ON THE HOMOTOPY-COMMUTATIVITY OF LOOP-SPACES AND SUSPENSIONS

C. S. HOO

Introduction. Let X be a space. We are interested in the homotopycommutativity of the loop-space ΩX and the suspension ΣX, that is, in the question whether or not nil $X \leqq 1$, conil $X \leqq 1$, respectively. Let $c: \Omega X \times \Omega X$ $\rightarrow \Omega X, c^{\prime}: \Sigma X \rightarrow \Sigma X \vee \Sigma X$ be the commutator and co-commutator maps, respectively. Then nil $X \leqq 1$ if and only if $c \simeq *$, and conil $X \leqq 1$ if and only if $c^{\prime} \simeq *$. Our aim in this paper is to obtain factorizations $c \simeq f_{1} f_{2} \ldots f_{m}$, $c^{\prime} \simeq g_{1} g_{2} \ldots g_{n}$ of c, c^{\prime} as compositions of various maps, or alternatively, factorizations of the adjoints of c, c^{\prime}. This will then give us conditions for nil $X \leqq 1$, conil $X \leqq 1$, namely, whenever some combination of the factors in the compositions is null-homotopic. We take this idea and ring various changes on it. The maps in the compositions will be constructed from c, c^{\prime} and various standard maps. We shall use the Hopf and co-Hopf constructions liberally, and they will be defined briefly below in order to make this paper relatively independent of others. This paper is motivated by Theorems 3.1 and 4.1 of (3), but we shall not be using any explicit results from that paper.

In Theorem 1 we give a factorization of c, while in Theorems 2 and 3 we give factorizations of the adjoint of c. In the dual situation, Theorem 4 gives a factorization of c^{\prime}, while Theorems 5 and 6 give factorizations of the adjoint of c^{\prime}. We work in the category of spaces with base point and having the homotopy type of countable CW-complexes. For simplicity, we shall frequently use the same symbol for a map and its homotopy class. Part of this work was done while the author was a Fellow of the Summer Research Institute of the Canadian Mathematical Congress in 1967.

1. Let A and B be spaces. We can consider

$$
A b B \xrightarrow{i} A \vee B \xrightarrow{j} A \times B
$$

as a fibration, where j is the usual inclusion and $A b B$ is the flat product. Then we can find a map $\chi: \Omega(A \times B) \rightarrow \Omega(A \vee B)$ such that $(\Omega j) \chi \simeq 1_{\Omega(A \times B)}$. In fact, we can and shall take $\chi=\Omega\left(i_{A} p_{A}\right)+\Omega\left(i_{B} p_{B}\right)$, where p_{A} and p_{B} are the projections of $A \times B$ onto the factors, and $i_{A}: A \rightarrow A \vee B, i_{B}: B \rightarrow A \vee B$ are the obvious inclusions. The exact sequence of the fibration now shows that $(\Omega i)_{*}$ is a monomorphism, and that there exists a unique element $[g] \in$ $[\Omega(A \vee B), \Omega(A b B)]$ such that $1_{\Omega(A \vee B)}=(\Omega i) g+\chi(\Omega j)$.

Received August 18, 1967.

Now, for any space X and a map $f: X \rightarrow A \vee B$, we can form the map $H(f)=g(\Omega f): \Omega X \rightarrow \Omega(A b B)$. We shall call this the co-Hopf construction. The element $[H(f)]$ is the unique element of $[\Omega X, \Omega(A b B)]$ satisfying $[\Omega f]=$ $(\Omega i)_{*}[H(f)]+[\chi \Omega(j f)]=(\Omega i)_{*}[H(f)]+\left[\Omega\left(i_{A} \pi_{A} f\right)\right]+\left[\Omega\left(i_{B} \pi_{B} f\right)\right]$, where $\pi_{A}:$ $A \vee B \rightarrow A, \pi_{B}: A \vee B \rightarrow B$ are induced by the projections.

We now define the Hopf construction. We consider

$$
A \vee B \xrightarrow{j} A \times B \xrightarrow{q} A \wedge B
$$

as a co-fibration, where $A \wedge B$ is the smash product. In a fashion dual to the above, we show that there exists a map $p: \Sigma(A \times B) \rightarrow \Sigma(A \vee B)$ such that $p(\Sigma j) \simeq 1_{\Sigma(A \vee B)}$. In fact, let $p_{1}, p_{2}: A \times B \rightarrow A \vee B$ be defined by $p_{1}=i_{A} p_{A}$, $p_{2}=i_{B} p_{B}$. Then we can and shall take $p=\nabla\left(\Sigma p_{1} \vee \Sigma p_{2}\right) \phi^{\prime}$, where ϕ^{\prime} : $\Sigma(A \times B) \rightarrow \Sigma(A \times B) \vee \Sigma(A \times B)$ is the usual suspension structure, and ∇ is the folding map. The exact sequence of the co-fibration now shows that $(\Sigma q)^{*}$ is a monomorphism. As above, we see that there exists a unique element $[d] \in[\Sigma(A \wedge B), \Sigma(A \times B)]$ satisfying $1_{\Sigma(A \times B)}=d(\Sigma q)+(\Sigma j) p=d(\Sigma q)+$ $\Sigma\left(j p_{1}\right)+\Sigma\left(j p_{2}\right)$.

Given a space X and a map $f: A \times B \rightarrow X$, we can now define $J(f)=$ $(\Sigma f) d: \Sigma(A \wedge B) \rightarrow \Sigma X$. We call $J(f)$ the map obtained from f by the Hopf construction. The element [$J(f)$] is the unique element satisfying

$$
[\Sigma f]=(\Sigma q)^{*}[J(f)]+[\Sigma(f j) p]=(\Sigma q)^{*}[J(f)]+\left[\Sigma\left(f j p_{1}\right)\right]+\left[\Sigma\left(f j p_{2}\right)\right]
$$

Let us now establish some standard notation. Given spaces X, Y, we have a bijection $\tau:[\Sigma X, Y] \rightarrow[X, \Omega Y]$ given by $\tau(f)(x)(t)=f k_{X}(x, t)$, where k_{X} : $X \times I \rightarrow \Sigma X$ is the projection. For any space X, the maps $e: \Sigma \Omega X \rightarrow X$, $e^{\prime}: X \rightarrow \Omega \Sigma X$ shall be those given by $\tau(e)=1_{\Omega X}, \tau\left(1_{\Sigma X}\right)=e^{\prime}$.

Suppose that we are given spaces X_{1}, X_{2}. Consider the projections e : $\Sigma \Omega X_{i} \rightarrow X_{i}$ given by $\tau(e)=1_{\Omega X_{i}}$. Let $e_{1}=i_{1} e: \Sigma \Omega X_{1} \rightarrow X_{1} \vee X_{2}, e_{2}=i_{2} e$: $\Sigma \Omega X_{2} \rightarrow X_{1} \vee X_{2}$, where $i_{1}: X_{1} \rightarrow X_{1} \vee X_{2}, i_{2}: X_{1} \vee X_{2}$ are the inclusions. Let $c: \Omega\left(X_{1} \vee X_{2}\right) \times \Omega\left(X_{1} \vee X_{2}\right) \rightarrow \Omega\left(X_{1} \vee X_{2}\right)$ be the commutator map. Then we can form $\bar{c}=\tau^{-1}\left\{c\left(\tau\left(e_{1}\right) \times \tau\left(e_{2}\right)\right)\right\}: \Sigma\left(\Omega X_{1} \times \Omega X_{2}\right) \rightarrow X_{1} \vee X_{2}$. A simple check shows that if $X_{1}=X_{2}=X$ and ∇ is the folding map, then $\nabla \bar{c}=\tau^{-1}(c)$, where $c: \Omega X \times \Omega X \rightarrow \Omega X$ is the commutator map. If we apply the co-Hopf construction to $\bar{c}: \Sigma\left(\Omega X_{1} \times \Omega X_{2}\right) \rightarrow X_{1} \vee X_{2}$ in the general case, we obtain a map $H(\bar{c}): \Omega \Sigma\left(\Omega X_{1} \times \Omega X_{2}\right) \rightarrow \Omega\left(X_{1} b X_{2}\right)$. Let $i: X_{1} b X_{2}$ $\rightarrow X_{1} \vee X_{2}$ be the fibre of the inclusion $j: X_{1} \vee X_{2} \rightarrow X_{1} \times X_{2}$. Then we have the following lemma.

Lemma 1. $\Omega \bar{c}=(\Omega i) H(\bar{c}): \Omega \Sigma\left(\Omega X_{1} \times \Omega X_{2}\right) \rightarrow \Omega\left(X_{1} \vee X_{2}\right)$.
Proof. $H(\bar{c})$ satisfies $\Omega \bar{c}=(\Omega i) H(\bar{c})+\Omega\left(i_{1} \pi_{1} \bar{c}\right)+\Omega\left(i_{2} \pi_{2} \bar{c}\right)$, where π_{1} : $X_{1} \vee X_{2} \rightarrow X_{1}, \pi_{2}: X_{1} \vee X_{2} \rightarrow X_{2}$ are induced by the projections and i_{1} : $X_{1} \rightarrow X_{1} \vee X_{2}, i_{2}: X_{2} \rightarrow X_{1} \vee X_{2}$ are the inclusions. Let us consider $\tau\left(i_{1} \pi_{1} \bar{c}\right)$: $\Omega X_{1} \times \Omega X_{2} \rightarrow \Omega\left(X_{1} \vee X_{2}\right)$. Let $\phi: \Omega X_{1} \times \Omega X_{1} \rightarrow \Omega X_{1}$ be the loop multiplication and $\mu: \Omega X_{1} \rightarrow \Omega X_{1}$ the loop inverse. Let $\gamma_{1}: \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega X_{1}$ be the
projection. Then, a simple check shows that $\tau\left(i_{1} \pi_{1} \bar{c}\right)=\left(\Omega i_{1}\right) \phi\{\phi(1 \times *) \Delta$ $\times \phi(1 \times *) \Delta \mu\} \Delta \gamma_{1}$. Since $\phi(1 \times *) \Delta \simeq 1$ and $\phi(1 \times \mu) \Delta \simeq *$, it follows that $\tau\left(i_{1} \pi_{1} \bar{c}\right)=0$. Hence, $i_{1} \pi_{1} \bar{c}=0$. Similarly, $i_{2} \pi_{2} \bar{c}=0$. Hence, $\Omega \bar{c}=(\Omega i) H(\bar{c})$.

Lemma 2. There exists a map $b: \Sigma\left(\Omega X_{1} \times \Omega X_{2}\right) \rightarrow X_{1} b X_{2}$ such that $i b=\bar{c}$ and $\Omega b=H(\bar{c})$, where $i: X_{1} b X_{2} \rightarrow X_{1} \vee X_{2}$ is the inclusion.

Proof. Let $j: X_{1} \vee X_{2} \rightarrow X_{1} \times X_{2}$ be the inclusion. Then we have that $r(j \bar{c}): \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega\left(X_{1} \times X_{2}\right)$. Let $K: \Omega\left(X_{1} \times X_{2}\right) \rightarrow \Omega X_{1} \times \Omega X_{2}$ be the homeomorphism given by $K(l)=\left(p_{1} l, p_{2} l\right)$, where p_{1} and p_{2} are the projections. Then $K \tau(j \bar{c})\left(l_{1}, l_{2}\right)=\left(p_{1} \tau(j \bar{c})\left(l_{1}, l_{2}\right), p_{2} \tau(j \bar{c})\left(l_{1}, l_{2}\right)\right)$. A simple check shows that $p_{1} \tau(j \bar{c})\left(l_{1}, l_{2}\right)(t)=\phi\{\phi(1 \times *) \Delta \times \phi(1 \times *) \Delta \mu\} \gamma_{1}\left(l_{1}, l_{2}\right)(t)$, where γ_{1} : $\Omega X_{1} \times \Omega X_{2} \rightarrow \Omega X_{1}$ is the projection and ϕ and μ give the loop structure on ΩX. Hence, as above, $p_{1} \tau(j \bar{c}) \simeq *$. Similarly, $p_{2} \tau(j \bar{c}) \simeq *$. Since K is a homeomorphism, it follows that $j \bar{c}=0$. Hence, from the fibration

$$
X_{1} \triangleright X_{2} \xrightarrow{i} X_{1} \vee X_{2} \xrightarrow{j} X_{1} \times X_{2},
$$

it follows that there exists a map b with $i b=\bar{c}$. Thus, we have that $(\Omega i)(\Omega b)=$ $\Omega \bar{c}$. But by Lemma 1, $(\Omega i) H(\bar{c})=\Omega \bar{c}$. Since $(\Omega i)_{*}$ is a monomorphism, it follows that $H(\bar{c})=\Omega b$.

Theorem 1. $c=\Omega(\nabla i)(H \bar{c}) e^{\prime}: \Omega X \times \Omega X \rightarrow \Omega X$, where c is the commutator map.

Proof. We apply Lemma 1 with $X_{1}=X_{2}=X$. We have that $\Omega \bar{c}=(\Omega i) H(\bar{c})$. Hence, $\Omega(\nabla \bar{c})=\Omega(\nabla i) H(\bar{c})$, where ∇ is the folding map. Since $\nabla \bar{c}=\tau^{-1}(c)$ and $\Omega\left(\tau^{-1}(c)\right) e^{\prime}=c$, we have that $c=(\nabla \bar{c}) e^{\prime}=\Omega(\nabla i) H(\bar{c}) e^{\prime}$.

Let us now again consider $\bar{c}: \Sigma\left(\Omega X_{1} \times \Omega X_{2}\right) \rightarrow X_{1} \vee X_{2}$ in the general case. We have that $\tau(\bar{c}): \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega\left(X_{1} \vee X_{2}\right)$. The Hopf construction now yields $J(\tau(\bar{c})): \Sigma\left(\Omega X_{1} \wedge \Omega X_{2}\right) \rightarrow \Sigma \Omega\left(X_{1} \vee X_{2}\right)$. Let $q: \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega X_{1}$ $\wedge \Omega X_{2}$ be the projection. Then we have the following lemma.

Lemma 3. $\Sigma(\tau(\bar{c}))=J(\tau(\bar{c}))(\Sigma q)$ and hence, $\bar{c}=e J(\tau(\bar{c}))(\Sigma q)$.
Proof. The element $J(\tau(\bar{c}))$ satisfies the relation $\Sigma(\tau(\bar{c}))=J(\tau(\bar{c}))(\Sigma q)$ $+\Sigma\left(\tau(\bar{c}) j p_{1}\right)+\Sigma\left(\tau(\bar{c}) k p_{2}\right)$. A simple check shows that $\tau(\bar{c}) j p_{1}=\left(\Omega i_{1}\right) \phi\{\phi(1$ $\times *) \Delta \times \phi(1 \times *) \Delta \mu\} \gamma_{1} \simeq *$, where ϕ and μ give the loop structure on ΩX, $\gamma_{1}: \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega X_{1}$ is the projection and $i_{1}: X_{1} \rightarrow X_{1} \vee X_{2}$ is the inclusion. Similarly, $\tau(\bar{c}) j p_{2}=0$. Hence, $\Sigma(\tau(\bar{c}))=J(\tau(\bar{c}))(\Sigma q)$. Since $e \Sigma(\tau(\bar{c}))=\bar{c}$, the second part of the lemma follows easily.

Theorem 2. $\tau^{-1}(c)=\operatorname{VeJ}(\tau(\bar{c}))(\Sigma q)$, where $c: \Omega X \times \Omega X \rightarrow \Omega X$ is the commutator map and $e: \Sigma \Omega(X \vee X) \rightarrow X \vee X$ is the standard map.

Proof. We apply Lemma 3 with $X_{1}=X_{2}=X$ to obtain $\bar{c}=e J(\tau(\bar{c}))(\Sigma q)$. Since $\tau^{-1}(c)=\nabla \bar{c}$, the theorem follows.

Now recall that by Lemma 2, we have a map b: $\Sigma\left(\Omega X_{1} \times \Omega X_{2}\right) \rightarrow X_{1} b X_{2}$ such that $i b=\bar{c}$. Then $(\Omega b) e^{\prime}=\tau(b): \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega\left(X_{1} b X_{2}\right)$. The Hopf construction yields $J(\tau(b)): \Sigma\left(\Omega X_{1} \wedge \Omega X_{2}\right) \rightarrow \Sigma \Omega\left(X_{1} b X_{2}\right)$.

Lemma 4. $\Sigma(\tau(b))=J(\tau(b))(\Sigma q)$ and hence, $b=e J(\tau(b))(\Sigma q)$.
Proof. $J(\tau(b))$ satisfies $\Sigma(\tau(b))=J(\tau(b))(\Sigma q)+\Sigma\left(\tau(b) j p_{1}\right)+\Sigma\left(\tau(b) j p_{2}\right)$. Let us consider the map $\tau(b) j p_{1}: \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega\left(X_{1} b X_{2}\right)$. We have that $(\Omega i) \tau(b) j p_{1}: \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega\left(X_{1} \vee X_{2}\right)$. Again, a simple check shows that $(\Omega i) \tau(b) j p_{1}=\left(\Omega i_{1}\right) \phi\{\phi(1 \times *) \Delta \times \phi(1 \times *) \Delta \mu\} \Delta \gamma_{1}$, where ϕ and μ give the loop structure on ΩX_{1} and $\gamma_{1}: \Omega X_{1} \times \Omega X_{2} \rightarrow \Omega X_{1}$ is the projection. Hence, $\tau^{-1}\left\{(\Omega i) \tau(b) j p_{1}\right\}=0$. Since $(\Omega i) *$ is a monomorphism, we have that $\tau(b) j p_{1}=$ 0 . Similarly, $\tau(b) j p_{2}=0$. Hence, $\Sigma(\tau(b))=J(\tau(b))(\Sigma q)$. The second part of the lemma follows from the fact that $e \Sigma(\tau(b))=b$.

Theorem 3. $\tau^{-1}(c)=\nabla i e(\Sigma H(\bar{c})) J\left(e^{\prime}\right)(\Sigma q)$, where $c: \Omega X \times \Omega X \rightarrow \Omega X$ is the commutator map, $e^{\prime}: \Omega X \times \Omega X \rightarrow \Omega \Sigma(\Omega X \times \Omega X), e: \Sigma \Omega(X b X) \rightarrow X b X$ are the standard maps, $i: X b X \rightarrow X \vee X$ is the inclusion, and $\nabla: X \vee X \rightarrow X$ is the folding map.

Proof. We apply Lemma 4 with $X_{1}=X_{2}=X$ and obtain $b=e J(\tau(b))(\Sigma q)$. Hence, $\bar{c}=i b=\operatorname{ieJ}(\tau(b))(\Sigma q)$. But $\nabla \bar{c}=\tau^{-1}(c)$, and hence we have that $\tau^{-1}(c)=\nabla \bar{c}=\nabla \operatorname{ieJ}(\tau(b))(\Sigma q)$. But since $\Omega b=H(\bar{c})$ by Lemma 2, we have that $\tau(b)=H(\bar{c}) e^{\prime}$. Clearly, $J(\tau(b))=J\left(H(\bar{c}) e^{\prime}\right)=(\Sigma H(\bar{c})) J\left(e^{\prime}\right)$. This proves the theorem.

Remark 1. Let $e^{\prime}: X_{1} \times X_{2} \rightarrow \Omega \Sigma\left(X_{1} \times X_{2}\right), e: \Sigma \Omega \Sigma\left(X_{1} \times X_{2}\right) \rightarrow \Sigma\left(X_{1}\right.$ $\times X_{2}$) be the usual maps. Then $e\left(\Sigma e^{\prime}\right)=1_{\Sigma\left(X_{1} \times X_{2}\right)}$. This means that if $f: X_{1} \times X_{2} \rightarrow Y$ is a map, then the Hopf construction yields $J(f)=(\Sigma f) e J\left(e^{\prime}\right)$: $\Sigma\left(X_{1} \wedge X_{2}\right) \rightarrow \Sigma Y$. It is amusing to note the relation $(\Sigma q) e J\left(e^{\prime}\right)=1_{\Sigma\left(X_{1} \wedge X_{2}\right)}$. Using this we can "solve" the equations in Lemmas 3 and 4 to obtain $J(\tau(\bar{c}))=\Sigma(\tau(\bar{c})) e J\left(e^{\prime}\right), J(\tau(b))=\Sigma(\tau(b)) e J\left(e^{\prime}\right)$.
2. We now dualize. Since many of the proofs of the results in this section are exact duals of those in $\S 1$, we shall omit most of the details. Suppose that X_{1} and X_{2} are given spaces. Let $e^{\prime}: X_{i} \rightarrow \Omega \Sigma X_{i}$ be the standard maps. Let $e_{1}{ }^{\prime}=e^{\prime} p_{1}: X_{1} \times X_{2} \rightarrow \Omega \Sigma X_{1}, e_{2}{ }^{\prime}=e^{\prime} p_{2}: X_{1} \times X_{2} \rightarrow \Omega \Sigma X_{2}$, where p_{1} and p_{2} are the projections. Let $c^{\prime}: \Sigma\left(X_{1} \times X_{2}\right) \rightarrow \Sigma\left(X_{1} \times X_{2}\right) \vee \Sigma\left(X_{1} \times X_{2}\right)$ be the co-commutator map. Then, we have a map $\bar{c}^{\prime}=\tau\left\{\left(\tau^{-1}\left(e_{1}{ }^{\prime}\right) \vee \tau^{-1}\left(e_{2}{ }^{\prime}\right)\right) c^{\prime}\right\}$: $X_{1} \times X_{2} \rightarrow \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right)$. A simple check shows that if $X_{1}=X_{2}=X$, then $\bar{c}^{\prime} \Delta=\tau\left(c^{\prime}\right): X \rightarrow \Omega(\Sigma X \vee \Sigma X)$, where Δ is the diagonal map and c^{\prime} : $\Sigma X \rightarrow \Sigma X \vee \Sigma X$ is the co-commutator map. The Hopf construction yields a $\operatorname{map} J\left(\bar{c}^{\prime}\right): \Sigma\left(X_{1} \wedge X_{2}\right) \rightarrow \Sigma \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right)$. Dual to Lemma 1, we have the following lemma.

Lemma 5. $\Sigma\left(\bar{c}^{\prime}\right)=J\left(\bar{c}^{\prime}\right)(\Sigma q): \Sigma\left(X_{1} \times X_{2}\right) \rightarrow \Sigma \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right)$.

Lemma 6. There exist maps

$$
a_{1}^{\prime}: X_{1} \wedge X_{2} \rightarrow \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right), \quad a^{\prime}: \Omega \Sigma\left(X_{1} \wedge X_{2}\right) \rightarrow \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right)
$$

such that $a_{1}{ }^{\prime}=a^{\prime} e^{\prime}, a_{1}{ }^{\prime} q=\bar{c}^{\prime}$ and $\Sigma a_{1}{ }^{\prime}=J\left(\bar{c}^{\prime}\right)$.
Proof. Consider the co-fibration

$$
X_{1} \vee X_{2} \xrightarrow{j} X_{1} \times X_{2} \xrightarrow{q} X_{1} \wedge X_{2} .
$$

Let $K: \Sigma X_{1} \vee \Sigma X_{2} \rightarrow \Sigma\left(X_{1} \vee X_{2}\right)$ be the obvious homeomorphism. We have that $\tau^{-1}\left(\bar{c}^{\prime} j\right) K: \Sigma X_{1} \vee \Sigma X_{2} \rightarrow \Sigma X_{1} \vee \Sigma X_{2}$. Let $\phi_{1}^{\prime}: \Sigma X_{1} \rightarrow \Sigma X_{1} \vee \Sigma X_{1}$, $\mu_{1}^{\prime}: \Sigma X_{1} \rightarrow \Sigma X_{1}$ and $\phi_{2}{ }^{\prime}: \Sigma X_{2} \rightarrow \Sigma X_{2} \vee \Sigma X_{2}, \mu_{2}^{\prime}: \Sigma \Sigma X_{2} \rightarrow \Sigma X_{2}$ be the suspension structures. Let $f_{1}=\nabla\left\{\nabla(1 \vee *) \phi_{1}{ }^{\prime} \vee \mu_{1}{ }^{\prime} \nabla(1 \vee *) \phi_{1}{ }^{\prime}\right\} \phi_{1}{ }^{\prime}: \Sigma X_{1}$ $\rightarrow \Sigma X_{1}, f_{2}=\nabla\left\{\nabla(* \vee 1) \phi_{2}{ }^{\prime} \vee \mu_{2}{ }^{\prime} \nabla(* \vee 1) \phi_{2}{ }^{\prime}\right\} \phi_{2}{ }^{\prime}: \Sigma X_{2} \rightarrow \Sigma X_{2}$. Then $f_{1} \simeq *$ $\simeq f_{2}$. A simple check shows that $f_{1} \vee f_{2}=\tau^{-1}\left(\bar{c}^{\prime} j\right) K$. Since K is a homeomorphism, it follows that $\bar{c}^{\prime} j=0$. From the co-fibration, it follows that there exists a map $a_{1}^{\prime}: X_{1} \wedge X_{2} \rightarrow \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right)$ such that $\bar{c}^{\prime}=a_{1}^{\prime} q$. The map a^{\prime} can be taken as $\Omega\left(\tau^{-1}\left(a_{1}{ }^{\prime}\right)\right)$. Then, clearly, $a^{\prime} e^{\prime}=\Omega\left(\tau^{-1}\left(a_{1}{ }^{\prime}\right)\right) e^{\prime}=a_{1}{ }^{\prime}$. Since $a_{1}^{\prime} q=\bar{c}^{\prime}$, we have that $\left(\Sigma a_{1}{ }^{\prime}\right)(\Sigma q)=\Sigma \bar{c}^{\prime}$. Since $\Sigma \bar{c}^{\prime}=J\left(\bar{c}^{\prime}\right)(\Sigma q)$ by Lemma 5 , and since ($\Sigma q)^{*}$ is a monomorphism, it follows that $\Sigma a_{1}{ }^{\prime}=J\left(\bar{c}^{\prime}\right)$.

Dual to Theorem 1, we have the following theorem.
Theorem 4. $c^{\prime}=e J\left(\bar{c}^{\prime}\right) \Sigma(q \Delta): \Sigma X \rightarrow \Sigma X \vee \Sigma X$, where c^{\prime} is the cocommutator map.

Let us now again consider $\bar{c}^{\prime}: X_{1} \times X_{2} \rightarrow \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right)$ in the general case. We have that $\tau^{-1}\left(\bar{c}^{\prime}\right): \Sigma\left(X_{1} \times X_{2}\right) \rightarrow \Sigma X_{1} \vee \Sigma X_{2}$. The co-Hopf construction yields a map $H\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right): \Omega \Sigma\left(X_{1} \times X_{2}\right) \rightarrow \Omega\left(\Sigma X_{1} b \Sigma X_{2}\right)$. Hence, we have that $(\Omega i) H\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right): \Omega \Sigma\left(X_{1} \times X_{2}\right) \rightarrow \Omega\left(\Sigma X_{1} \vee \Sigma X_{2}\right)$.

Lemma 7. $\Omega\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right)=(\Omega i) H\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right)$ and hence, $\bar{c}^{\prime}=(\Omega i) H\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right) e^{\prime}$.
Dual to Theorem 2, we have the following theorem.
Theorem 5. $\tau\left(c^{\prime}\right)=(\Omega i) H\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right) e^{\prime} \Delta$, where $c^{\prime}: \Sigma X \rightarrow \Sigma X \vee \Sigma X$ is the co-commutator map.

Let us now consider the maps a^{\prime} and $a_{1}{ }^{\prime}$ defined above. We have the following lemma.

Lemma 8. $a^{\prime}=(\Omega i) H\left(\tau^{-1}\left(a_{1}{ }^{\prime}\right)\right)$ and hence, $a_{1}{ }^{\prime}=(\Omega i) H\left(\tau^{-1}\left(a_{1}{ }^{\prime}\right)\right) e^{\prime}$.
Theorem 6. $\tau\left(c^{\prime}\right)=(\Omega i) H(e) \Omega\left(J\left(\bar{c}^{\prime}\right)\right) e^{\prime} q \Delta$, where $c^{\prime}: \Sigma X \rightarrow \Sigma X \vee \Sigma X$ is the co-commutator map,

$$
e^{\prime}: X \wedge X \rightarrow \Omega \Sigma(X \wedge X), \quad e: \Sigma \Omega(\Sigma X \vee \Sigma X) \rightarrow \Sigma X \vee \Sigma X
$$

are the standard maps, and $\Delta: X \rightarrow X \times X$ is the diagonal map.

Proof. We apply Lemma 8 with $X_{1}=X_{2}=X$ and obtain

$$
a_{1}^{\prime}=(\Omega i) H\left(\tau^{-1}\left(a_{1}^{\prime}\right)\right) e^{\prime} .
$$

Hence, $\quad \bar{c}^{\prime}=a_{1}^{\prime} q=(\Omega i) H\left(\tau^{-1}\left(a_{1}^{\prime}\right)\right) e^{\prime} q$. Since $\bar{c}^{\prime} \Delta=\tau\left(c^{\prime}\right)$, we have that $\tau\left(c^{\prime}\right)=(\Omega i) H\left(\tau^{-1}\left(a_{1}^{\prime}\right)\right) e^{\prime} q \Delta$. Since $\Sigma a_{1}{ }^{\prime}=J\left(\bar{c}^{\prime}\right)$, we have that $e J\left(\bar{c}^{\prime}\right)=$ $e\left(\Sigma a_{1}{ }^{\prime}\right)=\tau^{-1}\left(a_{1}{ }^{\prime}\right)$. Hence, $\tau\left(c^{\prime}\right)=(\Omega i) H(e) \Omega\left(J\left(\bar{c}^{\prime}\right)\right) e^{\prime} q \Delta$.

Remark 2. Let $e: \Sigma \Omega\left(X_{1} \vee X_{2}\right) \rightarrow X_{1} \vee X_{2}$,

$$
e^{\prime}: \Omega\left(X_{1} \vee X_{2}\right) \rightarrow \Omega \Sigma \Omega\left(X_{1} \vee X_{2}\right)
$$

be the standard maps. Then we have that $H(e) e^{\prime}: \Omega\left(X_{1} \vee X_{2}\right) \rightarrow \Omega\left(X_{1} b X_{2}\right)$. Since $(\Omega e) e^{\prime}=1_{\Omega\left(X_{1} \vee x_{2}\right)}$, it follows that if $f: Y \rightarrow X_{1} \vee X_{2}$ is any map, then the co-Hopf construction yields $H(f)=H(e) e^{\prime}(\Omega f)$. We note that we then have the relation $H(e) e^{\prime}(\Omega i)=1_{\Omega\left(X_{1} b X_{2}\right)}$. Using this, we can "solve" the equations in Lemmas 7 and 8 to obtain $H\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right)=H(e) e^{\prime} \Omega\left(\tau^{-1}\left(\bar{c}^{\prime}\right)\right)$, $H\left(\tau^{-1}\left(a_{1}{ }^{\prime}\right)\right)=H(e) e^{\prime} a^{\prime}$ and $H\left(\tau^{-1}\left(a_{1}{ }^{\prime}\right)\right) e^{\prime}=H(e) e^{\prime} a_{1}{ }^{\prime}$.

Remark 3. Our factorizations of c^{\prime} reflect the well-known result that conil $X \leqq$ w cat X, where w cat denotes "weak category".

References

1. I. Berstein and G. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961), 99-130.
2. I. Berstein and P. J. Hilton, On suspensions and comultiplications, Topology 2 (1963), 73-82.
3. T. Ganea, P. J. Hilton, and F. P. Peterson, On the homotopy-commutativity of loop-spaces and suspensions, Topology 1 (1962), 133-141.
4. P. J. Hilton, Homotopy theory and duality (Gordon and Breach, New York, 1965).

University of Alberta,
Edmonton, Alberta

