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Abstract In two previous papers we established the structure of the normal closure of a cyclic per-
mutable subgroup A of a finite group, first when A has odd order and second when A has even order,
but with an extra hypothesis that was unnecessary in the odd case. Here we describe the most general
situation without any restrictions on A.
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1. Introduction and statement of results

Let A be a subgroup of a group G. Then A is said to be permutable (or quasinormal) if
AX = XA for all subgroups X of G. Thus A is permutable precisely when the product
AX is a subgroup for each subgroup X of G. Suppose that

G is finite and A is a cyclic permutable subgroup.

When A has odd order, then we showed in [3] that [A, G] is abelian and A acts on it by
conjugation as a group of power automorphisms. When A has even order, this result is
not true in general. But we showed in [4] that N = [A, G]′ has order at most 2 and lies in
A, and A acts by conjugation on [A, G]/N as a group of power automorphisms, provided
in each product AX, with X cyclic, the Sylow 2-subgroup has a modular subgroup lattice.
(For odd primes p, the Sylow p-subgroups of AX always have a modular subgroup lattice
(see [6, Hauptsatz I]).) In [4] we also gave examples in which [A, G]′ has order 2. In this
paper we assume no additional hypothesis about A and G. It turns out that [A, G] is
always nilpotent of class at most 2. Also, if we denote by 2′ the set of odd primes, then the
2′-component of [A, G] is abelian and A acts on it as a group of power automorphisms.
If A2 is the 2-component of A, then [A2, G] is the 2-component of [A, G]. We find that
[A2, G, A] is a normal subgroup of G lying in the centre of [A, G] and A acts on [A2, G, A]
as a group of power automorphisms.
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We denote by A2′ the 2′-component of A (always a cyclic group). Also we write Z(G)
for the centre of a group G. Then we shall prove the following theorem.

Theorem 1.1. Let A be a cyclic permutable subgroup of a finite group G. Then

(i) [A, G] = [A2, G] × [A2′ , G];

(ii) [A2′ , G] is an abelian 2′-group;

(iii) A acts by conjugation on [A2′ , G] as a group of power automorphisms;

(iv) [A2, G] is a 2-group of class at most 2;

(v) [A2, G, A] is a normal subgroup of G and lies in Z([A2, G]); and

(vi) A acts by conjugation on [A2, G, A] as a group of power automorphisms.

All our arguments reduce quickly to the case where G is a 2-group. Here our main
results are the following.

Theorem 1.2. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-group G.
Then

(i) [A, G, A] � G; and

(ii) [A, G, A] = {[u, a] | u ∈ [A, G]}.

Theorem 1.3. Let A be a cyclic permutable subgroup of a finite 2-group G and put
B = [A, G, A]. Then

(i) B � Z([A, G]);

(ii) A centralizes [A, G]/B;

(iii) A acts by conjugation on B as a group of power automorphisms; and

(iv) [A, G] has nilpotency class at most 2.

Remark 1.4. It was shown by Cooper in [2] that a power automorphism of a finite
abelian group is always universal, i.e. each element maps to the same power.

In § 2 we deduce Theorems 1.1 and 1.3 from Theorem 1.2. Then we establish several
preliminary lemmas for the proof of Theorem 1.2 in §§ 3 and 4. We denote by HG and
HG, respectively, the normal closure and the core of a subgroup H in a group G. When
G is a p-group, for some prime p, then Ω(G) is the subgroup generated by the elements
of order p. All other notation is standard.

https://doi.org/10.1017/S0013091502001062 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502001062


Embedding of a cyclic permutable subgroup 103

2. Preliminary lemmas and proofs of Theorems 1.1 and 1.3

The proof of Theorem 1.3 will follow easily from Theorem 1.2 and one of the most useful
results in [4], which we record again here for convenience.

Lemma 2.1 (see Lemma 2.3 in [4]). Let G = AX be a finite 2-group, where
A = 〈a〉 and X = 〈x〉 are cyclic subgroups and A is permutable in G. Then

(i) G is metacyclic;

(ii) G′ = 〈[a, x]〉;

(iii) for each integer i, 〈[ai, x]〉 = 〈[a, x]i〉;

(iv) a conjugates [a, x] to a power congruent to 1 modulo 4; and

(v) each element of G′ has the form [ai, x], for some integer i.

From part (iii) we immediately obtain the following corollary.

Corollary 2.2. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-group G.
Then [A, G] = 〈[a, g] | g ∈ G〉.

Proof of Theorem 1.3. We have a cyclic permutable subgroup A = 〈a〉 of a finite
2-group G and B = [A, G, A]. By Theorem 1.2 (ii), each cyclic subgroup of B has the
form 〈[u, a]〉 = K, say, for some element u in [A, G]. But by Lemma 2.1 (i), A normalizes
K and so A normalizes every subgroup of B. By Theorem 1.2 (i), B � G and therefore
it follows that AG normalizes every subgroup of B. Thus B (� AG) has all its subgroups
normal and by [5] and [1] (see also [9, Theorem 2.3.12]), B is either abelian or the direct
product of a quaternion group of order 8 and an elementary abelian 2-group. In the latter
case, B has exponent 4 and so A centralizes B, by Lemma 2.1 (iv). But then AG also
centralizes B and B is abelian, a contradiction. Thus B must be abelian and then (iii)
follows from [2].

Suppose that a conjugates each element of B to its rth power. Let x ∈ B and g ∈ G.
Then

x[a,g] = xa−1g−1ag = ((xa−1g−1
)r)g = (xr)a−1

= x, (2.1)

and so from Corollary 2.2 we see that [A, G] centralizes B. Therefore, (i) is true. Part (ii)
is trivial. Finally, because B � G, we deduce that AG centralizes [A, G]/B and thus
[A, G]/B is abelian. Hence (iv) is true. �

In order to prove Theorem 1.1, all we need now is a well-known basic result.

Lemma 2.3 (see Lemma 5.2.11 in [9]). Let A be a cyclic permutable subgroup of
a group G. Then every subgroup of A is also permutable in G.

Proof of Theorem 1.1. We have a cyclic permutable subgroup A of a finite group
G. By [7], A is subnormal in G and so AG = A[A, G] is nilpotent. Thus (i) follows
immediately from A = A2 ×A2′ . Also [A2, G] and [A2′ , G] are the 2- and 2′-components,
respectively, of [A, G].
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By Lemma 2.3, A2 and A2′ are both permutable subgroups of G. Then parts (ii)
and (iii) are proved in Theorem 1.1 of [3], bearing in mind that A2 centralizes [A2′ , G].

Elements in G of odd order normalize and therefore centralize A2. Thus for any Sylow
2-subgroup G2 of G, we have A2 � G2 and [A2, G] = [A2, G2]. Then (iv) follows from
Theorem 1.3 (iv). Similarly, [A2, G, A] = [A2, G2, A2] = B, say. By Theorem 1.2, B � G2;
and since the elements of odd order in G actually centralize [A2, G], we even have B � G.
By Theorem 1.3 (i), B � Z([A2, G]). This proves (v).

Finally, (vi) follows from Theorem 1.3 (iii), observing that A2′ centralizes B. �

In the remainder of this section we establish some new and record some old results
that will be required for the proof of Theorem 1.2 in §§ 3 and 4. The first comes from [4]
and is both applicable to, and important in, this more general situation.

Lemma 2.4. Let A be a cyclic permutable subgroup of a finite 2-group G. Then
[A2, G] = [A, G]2.

This allows us to prove our next result.

Lemma 2.5. Let A = 〈a〉 be a cyclic permutable subgroup of a finite 2-group G =
〈a, g1, . . . , gr〉. Then there is a commutator [a, gi] of order equal to the exponent of [A, G].

Proof. We argue by induction on |A|. Let [A, G] have exponent 2n and let 2m be the
maximal order of a commutator [a, gi], 1 � i � r. So m � n and we may assume that
m � 1, since [A, G] = 〈[a, gi] | i = 1, . . . , r〉G. By Lemma 2.3, A2 is permutable in G. Put
H = 〈a2, g1, . . . , gr〉. Then G = AH. Also by induction there is a commutator [a2, gi] of
order equal to the exponent of [A2, H]. But, by Lemma 2.4, [A2, H] = [A2, G] = [A, G]2.
Therefore, by Lemma 2.1 (iii) this exponent is 2m−1. But clearly it is either 2n or 2n−1.
Thus it must be 2n−1 and m = n as required. �

We recall that permutable subgroups of order 2 are well understood.

Lemma 2.6 (see Theorem 5.2.9 in [9]). Let G be a finite 2-group and let A be a
permutable subgroup of order 2. Then [A, G] � Z(G).

In the proof of Theorem 1.2 (i) we shall reduce to the case where G is generated by
A and at most two other elements. The remaining results in this section examine that
situation. They all extend trivially to the case where G has any number of generators.
The first has already appeared in [4].

Lemma 2.7 (see Lemma 3.3 in [4]). Let A = 〈a〉 be a cyclic permutable subgroup
of a finite 2-group G = 〈a, x, y〉. Then

[A, G] = (A ∩ [A, G])〈[a, x]〉〈[a, y]〉.

Corollary 2.8. With the same hypotheses as Lemma 2.7 and for any integer i � 0,
we have

[A2i

, G] = (A2i ∩ [A2i

, G])〈[a2i

, x]〉〈[a2i

, y]〉. (2.2)
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The proof is straightforward and may be omitted. A complementary result is the
following.

Lemma 2.9. With the same hypotheses as Lemma 2.7 and for any integer i � 0, we
have

[A2i

, G] = 〈[a2i

, x]〉〈[a2i

, y]〉[A2i

, G, G]. (2.3)

Proof. We keep the same notation as in Corollary 2.8 and denote the right-hand side
of (2.3) by K. Clearly, [B, G] � K. Conversely, K � G and, modulo K, b commutes with
a, x and y, i.e. with G. Therefore, [B, G] � K and so we have equality. �

We need one more preliminary result for the proof of Theorem 1.2.

Lemma 2.10. With the same hypotheses as Lemma 2.7 and for any integer i � 0,

[A2i

, G, G] � 〈[a2i

, x, y]〉〈[a2i

, y, x]〉[A2i+1
, G]. (2.4)

Proof. Again we keep the notation of Corollary 2.8 and denote the right-hand side
of (2.4) by L. By Lemmas 2.3 and 2.6 we have [B, G, G, G] � [B2[B2, G], G] = [B2, G].
Therefore, [B, G, G] is central in G modulo [B2, G]. Thus L � G. But, by Lemma 2.1,

[b, x, x] ∈ 〈[b, x]2〉 = 〈[b2, x]〉 � [B2, G].

Similarly, [b, y, y] ∈ [B2, G]. Since A∩[B, G] � B2, it follows that, modulo L, each of the
three factors on the right-hand side of (2.2) is centralized by G. Therefore, [B, G, G] � L

by Corollary 2.8, as required. �

3. Proof of Theorem 1.2 (i)

We have a finite 2-group G with a permutable cyclic subgroup A = 〈a〉 and we must
show that [A, G, A] = K, say, is normal in G. We begin by reducing to the case where

G is generated by A and at most two other elements. (3.1)

By Corollary 2.2, [A, G] = 〈[a, g] | g ∈ G〉. So a typical element of [A, G] has the form
u = u1u2 . . . um, where ui = [a, gi], gi ∈ G. Then K is generated by elements v = [u, a],
by Lemma 2.1 (iii). It is sufficient to show that vy ∈ K for all such v and y ∈ G. But

vy = [u1 . . . um, a]y = [u1, a]y1 [u2, a]y2 . . . [um, a]ym , (3.2)

where yi = ui+1ui+2 . . . umy. Thus with Gi = 〈a, gi, yi〉, we have

[ui, a
yi ] ∈ [A, Gi, A]yi = [A, Gi, A]

if the theorem is true for A as a permutable subgroup of Gi. Then each factor on the
right-hand side of (3.2) lies in K and the theorem follows. Therefore, we may assume
that (3.1) holds and so

G = 〈a, x, y〉. (3.3)

Suppose that the theorem is false when (3.1) holds and let G (given by (3.3)) be a
counterexample of minimal order. Then KG = 1 and K �= 1. We distinguish two cases.
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Case 1. Suppose that 〈[a, x]〉 ∩ 〈[a, y]〉 �= 1. By Lemma 2.7 we may assume without
loss of generality that [a, x, a] �= 1. Then 1 �= 〈[a, x, a]〉 � 〈[a, x]〉 by Lemma 2.1 (ii). So
N = Ω(〈[a, x]〉) = Ω(〈[a, y]〉) � K ∩ Z(G), contradicting KG = 1.

Case 2. Suppose that 〈[a, x]〉 ∩ 〈[a, y]〉 = 1. Without loss of generality we may assume
that |[a, x]| � |[a, y]|. So |[a, x]| = 2n (say) is the exponent of [A, G], by Lemma 2.5. If
|[a, y]| < 2n, then |[a, xy]| = 2n, since G = 〈a, xy, y〉 (using Lemma 2.5 again). Therefore,
replacing y by xy if necessary, we may assume that

|[a, x]| = |[a, y]| = 2n is the exponent of [A, G].

To simplify notation, we write Ai = A2i

and ai = a2i

for each integer i � 0. Choose i

such that a acts non-trivially on [Ai, G] and trivially on [Ai+1, G]. So 0 � i < n − 2, by
Lemma 2.1 (iv). (We could have chosen our counterexample G with |A| minimal. Then
[A2, G, A2] � G and so [A2, G, A2] = 1. This implies that a centralizes [A4, G] and hence
i = 0 or 1. But this additional information does not appear to shorten our argument.)
By Corollary 2.8, a cannot centralize both [ai, x] and [ai, y]. Therefore, suppose without
loss of generality that a acts non-trivially on 〈[ai, x]〉. Let |[ai, x]| = 2t. So t = n − i, by
Lemma 2.1 (iii). Since a centralizes [ai+1, x], a must conjugate [ai, x] to [ai, x]ρ, where
ρ = 2t−1 + 1, by Lemma 2.1 (iv). In the same way we see that a either centralizes [ai, y]
or conjugates it to [ai, y]ρ.

We have
[ai, yx] = [ai, x][ai, y][ai, y, x]. (3.4)

Since A centralizes Ai+1[Ai+1, G] = AG
i+1, so also does AG. Therefore, by Lemmas 2.3

and 2.6 we have
[Ai, G, G] � Ai+1[Ai+1, G] � Z(AG). (3.5)

Therefore,
a centralizes [ai, y, x]. (3.6)

Suppose first that a centralizes [ai, y]. Then it follows from (3.4) that

a centralizes [ai, x]−1[ai, yx]. (3.7)

Let [ai, yx]a = [ai, yx]β . From (3.7) we get

[ai, x]−ρ[ai, yx]β = [ai, x]−1[ai, yx].

But we can assume that 〈[a, x]〉 ∩ 〈[a, yx]〉 = 1, since otherwise Case 1 applies to G =
〈a, x, yx〉. Therefore, ρ ≡ 1 mod 2t, which is a contradiction.

Thus we may suppose that [ai, y]a = [ai, y]ρ. By Lemma 2.1,

[Ai, G]/[Ai+1, G]

is generated by elements of order 2, all centralized by A and therefore by AG. So this
quotient is elementary abelian. It follows from (3.5) that

[Ai, G] has class at most 2 and [Ai, G]′ is elementary abelian. (3.8)

https://doi.org/10.1017/S0013091502001062 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502001062


Embedding of a cyclic permutable subgroup 107

Since 〈[a, x]〉∩〈[a, y]〉 = 1, a does not centralize [ai, x][ai, y]. Therefore, by (3.4) and (3.6),

a does not centralize [ai, yx]. (3.9)

Clearly, [Ai, G] has exponent 2t, by Lemmas 2.3 and 2.5. To complete the proof we
distinguish two cases.

Suppose that |[ai, yx]| < 2t. By Lemma 2.1 (iv), t � 3 and so 2t−1 = ρ − 1 � 4.
Therefore, raising both sides of (3.4) to the power ρ − 1, we get

1 = [an−1, x][an−1, y][ai, y, x]ρ−1,

using Lemma 2.1 (iii) and (3.8). Thus

1 �= [an−1, x][an−1, y] = [ai, y, x]ρ−1 = [[ai, y]ρ−1, x] = w,

say, by (3.5). Hence w = [an−1, y, x], again by Lemma 2.1 (iii). But by Lemmas 2.3
and 2.6,

[An−1, G, G, G] � [An[An, G], G] = [An, G] = 1.

Thus w is a non-trivial element in Z(G). Also [an−1, x] ∈ [Ai, 〈x〉, A] � K and similarly
[an−1, y] ∈ K. Therefore, w ∈ K, contradicting KG = 1.

Finally, suppose that |[ai, yx]| = 2t. Then, by (3.9), [ai, yx]a = [ai, yx]ρ and hence,
by (3.4) and (3.8), [ai, y, x]a = [ai, y, x]ρ. Thus from (3.6) we get |[ai, y, x]| � 2t−1. In
the same way, interchanging x and y, we may also assume that |[ai, x, y]| � 2t−1. Since
[Ai, G, G] is abelian (by (3.5)), it follows from Lemma 2.10 that [Ai, G, G] has exponent
2t−1. Therefore, in centralizing [Ai, G, G], a is in fact raising each element to its ρth
power. Thus by Lemma 2.9 and (3.9), a conjugates each element of [Ai, G] to its ρth
power.

Putting L = [Ai, G], we now have Lρ−1 � [L, A] � Lρ−1. So [L, A] = Lρ−1 � G. But
1 �= [L, A] � K, contradicting KG = 1. This completes the proof of Theorem 1.2 (i). �

4. Proof of Theorem 1.2 (ii)

Here A = 〈a〉 is a cyclic permutable subgroup of a finite 2-group G and we must show that
[A, G, A] = {[u, a] | u ∈ [A, G]}. We argue by induction on |A|. If |A| � 4, then |[a, g]| � 4
for all g ∈ G, by Lemma 2.1 (iii). Thus a centralizes all [a, g], by Lemma 2.1 (iv), so
[A, G, A] = 1 and the theorem is true. Therefore, suppose that |A| � 8 and assume the
usual induction hypothesis. Since A2 is permutable in G by Lemma 2.3, we deduce that

[A2, G, A2] = {[v, a2] | v ∈ [A2, G]} = K,

say. By Theorem 1.2 (i), K � G. By Lemma 2.1 (ii), a normalizes each cyclic subgroup
〈[v, a2]〉 and so A normalizes every subgroup of K. Then AG (� [A, G]) does the same
and hence K has all its subgroups normal. Suppose that K is not abelian, so it is the
direct product of a quaternion group of order 8 and an elementary abelian 2-group (as
we saw in the proof of Theorem 1.3). But then the commutators [v, a2] all have order at
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most 4 and are centralized by a, by Lemma 2.1 (iv). Thus A centralizes K and therefore
K � Z(AG), contradicting the fact that K is not abelian. So

K is abelian.

By analogy with (2.1) in the proof of Theorem 1.3, we see that

[K, [A, G]] = 1. (4.1)

Let v ∈ [A2, G]. By Lemma 2.1 (ii), there are elements g1, . . . , gn in G such that
v = [a2, g1] . . . [a2, gn]. Therefore, by (4.1),

[v, a2] = [[a2, g1] . . . [a2, gn], a2] = [a2, g1, a
2] . . . [a2, gn, a2].

But 〈[a2, gi, a
2]〉 = 〈[[a2, gi]2, a]〉, by Lemma 2.1 applied to the product 〈[a2, gi]〉〈a〉, in

which both factors are permutable subgroups. Therefore, with M = 〈[a2, gi]2〉〈a〉, we have
M ′ = 〈[a2, gi, a

2]〉. Again by Lemma 2.1, each element of M ′ has the form [x, a], with
x ∈ 〈[a2, gi]2〉 � [A4, G]. Thus [a2, gi, a

2] = [xi, a] for some element xi ∈ [A4, G]. There-
fore,

[v, a2] = [x1, a] . . . [xn, a] = [x1 . . . xn, a]

by (4.1). It follows that every element of K, as an element of [A, G, A], has the form that
we are trying to establish. Since K � G, there is a central series of G passing through K.
Then using the identity [u1u2, a] = [u1, a]u2 [u2, a], a simple induction allows us to assume
that

K = [A2, G, A2] = 1. (4.2)

Using Lemma 2.1 again, we see that [A, G, A2] is generated by elements of the form

[[a, h1] . . . [a, hr], a2] =
r∏

i=1

[a, hi, a
2]ci , (4.3)

for suitable elements hi in G and ci = [a, hi+1] . . . [a, hr]. By (4.2), a induces an auto-
morphism of order at most 2 in any subgroup of the form 〈[a2, g]〉. So by Lemma 2.1 (iv),
a centralizes 〈[a2, g]2〉 = 〈[a4, g]〉. Therefore, A centralizes [A4, G] and hence so also does
AG = A[A, G]. But again by Lemma 2.1 (iv), we have

[a, g, a2] ∈ 〈[a, g]8〉 � [A4, G]

and therefore each [a, hi, a
2] commutes with ci in (4.3). Thus [A, G, A2] is generated by

the elements [a, g, a2], g ∈ G.
Choose g ∈ G and let L = 〈[a, g]2〉〈a〉, so that L′ = 〈[[a, g]2, a]〉 = 〈[a, g, a2]〉. Each

element of L′ has the form [y, a], where y ∈ 〈[a, g]2〉 = 〈[a2, g]〉 � [A2, G]. Therefore,
[a, g, a2] = [y, a], for such an element y in [A2, G]. It follows that [A, G, A2] is generated
by elements of the form [y, a]. But with y1, y2 ∈ [A2, G], we have [y1, a][y2, a] = [y1y2, a],
by (4.2). Thus [A, G, A2] ⊆ {[y, a] | y ∈ [A2, G]}. In particular, [A, G, A2] � [A2, G, A].
Conversely, [A, G, A2] = [A, G, A]2, by Lemma 2.4 (replacing G there by AG = A[A, G]).
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Therefore, [A, G, A2] � G, by Theorem 1.2 (i), and it follows from the Three Subgroup
Lemma (see [8, 5.1.10]) that [A2, G, A] � [A, G, A2]. Thus

[A, G, A2] = [A2, G, A] = {[y, a] | y ∈ [A2, G]} � G. (4.4)

Just as we were able to assume above that K = 1, so now from (4.4) we may suppose
that

[A, G, A2] = [A2, G, A] = 1. (4.5)

By Lemma 2.1 we have [A, G, A] � [A4, G], and [A2, G, [A, G]] = 1, by (4.5). Therefore,

[A, G, A, [A, G]] = 1. (4.6)

Each element of [A, G] has the form [a, y1] . . . [a, ym], yi ∈ G, by Corollary 2.2. Thus
[A, G, A] is generated by elements of the form

[[a, y1] . . . [a, ym], a] = [a, y1, a] . . . [a, ym, a], (4.7)

by (4.6), i.e. [A, G, A] is generated by elements [a, g, a], g ∈ G. But, by (4.7), products
of such elements have the form [u, a], u ∈ [A, G]. This completes the proof of Theo-
rem 1.2 (ii). �
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