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Abstract

In this paper, multigrid methods for solving the biharmonic equation using some non-
conforming plate elements are considered. An average algorithm is applied to define the
transfer operator. A general analysis of convergence is given.

1. Introduction

The biharmonic equation is a typical elliptic equation of order four and possesses
important theoretical value. The biharmonic equation is a basic mathematical model
in structure mechanics and is used in the blending problem, image restoration, domain
transforms, and so forth. In the blending problem, given two frame surfaces (or
bodies) already located, a smoothly transferring surface is sought to connect the two
frame surfaces along a certain boundary. Usually, the "smoothness" means that the
blending surface and its tangent plane are continuous until the joint boundary. Thus,
the displacement vector of the blending surface satisfies the biharmonic equation. In
general, the nonconforming finite element method is applied in solving the biharmonic
problem, since the degrees of freedom in each element, and hence the computational
complexity, can be reduced.

Multigrid methods are very efficient iterative solvers for systems of algebraic
equations arising from finite element and finite difference discretizations of elliptic
boundary value problems. In recent years, multigrid methods of nonconforming
plate elements have been studied (see, for example, [4, 9]). But, because the finite
element spaces associated with nonconforming elements are not nested, that is, V*_i <£_
Vk, it is difficult to define the transfer operator in the multigrid method of some
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nonconforming plate elements, such as the Adini rectangular element, the Morley
element, the complete cubic nonconforming element and the Zienkiewicz triangular
element. S. C. Brenner (see [4]) has used the idea of taking averages in defining
the transfer operator /*_, for the Morley element. In this paper, we extend this idea
to some of the nonconforming finite elements mentioned above and give a simpler
convergence proof than Brenner's.

We know that the complete cubic nonconforming plate element is of the same
convergence order as the Morley nonconforming element and the Adini element.
However, the cubic element has two degrees of freedom fewer than that of the Adini
element. Moreover, we can get the convergence order to be O(h2) when the compen-
sation method is used. So we apply the complete cubic nonconforming plate element
to develop an optimal-order multigrid method for the biharmonic equation in this
paper.

The paper is organized as follows. We begin with a discussion of the complete cubic
nonconforming plate element. In Section 3, the intergrid transfer operator is defined
and its two properties are proved. The multigrid algorithm is given in Section 4. In
the last section, the error order of the multigrid method is obtained.

2. The nonconforming complete cubic plate element

We consider the plate blending problem with clamped boundary condition

(AW ma.
[u = du/dn = 0 on 3f2,

where u denotes displacement, / e H~'(£l), I = 0 or 1 and is the loading force, Q is
a rectangular domain and n is the outward normal direction of boundary 3 £2.

The boundary value problem (2.1) has a unique solution u e H4~'(£l) n //0
2(£2),

which satisfies the following elliptic regularity (see [1]):

NI«-(n)<C(n) | | / | | w - ( ( n) . (2.2)

The problem (2.1) can be associated with the following variational problem: Find
u 6 H0

2(Q), such that

a(u, v) = (/-, v), Vu e #*(«), (2.3)

where

a(u, v)= (AuAv + (l-o)(2uxyvxy-uxxvyy-uyyvxx))dx, (f,v)= fvdx,
Ja Jn

and 0 < a < 1/2 is the Possion ratio.
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The problem (2.3) is discretized by the complete cubic nonconforming plate el-
ements. Let {r*}, k > 1, be a family of rectangular elements of £2, where r*+i is
obtained by connecting the midpoints of the edges of the rectangular elements in i*.
Then we have hk = max{diam T,T € rk] = 2hk+l.

Let Vk be the complete cubic nonconforming plate element space associated with rk.
Then v € Vk possesses the following properties:

(i) v\T is a cubic polynomial for all T e rk;
(ii) the degrees of freedom are the values of the functions at the vertices of the

rectangular T e xk and the normal derivatives at the midpoints of the edges and the
mean values of two derivatives of the third order;

(iii) v and dv/dn vanish at the vertices and the midpoints on 3Q, respectively.

Note that Vk_x <£_ Vk (that is, Vk is nonnested) and Vk (£_ H^ (that is, V* is noncon-
forming).

The discrete problem of (2.3) is: Given/ e L2(£2), find uk e V*, satisfying

ak(uk, v) = </, u), Vu e Vk, (2.4)

where

ak(u, v) = y ^ I (AMAU + (1 — a)(2uxyvxy — uxxvyy — uyyvxx)) dx
Text •'T

and

~~ [fvdx.

Define the mesh-dependent energy norm as

\\v\\k := y/ak(v, v), Wv 6 Vk.

From [3], we have

ll«-«*ll <C{hk\u\Hi+h2
k\f\<). (2.5)

Thus, we modify the problem (2.4) to take the following form: Find u*k e Vk, such
that

«*(«;, v) = (f, v'), Vu € Vk, (2.6)

where v' is a linear interpolation of v.
It is easy to prove the inequality

\\u-u*k\\k<Chk\u\Hy. (2.7)

Note that we don't need to make the above modification for the Zienkiewicz element
and the Adini element, since Vk c C°(£2). In this paper, C denotes a generic positive
constant, which may have different values in different occurrences.
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3. The intergrid transfer operator and its properties

The intergrid operator /*_, : Vk_i + H\Q) D //0
2(ft) H> Vk is defined as follows.

For v 6 Vt_, + H\Q) D H*(Q),

(i) Let A be a vertex of element T e rk inside £2. If A is also a vertex of r*_i,
then

(l^vHA) := v(A).

If A is the midpoint of the common edges of two rectangular elements T\ and T2 in
T*_I, then

:= {[v\Tl(A)

If A is in the interior of a rectangular in Tt_], then

(ii) If the midpoint B of an edge in an element of rk is located in the interior of a
rectangular in r*_i, then

If B is on the common edges of two elements T\ and T2 in r*_i then

2 L u,t Ti

(iii) /*_, v := 0 at the vertices of xk along 3S2 and d(Ik_lv)/dn = 0 at the midpoints
of the edges of T e rk along d£2.

(iv) Let

33(/*V)

and
33(/*_,w)

Thus, we have the following two lemmas.

LEMMA 3.1 (Stability Property). For any v e V4_i + //3(S2) D //O
2(f2), r/iere ew

a constant C independent ofhk, such that
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PROOF.

where nk is an interpolation operator from H3(Q) D #O
2(£2) to Vk. Thus, one gets

l|/*_,w|| < ll/*_,w - *tvh + \\nkv - v\\k + NU_,. (3.1)

Using the interpolation theorem of Sobolev space and the inverse inequality, we obtain

Hw-7r*w||t<C||u|U_,. (3.2)

So, the key step is to estimate \\Ik_{v — nkv\\k.
From the definition of nkv and Ik_xv, we see

-u(A2)l7i) + Y<

dv(B2)

- u(A4)|ri)

M2 (dv(B2)

\ dn dn

M4 fdv(B4)
2 \ dn

8v(B4)

dn

where T € rk, T, (i = 1, 2, 3) are three neighboring elements in rk^u Mt and Nt

(i = 2, 4) are the shape functions, A, (i = 1, 2, 3, 4) are the vertices of T and B,
(i = 1, 2, 3,4) are the midpoints of the edges of the element T.

Applying the Bramble-Hilbert lemma and

< Ch~k\ <Ch~\ i , ; , = 1,2,

the following inequality holds:

\nkv - /*_,v|2 T < C(|u|2.r, +

Summing the above inequality for T e Tk,we get

(3.3)

Lemma 2.1 follows from inequalities (3.1)-(3.3).

LEMMA 3.2 (Approximation Property). For any v e Vk_x + H2(S2) D HQ(Q), there
exists a constant C such that

and

\\nkw - Ik
k_x < Cht\w\H>, n

PROOF. The first inequality can be obtained as Corollary 1 in [4].
Using Lemma 2.1, the interpolation theorem in Sobolev space and

?kW = Ik_tw, Vw € //3(fi) n H2(Q),

the second inequality is obtained. Thus, the result of Lemma 2.2 is proved.
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4. The multigrid algorithm

From the spectral theorem, there exist eigenvalues 0 < A.[ < A2 < • • • < XNi and
eigenfunctions <p{, fo,... ,4>Nt, such that

ak(<t>i, v) = A.,(0,-, v ) , Vu € Vk,

and (fa, <f>j) = &ij (the Kronecker Delta). By the inverse inequality (see [7]) we have

K < Ch\. (4.1)

Assuming v = X ^ i c,0,, the norm ||| • \\\sk is defined as follows:

Obviously, |||v|||o.t = ||w||-L2 and |||i;|||2,* =
Let zo be an initial guess value of the solution. Then an approximate solution

MG(k, zo, G) of the multigrid algorithm is defined by the following problem: Find
z € Vk, such that

ak(z, v) = G(u), Vw e Vt, G € Vk', (4.2)

where Vt' denotes the conjugate space of V*.
For k = 1, MG( 1, Zo, G) is the solution of (4.2) obtained from a direct method.

For it >. 1, MG(k, zo, v) := zm + '*_i9p. where zm can be obtained by m smoothing
steps:

(Zi - z,-i, v) = A;'(G(v) - atfe. , , w)), Vv € Vi, (4.3)

where 1 < i < m, A = Cft̂ "4, (see (4.1)). The quantity qp is obtained by the
(it — l)th-level iteration being performed p times (p = 2, 3), that is,

where

G = G(/*_,u) - a*(zm, 7*_,u) = a*(z - zo, /*_!«), Vw € Vt_,.

The full multigrid method is defined as follows. Let Mi be the solution by a direct
method. The approximations uk (k > 2) are obtained recursively by

«i = (/-i«y-i.

M{ = MGO', «{_„ G), 1 < / < r, G(v) = [ fvdxx dx2,
JG

where r is a positive integer to be determined.
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5. The convergence analysis

First, we give the following statement:

(St) When the fcth-level iteration is applied to the variational problem, we have

\\z-MG(k,zo,G)\\k<Y\\z-zoh,

where y e (0, 1) is a constant independent of it.

THEOREM 5.1. If the number of smoothing steps m is large enough, then we have
in the energy norm

(5t_,) -> (5,).

PROOF. Let e0 := z — Zo, ei : = z — z, (1 < i < m + 1). Recall that q satisfies

ak-x(q, v) = G(v) = ak(e0, Ik_xv), Vu 6 V*_,.

Let l\ := Zo + ^*-i9' ^i : = z — Zu then z,- (2 < i < m + 1) can be obtained
recursively by

(z, - 1,-uv) = —(G(i ; ) - at(z,_,, u)), Vu e V*. (5.1)
A*

Thus we can get

\\z - MG(k, zo, G)\\k = ||z - zm+1 ||t = ||em+11| < ||em+1 - zm+11| + ||zm+1 ||t. (5.2)

From (4.3) and (5.1), we have that

(e, - e,_,, v) = --—at(g,-_i, v) (5.3)
A*

and

(e, - e,_,, u) = -—-a t ( i , _ i , u). (5.4)
A*

Subtracting (5.4) from (5.3) implies that

(e, - et - e,_, + e,_,, v) = - - — (e,_, - £,_,, u).
A

Letp, = et — eh then

,- - pi-i,v) = -—at(p,-_i, u),
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Assume thatp, = "£Zi c<0» then P->+i = £ £ 1 c'(l ~ h/^k)m<t>- Thus

Ikm+i ~ em+i\\l = \\pm+l\\\ = JTc) ( l - l ± \ A.,,
1 = 1 ^ '

Using A.,- < At < Ch;\ we finally get \\em+1 - zm+\\\\ < \\pi\\j = Iki - li\\\, that is,

lk»+i -e«+i l l t< l l« i -c i l l* . (5.5)

Using ||ei — l\ ||t = ||/*_,(gp — q)\\t and Lemma 2.1, we have the inequality

l k i - « i l l t < C V I M I * - i . (5.6)

On the other hand, q satisfies the equation

a*-i(<7, v) - ak(e0, /*_,u), Vu e Vt_,.

Thus we have

IklU-i < IkolU- (5.7)

Combining (5.5), (5.6) and (5.7) implies

(5.8)

Let e[ e H^iSl), then — Aef = (j> e H 1{Q.) and

IH-> = sup

Now we analyse the term ||em+) \\k of (5.2). Let ex = YllLi ci<Pi' men we get from
the above analysis that

"* / X \m

In view of the definition of ||| • \\\sk, we obtain

that is,

From [4] we know that

tf'+MeilU)- (5.10)
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By means of Green's formula and the Cauchy-Schwarz inequality, we get

Thus

Now let £ € HQ(Q) D //3(f2) be the solution of the biharmonic equation with right-
hand side <f> € / /" ' , that is,

I A 2 £ = 0 infi,

£ = 3£/9n on3fi.
From the elliptic regularity, one gets

Assume £t e V* and £*_i e V*_i satisfy

a*(?*, v) = (0, v7), Vu € Vk

and

fl*_i(|t-i,u) = (0,wl), Vw6Vt_,.

Then we have

M-hh < Chk\l;\H,, 11$" — ^*_l ||*_l < CAt

and

\e\ \H> = [((t>, e[) - ak{£, e0 - q)) + at(§, e0 - q) := /, + /2.
Let

/i = (</>, «[) - «*(?, e0 - q)

= ak$k - f, e0) + ak_x{H - ?*-i, «) - (*, (/*_,9)' " «?'),

then it holds that

l/.l < Chk\e[\H,\\eoh-
Let

/2 = «*(?, eo-q) = ak(% - n£, e0) + ak{Tzk% - lk
k_x(nk_£), e0)

then the approximation property implies |/2| < Chk\e[|//i||enlU- Therefore the fol-
lowing inequality holds:

\e[\H> < Chk\\e0\\k. (5.11)
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However,

ll«f II* = Ik - zoll* = Iko - Ik
k-,qh < IkolU + ||/**_,9llt < Clkoll*.

In view of (5.10), we finally get

ll|e.llli,*<CMeoll*. (5.12)

Combining (5.9) and (5.12), we obtain

| | | U 1 (5.13)
V4m + 1

It follows from (5.8) and (5.13) that

\\z - MG(k, zo, G)\\k < Icy" + 4 J — -

Choosing y e (0, 1) and m such that

y" + -7^=) < y,
v4m + 1 /

we have ||z — MG(k, zo, G)\\k < y\\eo\\k- The proof is now complete.

THEOREM 5.2. Ifuk and u*k are the solutions of the full multigrid algorithm for the
problems (2.4) and (2.6), then there exists a constant C such that

and

\\u-u*k\\k<Chk\u\H>.

PROOF. We only prove the first inequality, since the proof of the second inequality
is similar to the first. By (2.5) and Theorem 5.1, one obtains

< l l « - « * » * +I I«* -«JI I*
< I I u - u k \ \ k + Cyr\\uk- /*_,«*_,

But
IIu* - / '_,«*-! IU < II"* - u\\k + ||u - nku\\k + \\Jiku
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Thus

II" - «*||* < CAt(|«|W3 + A*||/ ILO + ^ ^ r(\u\H> + hk

Choosing y such that 1 — 2Cyr > 0, we then have

Theorem 5.2 follows by the above analysis.
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