that there is a natural map

R p1∗LP ' Rg p1∗LP [−g]→ e∗Rg prS∗OP∨ [−g]→ e∗(e
∗ω−1

P/S)[−g].

We claim that the map above is an isomorphism, and hence induces m∗R p1∗LP '
m∗e∗(e

∗ω−1
P/S)[−g]. To prove the claim, we observe that, using Lemma A.4.4 and fpqc base

change, we can assume P ' A × BG × Γ and the claim follows from the results in [Muk85,
p. 519] or [Lau96, Lemma 1.2.5]. 2

Entirely similar arguments as in [Muk81, p. 160] and [Lau96, Corollary 1.3.3] give us the
following.

Theorem A.4.7. Let P be a Beilinson 1-motive. Let

∗ : Db(QCoh(P))×Db(QCoh(P))→ Db(QCoh(P))

be the functor defined by F1 ∗ F2 := Rm∗(F1 � F2). We called ∗ the convolution product. Then
there are canonical isomorphisms

ΦP(F1 ∗ F2) ' ΦP(F1)⊗ ΦP(F2)

and

ΦP(F1 ⊗ F2) ' (ΦP(F1) ∗ ΦP(F2))⊗ ωP∨/S [g].

A.5 Multiplicative torsors and extensions of Beilinson 1-motives
Let us return to the general set-up. Let T be a fixed site and let P be a Picard stack over T.
A torsor of P is a stack Q over T, together with a bi-functor

Action : P ×Q→ Q,

satisfying the following properties.

(i) The bi-functor Action defines a monoidal action of P on Q.

(ii) For every V ∈ T, there exists a covering U → V , such that Q(U) is non-empty.

(iii) For every U ∈ T such that Q(U) is non-empty and let D ∈ Q(U), the functor

P(U)→ Q(U), C 7→ Action(C,D)

is an equivalence.

In the case when P is the Picard stack of G-torsors for some sheaf of abelian groups G,
people usually call a P-torsor Q a G-gerbe.

All P-torsors form a 2-category, denoted by BP, which is canonically enriched over itself
[OZ11, § 2.3]. That is, given two P-torsors Q1,Q2, HomP(Q1,Q2) is a natural P-torsor. An
object in HomP(Q1,Q2) induces an equivalence between Q1 and Q2. In addition, there is a
monoidal structure on BP making BP a Picard 2-stack.

Remark A.5.1. Let 1→P1→P → ZS → 1 be an exact sequence of Picard stacks. Then T :=
P×ZS {1} is naturally a P1-torsor. As explained in [Ari08] and [Tra11, § 3.1], the correspondence
P → T induces an equivalence of 2-categories between extensions of ZS by P1 and P1-torsors.
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Now, let P and P1 be two Picard stacks and let G be a P1-torsor over P. Let m :
P ×P →P, e : T→P be the multiplication morphism and the unit morphism respectively,
and let σ : P ×P →P ×P be the flip map σ(x, y) = (y, x).

Definition A.5.2. A commutative group structure on G consists of the following data:

(i) an equivalence M : G � G ' m∗G of P1-torsors over P ×P;

(ii) a 2-morphism γ between the resulting two 1-morphisms between G � G � G and m∗G over
P ×P ×P, which satisfies the cocycle condition;

(iii) a 2-morphism i : σ∗M 'M such that i2 = id.

(Note that σ∗(M) is another 1-morphism between m∗G and G � G .)

Clearly, all P1-torsors over P with a commutative group structure also form a 2-category.
We have the following lemma.

Lemma A.5.3. A commutative group structure on G makes G into a Picard stack which fits into
the following short exact sequence:

0→P1→ G →P → 0.

In particular, if P is a Beilinson 1-motive, and P1 = BGm, then G is a Beilinson 1-motive. In
this case, we also call G a multiplicative Gm-gerbe over P.

Definition A.5.4. A multiplicative splitting of a P1-torsor G over P with a commutative
group structure is a 1-morphism (in the category of all P1-torsors over P with a commutative
group structure): P → G .

A.6 Induction functor
Let φ : P → P1 be a morphism of Picard stacks. Then to each P-torsor Q we may
associate a P1-torsor Qφ := HomP(Q−1,P1) whose sections are P-equivariant functors from
Q−1 := HomP(Q,P) to P1 (here P acts on P1 via φ) and whose morphisms are natural
transformations of such functors.

We have a canonical functor Q→Qφ, compatible with their P and P1-structure via φ. For
any section E of Q we denote by Eφ the section of Qφ induced by the canonical map Q→ Qφ.

A.7 Duality for torsors

Let Y be an algebraic stack. Let Ỹ be a Gm-gerbe over Y , i.e., Ỹ is a BGm-torsor over Y .
We say Ỹ is split if it is isomorphic to Y × BGm. Let Db(QCoh(Ỹ )) be the bounded derived

category of quasi coherent sheaves on Ỹ . If Ỹ is split, there is a decomposition

Db(QCoh(Ỹ )) =
⊕
n∈Z

Db(QCoh(Ỹ ))n (A.7.1)

according to the character of Gm.13 In general we still have such a decomposition given as
follows: M ∈ Db(QCoh(Ỹ ))n if only if a∗(M) ∈ Db(QCoh(Ỹ ))n, where a : BGm × Ỹ → Ỹ is
the action map.

13 The direct sum in (A.7.1) means that every object in Db(QCoh(Ỹ )) decomposes as a direct sum of objects in

the subcategories Db(QCoh(Ỹ ))n.
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Definition A.7.1. The direct summand Db(QCoh(Ỹ ))1 is called the category of twisted sheaves

on Ỹ .

Now we further assume Y = P is a Beilinson 1-motive over S and Ỹ = D is a multiplicative
Gm-gerbe over P. Let P and D as above. Then by Lemma A.5.3 we have the following short
exact sequence

0→ BGm
i
→ D

p
→P → 0 (A.7.2)

as Picard stacks. Note that in this case D is also a Beilinson 1-motive. Let D∨ be the dual
Beilinson 1-motive. It fits into the short exact sequence

0→P∨
→ D∨

π
→ ZS → 0.

Let

TD = π−1(1) (A.7.3)

be the P∨-torsor associated to above extension. We call TD the stack of multiplicative splitting
of D . To justify the name, let us give an alternative description of TD . By definition the dual of
D is

D∨ = Hom(D , BGm).

An element s ∈ D∨ belongs to TD if and only if the composition

BGm
i
→ D

s
→ BGm

is equal to the identity. Equivalently, s ∈ TD gives a splitting of the exact sequence (A.7.2) and
according to Definition A.5.4 it is a multiplicative splitting of D .

The following theorem follows immediately from Theorem A.4.7.

Theorem A.7.2 ([Ari08], [Tra11, § 3.2]). (1) The Fourier–Mukai functor ΦD restricts to an
equivalence

ΦD : Db(QCoh(D))1 ' Db(QCoh(TD)).

(2) There is an action of Db(Qcoh(P)) on Db(QCoh(D))1 by tensoring and an action of
Db(QCoh(P∨)) on Db(QCoh(TD)) by convolution. Those two actions are compatible with the
above equivalence in the following sense: there is a canonical isomorphism

ΦD(F1 ⊗ F2) ' (ΦD(F1) ∗ ΦD(F2))⊗ ωP∨/S [g]

for F1 ∈ Db(Qcoh(P)) and F2 ∈ Db(QCoh(D))1. Here ωP∨/S is the canonical sheaf and g is the
relative dimension of P/S.

(3) The convolution product ∗ on Db(QCoh(D)) induces a convolution product on
Db(QCoh(D))1 (by abuse of notation we still denote it by ∗). On the other hand, the category
Db(QCoh(TD)) has the usual monoidal structure by tensoring. The equivalence ΦD is compatible
with those monoidal structures: there is a canonical isomorphism

ΦD(F1 ∗ F2) ' ΦD(F1)⊗ ΦD(F2)

for F1,F2 ∈ Db(QCoh(D))1.
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Appendix B. D-modules on stacks and Azumaya property

In this section we review some basic facts about D-modules on algebraic stacks and the Azumaya

property of the sheaf of differential operators. Standard references are [BD91] and [BB07].

B.1 Azumaya algebras and twisted sheaves

Let us begin with a review of the basic definition of Azumaya algebras and the category of

twisted sheaves. Let S be a Noetherian scheme. Let X be an algebraic stack over S. Recall

that an Azumaya algebra A over X is a quasi-coherent sheaf of OX -algebras, which is locally in

smooth topology isomorphic to End(V) for some vector bundle V on X . Such an isomorphism

between A and the matrix algebra is called a splitting of A. Given an Azumaya algebra A on

X , one can associate to it the Gm-gerbe DA of splittings over X , i.e., for any U → S we have

DA(U) = {(x,V, i)|x ∈X (U), i : End(V) ' x∗(A)}. (B.1.1)

We will use the following proposition in what follows.

Proposition B.1.1 [DP08, § 2.1.2]. Let A be a sheaf of Azumaya algebras on X . There is the

following equivalence of categories

QCoh(DA)1 ' A-mod(QCoh(X )),

where A-mod(Qcoh(X )) is the category of A-modules which is quasi-coherent as OX -modules.

B.2 D-module on scheme

Let X be a scheme smooth over S. Let DX/S be the sheaf of crystalline differential operators

on X, i.e., DX/S is the universal enveloping D-algebra associated to the relative tangent Lie

algebroid TX/S . By definition, the category of D-modules on X is the category of modules

over DX/S that are quasi-coherent as OX -modules. We denote by D-mod(X) the category of

D-modules on X. In the case pOS = 0, we have the following fundamental observation.

Theorem B.2.1 [BMR08, §§ 1.3.2, 2.2.3]. The center of (FX/S)∗DX/S is isomorphic to OT ∗(X′/S)

and there is an Azumaya algebra DX/S on T ∗(X ′/S) such that

(FX/S)∗DX/S ' (τX′)∗DX/S .

where τX′ : T ∗(X ′/S)→ X ′ is the natural projection.

In particular, we have the following.

Corollary B.2.2. There is a canonical equivalence of categories

D-mod(X) ' QCoh(DDX/S )1

where DDX/S is the gerbe of splittings of DX/S .

In what follows, the gerbe DDX/S will be denoted by DX/S for simplicity.
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B.3 D-module on stack
Let S be a Noetherian scheme and pOS = 0. Let X be a smooth algebraic stack over S. A
D-module M on X is an assignment for each U → X in Xsm, a DU/S-module MU and for
each morphism f : V → U in Xsm an isomorphism φf : f∗MU 'MV which satisfies the cocycle
conditions. We denote the category of D-modules on X by D-mod(X ).

Unlike the case of schemes, in general there does not exist a sheaf of algebras DX /S on X
such that the category of D-modules on X is equivalent to the category of modules over DX /S ,
and therefore the naive stacky generalization of Theorem B.2.1 is wrong. On the other hand, it
is shown in [Tra11] that the obvious stacky version of Corollary B.2.2 is correct.

Proposition B.3.1. There exists a Gm-gerbe DX /S on T ∗(X ′/S) such that the category of
twisted sheaves on DX /S is equivalent to the category of D-modules on X , i.e., we have

D-mod(X ) ' QCoh(DX /S)1.

Remark B.3.2. It is a theorem of Gabber that on a quasi-projective scheme X every torsion
element in H2

ét(X,Gm) can be constructed from an Azumaya algebra via (B.1.1). However, this
fails for non-separated schemes. A theorem of Töen [Toe12] shows that in a very general situation,
every Gm-gerbe arises from a derived Azumaya algebra. Although Töen’s theorem does not
directly apply to T ∗(X ′/S), it suggests that the derived category of D-modules on X (which is
not the derived category of D-mod(X ) in general) probably should be equivalent to the category
of modules over some derived Azumaya algebra Ddr

X /S on T ∗(X ′/S).

Let us sketch the construction of the Gm-gerbe DX /S on T ∗(X ′/S). As gerbes satisfy smooth
descent, it is enough to supply a Gm-gerbe (DX /S)U on T ∗(X /S)×X ′ U

′ for every U →X in
Xsm and compatible isomorphisms for any β : U → V in Xsm. But for any f : U →X in Xsm

we have
(f ′U )d : T ∗(X /S)×X ′ U

′
→ T ∗(U ′/S).

We have a Gm-gerbe DU/S on T ∗(U ′/S) corresponding to the sheaf of relative differential
operators DU/S . We define a Gm-gerbe (DX /S)U on T ∗(X /S)×X ′ U

′ as the pullback of DU/S

along (f ′U )d. One can check that these gerbes (DX /S)U are compatible under pullbacks, and
therefore define a Gm-gerbe DX /S on X .

Let f : X → Y be a schematic morphism between two smooth algebraic stacks. From the
above construction, the following lemma clearly follows from its scheme theoretic version.

Lemma B.3.3 [Tra11]. (1) There is a canonical 1-morphism of Gm-gerbe on T ∗(Y ′/S)×Y ′ X
′

Mf : (f ′p)
∗DY /S ' (f ′d)

∗DX /S .

(2) For a pair of morphisms X
g
→ Z

h
→ Y and their composition f = h◦ g : X → Y , there

is a canonical 1-morphisms of Gm-gerbe on T ∗(Y ′/S)×Y ′ X
′

Mg,h : (f ′p)
∗DY /S ' (f ′d)

∗DX /S ,

together with a canonical 2-morphism between Mh◦g and Mg,h.
(3) We have a canonical 1-morphism of Gm-gerbe on T ∗(X ′/S)sm:

DX /S |T ∗(X ′/S)sm ' DT ∗(X ′/S)sm/S(θcan) := θ∗can(DT ∗(X ′/S)sm/S),

where T ∗(X ′/S)sm is the maximal smooth open substack of T ∗(X ′/S) and θcan : T ∗(X ′/S)sm
→

T ∗(T ∗(X ′/S)sm) is the canonical one form.
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Let us discuss a stacky version of [OV07, § 4.3]. Let X /S be a smooth algebraic stack as
above and let Pic\(X /S) be the Picard stack of invertible sheaves on X equipped with a
connection (i.e., objects in Pic\(X /S) are D-modules on X whose underlying quasi-coherent
sheaves are invertible). Let B′S = SectS(X ′, T ∗(X ′/S)). Note that the following proposition
does not need the representability of Pic\(X /S).

Proposition B.3.4.

(1) There is a natural morphism ψ : Pic\(X /S)→ B′S .

(2) The pullback of the gerbe DX /S along

X ′ ×S Pic\(X /S)
id×ψ
→ X ′ ×S B′S → T ∗(X ′/S)

is canonically trivialized.

Proof. For part (1), recall that if X is a scheme, the morphism ψ is given by the p-curvature map
(see [OV07, § 4.3]). We explain how to generalize this map to stacks. Let U → X be a smooth
morphism. Then via pullback, we obtain a morphism Pic\(X /S)→ Pic\(U/S)→ SectS(U ′,
T ∗(U ′/S)). By considering further pullbacks to V = U ×X U , we find that the above maps fit
into the following commutative diagram.

Pic\(X /S) //

ψU
��

Pic\(U/S)

��
SectS(U ′, T ∗(X ′/S)×X ′ U

′) // SectS(U ′, T ∗(U ′/S))

These ψU are compatible under pullbacks and define the π : Pic\(X /S)→ B′S .
For part (2), again let U →X be a smooth morphism. Note that the pullback of the gerbe

DU/S along U ′ ×S Pic\(U/S) → T ∗(U ′/S) is canonically trivialized by the object F∗(L,∇),

where (L,∇) is the universal object on U ×S Pic\(U/S). Combining this with Lemma B.3.3
and the proof of part (1), this shows that the pullback of DX /S along U ′ ×S Pic\(X /S) →

X ′ ×S Pic\(X /S) is canonically trivialized. These trivializations glue together and give a
canonical trivialization of DX /S on X ′ ×S Pic\(X /S). 2

B.4 1-forms
In this subsection we make a digression into the construction of gerbes using 1-forms. We refer
to [CZ15, Appendix A.8] for more details. Recall that for any smooth algebraic stack X /S we
can associate to it a Gm-gerbe DX /S on T ∗(X ′/S). Thus giving a 1-form θ : X ′

→ T ∗(X ′/S)
we can construct a Gm-gerbe D(θ) := θ∗DX /S on X ′ by pulling back DX /S along θ.

When X = X is a smooth Noetherian scheme, above construction can be generalized as
follows. Let G be a smooth affine commutative group scheme over X. For any section θ of
LieG′ ⊗ ΩX′/S we can associate to it a G-gerbe D(θ) on X ′ using the four term exact sequence
constructed in loc. cit. In the case G = Gm, the Gm-gerbe D(θ) is isomorphic to θ∗DX,S the
pullback of DX/S along θ : X ′

→ T ∗(X ′/S). We have the following functorial properties.

Lemma B.4.1. (1) Let Y be another smooth algebraic stack over S and let f : Y → X be a
morphism. Let θ be a 1-form on X . There is a canonical equivalence of Gm-gerbes on Y ′

f ′∗D(θ) ' D(f ′∗θ).
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(2) Let X be a smooth Noetherian scheme and let φ : G → H be a morphism of smooth
commutative affine group schemes over X. For any section θ of LieG′ ⊗ ΩX′ let φ′∗θ denote its
image LieH′⊗ΩX′/S under the map induced by φ. There is a canonical equivalence of H′-gerbes
on X ′,

D(θ)φ
′ ' D(φ′∗θ),

where D(θ)φ
′

is the H′-gerbe induced form D(θ) using the map φ′ (see §A.6).

B.5 Azumaya property of differential operators on good stacks
Recall that a smooth algebraic stack X over S of relative dimension d is called relatively good
if it satisfies the following equivalent properties:

(1) dim(T ∗(X /S)) = 2d;

(2) codim{x ∈X |dim Aut(x) = n} > n for all n > 0;

(3) for any U →X in Xsm, the complex

Sym(TU/X → TU/S)

has cohomology concentrated in degree 0 and

H0(Sym(TU/X → TU/S)) ' Sym(TU/S)/TU/X Sym(TU/S).

The following proposition is proved in [BB07] (see also [Tra11]).

Proposition B.5.1. Let X be a relatively good stack. Let πX : T ∗(X /S)→X be the natural
projection and πX ′ be its Frobenius twist. Let T ∗(X ′/S)0 be the maximal smooth open substack
of T ∗(X ′/S). Then we have the following.

(i) There is a natural coherent sheaf of algebras DX /S on T ∗(X ′/S) such that the restriction

of DX /S to T ∗(X ′/S)0 is an Azumaya algebra on T ∗(X ′/S)0 of rank p2 dim(X /S).

(ii) The Gm-gerbe D0
X /S := DX /S |T ∗(X ′/S)0 is isomorphic to DD0

X /S
, the gerbe of splittings of

D0
X /S . In particular, we have

D0
X /S-mod ' QCoh(D0

X /S)1.

Remark B.5.2. By Proposition B.3.1, the category D0
X /S-mod can be thought as a localization

of the category of D-modules on X .

Appendix C. Abelian duality

C.1 Abelian duality for Beilinson 1-motives
Assume that S is a scheme and pOS = 0. Let A be a Picard stack over S. In this subsection,
we denote the base change of A along FrS : S → S by A ′ instead of A (S). Let T∗eA ′ be the
vector bundle on S, which is the restriction of the relative (to S) cotangent bundle of A ′ along
e : S → A ′. Then there is a canonical isomorphism

A ′ ×S T∗eA ′ ' T ∗(A ′/S).

Therefore, via the map πS : T ∗(A ′/S) ' A ′ ×S T∗eA ′ → T∗eA ′, T ∗(A ′/S) becomes a Picard
stack over T∗eA ′ and we denote by mS the multiplication map:

mS : T ∗(A ′/S)×T∗eA ′ T
∗(A ′/S)→ T ∗(A ′/S).

Recall that it makes sense to talk about a gerbe on a Picard stack with a commutative group
structure (cf. Definition A.5.2).
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Lemma C.1.1. The gerbe DA /S on T ∗(A ′/S) admits a canonical commutative group structure.

Proof. Let us sketch the construction of the multiplicative structure M and the 2-morphisms γ
and i in Definition A.5.2. The multiplication m : A ×S A → A induces the following diagram.

T ∗(A ′/S)×A ′ (A
′ ×S A ′)

md //

mp

��

T ∗(A ′ ×S A ′/S)

T ∗(A ′/S)

Observe that the map md : T ∗(A ′/S) ×A ′ (A ′ ×S A ′) → T ∗(A ′ ×S A ′/S) ' T ∗(A ′/S) ×S
T ∗(A ′/S) induces an isomorphism

T ∗(A ′/S)×A ′ (A
′ ×S A ′) ' T ∗(A ′/S)×T∗eA ′ T

∗(A ′/S)→ T ∗(A ′/S)×S T ∗(A ′/S).

Under this isomorphism mp becomes the multiplication map mS . Now the canonical 1-morphism
between m∗SDA /S and DA /S � DA /S comes from Lemma B.3.3. We have two different
factorizations of the multiplicative morphism A ×S A ×S A → A and the 2-morphisms
γ comes from the 2-morphisms for corresponding equivalences of Lemma B.3.3. Finally, the
2-morphism i : σ∗M ' M can be constructed by applying Lemma B.3.3 to the morphism
A ×S A

σ
→ A ×S A

m
→ A . 2

Now we assume that A is a Beilinson 1-motive and is good when regarded as an algebraic
stack. Let A \ := Pic\(A ) be the Picard stack of multiplicative invertible sheaves on A with
a connection (cf. [Lau96]), and let ψS : A \

→ T∗eA ′ be the p-curvature morphism as given in
Proposition B.3.4(1). By [OV07, § 4.3], there is a natural action of T ∗(A ′/S)∨ ' (A ′)∨×S T∗eA ′
on A \. Concretely, for any b : U → T∗eA ′ objects in A \ ×T∗eA ′ U consist of multiplicative line
bundles on A ×S U with a connection whose p-curvature is equal to b. Then for any L′ ∈
(A ′)∨ ×S U ' T ∗(A ′/S)∨ ×S U and (L,∇) ∈ A \ ×B′S U we define

L′ · (L,∇) := (F ∗A L′ ⊗ L,∇F ∗A L′ ⊗∇),

where ∇F ∗A L′ is the canonical connection on F ∗A L′ giving by the Cartier descent. It also follows

from the Cartier descent that A \ is a T (A ′/S)∨-torsor under this action.
On the other hand, recall that for a Gm-gerbe D with commutative group structure on a

Beilinson 1-motive P, we defined the P∨-torsor TD of multiplicative splittings of D (cf. §A.7).

Proposition C.1.2. There is a canonical (T ∗(A ′/S))∨-equivariant isomorphism A \
→ TDA/S

.

Proof. We sketch the proof. Write TDA/S
by TD for simplicity. Recall that for U → T∗eA ′,

TDA(U) is the groupoid of splittings of DA /S over U×T∗eA ′ T
∗(A ′/S) which are compatible with

the commutative group structure of DA /S . Note that

U ×T∗eA ′ T
∗(A ′/S) ' U ×T∗eA ′ (T

∗
eA
′ ×S A ′) ' A ′ ×S U,

and under this isomorphism, the projection of left-hand side to the second factor is identified
with

A ′ ×S U → A ′ ×S A \
→ T ∗(A ′/S).

Now by Lemma B.3.4, the pullback of DA /S to A ′×SU has a canonical splitting LU,α. Moreover,
one can check that this canonical splitting is compatible with the commutative group structure
of DA /S . Thus the assignment (U,α)→ LU,α defines a map from A \ to TD which is compatible
with their T (A ′/S)∨-torsor structures hence an equivalence. 2
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As a corollary, we obtain the following theorem.

Theorem C.1.3. Let A be a good Beilinson 1-motive. Then there is a canonical equivalence of
categories

Db(D-mod(A )) ' Db(QCoh(A \)).

Proof. This is the combination of Theorem A.7.2 and Proposition B.5.1. 2

Remark C.1.4. Note that in [Lau96], this theorem is proved for abelian schemes over S of
characteristic zero. In fact, Laumon’s construction applies to any ‘good’ Beilinson 1-motive over
a locally Noetherian base. When pOS = 0, it is easy to see that Laumon’s equivalence and the
equivalence constructed above are the same.

In particular, let θ : A ′ → T∗A ′ be a section obtained by base change τ : S → T∗eA ′. Let
DA /S(θ) := θ∗DA /S . Then DA /S,θ is a Gm-gerbe on A ′ equipped with a canonical commutative

group structure, and the A ′∨-torsor TDA/S,θ
of multiplicative splittings can be identified with

A \ ×T∗eA ′,τ S.

C.2 A variant
In the main body of the paper, however, we need a variant of the above construction. Let k be
an algebraically closed field of characteristic p. For a k-scheme X, we denote by X ′ its Frobenius
base change along Fr : k→ k. Let S be a smooth k-scheme. For an S-scheme X → S, we denote
by X(S) its base change along FrS : S → S. Let A → S be a Picard stack with multiplication
m : A ×SA → A . The goal of this subsection is to construct certain multiplicative gerbe DA (θ)
on A ′ (rather than on A (S) as done at the end of the previous subsection).

Let θ : A ′ → T ∗A ′ be a section, where T ∗A ′ is the cotangent bundle of A ′ relative to k.
We say θ is multiplicative if the upper right corner of the following diagram is commutative.

T ∗A ′ × T ∗A ′ T ∗A ′ × T ∗A ′|A ′×S′A ′oo // T ∗(A ′ ×S′ A ′)

A ′ ×A ′

θ×θ

OO

A ′ ×S′ A ′oo

θ×θ

OO

m∗θ //

m
��

T ∗A ′ ×A ′ (A
′ ×S′ A ′)

mp
��

md

OO

A ′
θ // T ∗A ′

Let DA (θ) = θ∗DA be the pullback of DA to A ′. Then by the same argument as in Lemma C.1.1,
we have the following.

Lemma C.2.1 (See also [BB07, Lemma 3.16]). Let θ : A ′ → T ∗A ′ be a multiplicative section.
Then DA (θ) is a Gm-gerbe on A ′ with a commutative group structure.
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Bre75 L. Breen, Un théoreme d’annulation pour certains Ext de faisceaux abéliens, Ann. Sci. Éc.
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