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SPACES OF ORDERINGS IV 

MURRAY MARSHALL 

A major goal of this paper is to give a proof of the following isotropy 
criterion: Let X = (X,G) be a space of orderings in the terminology of 
[9] or [10], and l e t / be a form defined over G. T h e n / is anisotropic over 
X if and only if / is anisotropic over some finite subspace of X. This is 
the content of Theorem 1.4, and generalizes [1, Corollary 3.4]. Moreover, 
in view of the known structure of finite spaces (see [9]), this has, essen
tially, the strength of [2, Satz 3.9] or [12, Theorem 8.12]. The technique 
used to prove this criterion is roughly patterned on that of [6], and yields 
some interesting by-products: An interesting invariant of a space of 
orderings called the chain length is introduced (Definition 1.1) and spaces 
of orderings with finite chain length are classified (Theorem 1.6). This 
extends work in [4], [7], and [9]. It is proved (Theorem 3.2) that every 
space of orderings X possesses a partition X = \JaeMX(a) satisfying: 
Each X(a) is a fan, and each fan VÇ. X intersects at most two of the 
X(Û;)'S. Such a partition is referred to as a P-structure on X, and general
izes the partition of the space of orderings of a field induced by the real 
places of the field. We prove that spaces of finite chain length are just 
those with finite P-structure (Theorem 3.3). Some properties of the space 
of orderings of a field which are expressible in terms of real places gener
alize to P-structures, among them the "exactness" result in [1] (see 
Theorem 3.12). 

The paper assumes a good deal of [9, 10, 11]. On the other hand, the 
proof of Theorem 1.4 is essentially independent of [11], so as remarked 
in [8, Theorem 5.4], the isotropy criterion proved here yields another 
proof of the representation theorem for W(X) (Theorem 3.5 of [11]). 
This follows along the same lines as that given in [1]. 

The notation is that of [11]. In particular, throughout the paper, 
X = (X, G) will denote a space of orderings in the terminology of [9]. 

1. Chain length and the isotropy theorem. In this section the 
chain length of a space of orderings is defined, and various properties of 
this invariant are proved. The structure theorem for spaces of finite chain 
length and the isotropy theorem are proved modulo the proof of Theorem 
1.3. The proof of 1.3 will be given later (see the remark following Theorem 
3.3). 
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604 MURRAY MARSHALL 

(1.1) Definition. The chain length oiX (denoted cl (X)) is the maximum 
integer k ^ 1 such that J do, . . . , ak £ G satisfying 

Xiat-i) £ X(a,i), i = 1, . . . , k, 

(or cl (X) = co if no such maximum exists). 
In view of [9], Lemma 2.1, the condition X (at-i) £ X(at) is equivalent 

to 

^ ( l , a , ) £ D ( l , a t - _ 1 ) . 

(1.2) Remark. It is easily verified that cl (X) = 1 if and only if 
|X| = 1, and cl(X) ^ 2 if and only if X is a fan (see [11], Theorem 4.2 
(i)). These results are left as exercises. 

Recall [10, definition 2.10] that X is said to be decomposable if there 
exist non-empty subspaces Xt of X, i = 1,2 such that X = Xi® X<i. 
Let us denote by gr(X) the translation group of X in the terminology of 
[91, ie, 

gr(X) = {T € x(G)\yX = X}. 

Thus gr(X) is a closed subgroup of x(G). Let the residue space of X be 
defined to be X' = (Z' ,G') where G' = gr(Z)-L Ç G, and where X' 
denotes the image of X in x(G') via restriction. Exactly as in the proof 
of [9], Theorem 4.8], X' is a space of orderings. Moreover gv(Xf) = 1, 
and X is a group extension of X' (in the terminology of [10, definition 
3.6]). With this terminology at our disposal, we can state the main 
theorem concerning spaces of finite chain length. 

(1.3) THEOREM. Suppose c\(X) < co. Then either \X\ = 1, or 
gr(X) 9^ I, or X is decomposable. 

The proof of this key result is found in § 3. For now we concentrate on 
giving two important applications: 

(1.4) ISOTROPY THEOREM. Suppose a form f is anisotropic over a space 
of orderings XQ. Then there exists a finite subspace X C XQ such that f is 
anisotropic over X. 

Proof. Let X = (X,G) be a subspace of XQ chosen minimal subject to: 
/ is anosotropic over X. (The existence of X is by Zorn's Lemma; see the 
technique of [11, Theorem 5.3].) Let a0, . . . , ak G G satisfy 

fl(l,aw>S2)(l,4* = 1, .. . ,*. 

Thus (l,a*) == (a^-i, a*_ia*) and az-_i 9e a- for i = 1, . . . , k. We may 
assume a0 = 1, ak = — 1 . Let bt = a^a^ Thus 6* ^ 1, so X(6<) is a 
proper subspace of X. T h u s / is isotropic over X(bi), i.e, there exists a 
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form gt of dimension n — 2 (where n denotes the dimension of /) such 
t h a t / ~ gt over X(bt). Thus (comparing signatures) 

/ ® <lf6«>~g< ® (l,bt) over X, 

so, by addition 

(1) f® ( Z (l,bt))~ Ê gi® < W (overZ). 

But using the assumptions on a0, • • . , ak we see that (over X) 

(blf . . . , bk) ^ <a0ai, aia2, • • • , a*-ia*> = <0i» aia2, . . . , a*-ia*) 
^ (1, a2, a2a3, . . . , a*_ia*) ÊË . . . 2É (1, . . . , 1, ak) 

^ <1 1, —1>. 
Substituting this in (1) yields 

( 2 £ - 2 ) / ~ è giiLbi). 

N o w / (and hence (2k — 2)/, by [11, Corollary 3.5 (ii)]) is anisotropic 
over X, so comparing dimensions, and using [11, Lemma 2.4], 

(2k - 2)n <; k(n - 2)(2), 

ie., k ^ \n. This proves cl(X) < oo. 
Now we apply Theorem 1.3. If \X\ = 1 we are done. Suppose X = 

Xi © X2 where Xt = (Xu G/Ai) is a non-empty subspace of X, 
i = 1,2. Thus there exist elements a a, . . . , ain Ç G such that 

/ = < —1, 1, a*3, • . . , ain) over X,, i = 1,2. 

Since X = Xx ® X2l the natural injection 

G -> G/Ai X G/A2 

is surjective, so there exist a3, . . , an £ G such that 

ay = a 0(mod A*), 3 ^ / ^ w, i = 1,2. 

Then clearly/ == ( 1 , - 1 , a3, . . , an) over X, a contradiction. Thus X is 
indecomposible, sogr(X) 9^ l . L e t X ' = (X',G') denote the residue space 
of X and decompose / as 

/ ^ x i / i e . . . e *•,/, 

where / i , . . . , / s are forms over G', and n, . . . , ws G G are distinct 
modulo G'. The assertion that / is anisotropic over X is equivalent to 
the assertion that each/i, . . . ,fs is anisotropic over X' (see [10, remark 
3.7]). There are two cases to consider: 

Suppose s = I. Let A be any subgroup of G such that G is the direct 
product G = A X G', and let Y = A-1- H X. Then one verifies easily 
that Y = (F,G/A) is a subspace of X and that (F,G/A) ~ (X',G'), this 
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equivalence being induced by the natural isomorphism G/A = G'. Thus, 
since/i is anisotropic over X', it (and t h e n / = irifi) is anisotropic over 
F. But, on the other hand, gr X j£ l,i.e.,G' ^ G, i.e., A ^ 1, i.e., F ^ X . 
This contradicts the minimal choice of X. 

Thus 5 ^ 2. It follows that each/* has strictly lower dimension t h a n / 
so by induction on the dimension, there exist finite subspaces Z / , . . ., ZJ 
C X' such t h a t / i is anisotropic over Z / . Thus / i , . . . , / s are all aniso
tropic over the subspace of X' generated by Z / . . . , Z / . Denote this 
space by Z' = (Z',G'/A'). Note Z' is still finite. Let Z = A,J- H X. Then 
Z = (Z,G/Af) is a subspace of X, and a group extension of Z' = 
(Z',G'/Af). Moreover, since 7n, . . , 7rs are distinct modulo G',f is aniso
tropic over Z. Thus, by minimal choice of X, Z = X, ie., A' = 1, i.e., 
Z' = X ' is finite. However, X itself could be infinite (since, a priori, 
gr(X) could be infinite). Define Gn to be the subgroup of G generated by 
G and 7ri, . . , 7rs, and let X" denote the restriction of X to G". Thus 
(X,G) is a group extension of (X",G") which, in turn, is a group extension 
of (X',G')- Moreover (X",G") is finite, and / is anisotropic over X". 
Finally, let A be subgroup of G so that G = A X G", and let F = 
A-1 C\ X. Then F = (F,G/A) is a subspace of X naturally equivalent to 
(X",G"). Thus F is finite, a n d / is anisotropic over F. Thus F = X is 
finite. 

Denote by © the category of all spaces of orderings, and by ^ the 
smallest subcategory of © such that 

(a) *$ contains the singleton space, 
(b) If Xi, X2 € # , then Xx © X2 Ç ^ , 
(c) If X is a group extension of X' £ ^ , then X £ fé7. 

Thus elements of *$ are spaces obtained from the singleton space 
using the direct sum and group extension operations a finite number of 
times. In [7] the following characterization of *io is obtained. 

(1.5) THEOREM. The following are equivalent: 
(i) There exists a pythagorian field K with only finitely many real 

places such that X ~ XKj 

(ii) X e &. 

Here are some additional characterizations of ^f : 

(1.6) THEOREM. The following are equivalent: 
(i) cl(X) < oo. 

(ii) X is generated by finitely many fans. 
(iii) I ^ . 

For the proof we require Theorem 1.3 and the following theorem: 
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(1.7) THEOREM, (i) Suppose Xt = (XitG/Ai)t i = 1, . . . , n are sub-
spaces of X generating X. Then 

cl(Z) ^ Z cl(Z<). 

(ii) If, in addition, X = Xi © . . . © Xnj then 

cl(X) = è cl(X,)-
2 = 1 

(iii) If X is a group extension of X', then cl(X) = cl(X'), except in the 
case \X'\ = 1 (in which case X is a fan). 

Here is a proof of Theorem 1.6 (assuming 1.3 and 1.7). Denote by 2$ 
the subcategory of © consisting of spaces which are generated by finitely 
many fans. It is clear that 3f satisfies (a), (b) and (c). (Hint: If X is a 
group extension of X', then the inverse image of a fan in X' under the 
natural projection is a fan in X.) Thus ^ C Qf, so (iii) => (ii). The im
plication (ii) => (i) follows from Theorem 1.7(i) and Remark 1.2. The 
implication (i) => (iii) is proved by induction in the chain length of X. 
Replacing X by its residue space, we can assume gr(X) = 1 (using 
Theorem 1.7 (iii) and property (c) of c€). Thus, by Theorem 1.3, either 
\X\ = 1, or X decomposes. Further, if X = Xx © X2, Xt ^ 0, i = 1,2, 
then c\(Xi) < c\(X) by Theorem 1.7 (ii), so by induction, Xt £ ^ , i.e., 
X £ ^ by (b). Finally, if \X\ = 1, then X £ # by (a). 

Proof of Theorem 1.7. (i) Suppose X(a^_i) £ X(a,j), j = 1, . . . , ft. 
Then for each i, 1 ^ i ^ w, Xz(a ;_i) C Xi(a,j). Moreover, since 
X(a7_i) ^ X(af), there exists i, 1 ^ i ^ n such that 

*«(a,- i) ^ X,(a,) . 

(For if Xi(a,j-i) = Xi(af) for all i S n, then 

a/^_i Ç fl Aj = 1, i.e., a,- = a,_i, 
z = l 

a contradiction.) This holds for j = 1, . . , ft. Simple counting yields 

k è £ , cl(X«), i.e., 
z = l 

cl(Z) ^ £ cl(X,). 
z = l 

(ii) We are assuming X — \J tXi and the natural homomorphism 
from G into I I t G/At is an isomorphism. Suppose 

Xi(a.i§j-i) £ Xi(aitJ),j = 1, . . , kit i = 1, . . , n. 

https://doi.org/10.4153/CJM-1980-047-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-047-0


608 MURRAY MARSHALL 

We may as well assume aito = — 1, and aiM = 1. Choose elements 
bij Ç G such that 

bij = 1 (mod A*;) for k < i, 

b(j = dij (mod A^, and 

6 f i = —1 (mod Afc), for k > i. 

Note that 

X(btJ) = ( U , < W U X W . 

It follows that 

*(&io) £ . . . £ Z(6 lfcl) = X(b2Q) C C *(&Bfcw). 

There are X^t inequalities in this chain, so cl(X) ^ 2^*» a n ( i hence 

cl(X) è E c l ( Z , ) . 

The other inequality follows from (i). 
(iii) Suppose \X'\ T^ 1. Suppose 

X'(a f_,) £ -Y'(af)f i = 1, . . , ft, with a, Ç G. 

Then clearly X(a,_i) £ X(at), i = 1, . . , ft. Thus d ( ^ 0 è cl(X'). Now 
suppose 

£><1, a<) Ç JO<1, a,_i), i = 1, . . , ft, with au . , ak Ç G. 

We may assume a0 = — 1, afc = 1. Then ai ^ — 1. There are two cases 
to consider. 

15/ Case. Suppose a,\ C? G. It follows (from the définition of group 
extension) that J9(l,ai) = {l,ai}. Thus ft ^ 2 in this case. Thus, since 
\X'\ * 1, cl(X') ^2^k. 

2nd Case. Suppose ax Ç G. Then Z}(1,ai) C G' (e.g., by [9, Lemma 
4.9] ; note ax 9^ — 1). Thus ai, . . , afc are all in G, and 

Thus cl(X') è ft. Thus, in any case cl(X') è ft, so cl(X') è cl(X). 

We now proceed to prove a deeper property of chain length. This will 
eventually be used in the proof of Theorem 1.3. 

(1.8) THEOREM. Suppose Y is a subspace of X. Then cl(F) S c\(X). 

The proof of this follows easily from the following lemma. The lemma 
itself doesn't seem to have an easy proof. 

(1.9) LEMMA. Suppose b,a0, . . . , ak £ G satisfy 

D(\fi) = {1,6}, and 

D{hat-i){lJb) Ç D(l,at)(l, b)f i = 1, . . . , ft. 
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Then there exists aî G D{aiiaib) = \dudib) such that 

D(l,ai-i') QD(l,a/}, i = 1, . . . , ft. 

Proof of 1.8. Suppose, to the contrary, cl(F) > cl(X). Then, in par
ticular, cl(X) < GO. Choose a subspace Z Q X minimal subject to (1) 
Z Z> F and (2) cl (Z) ^ cl (X). To show such Z exists, we need only verify 
that Zorn's Lemma applies. Suppose {Zt} is a collection of subspaces of 
X satisfying (1) and (2) and linearly ordered by inclusion. Let Z' = 
Pi iZi* Then Z' is a subspace of X satisfying (1). To show Z' satisfies (2) 
suppose a0, . . . . , ak £ G satisfy 

Z ' ( a , ) £ Z ' ( ^ - i ) , j = l , . . . , f t . 

Thus, the set 

% = {a Ç X\ o-(l,ay) = v^j-iidj-xa,]), j = 1, . . . , ft} 

is open in X and contains Z'. By compactness, Z* C ^ for some i, so 

Zz-(ay) C Zz(a ;-_i),j = 1, . . , ft. 

These inclusions must be strict, since Z' C Z*. Thus ft ^ cl(Z<) ^ cl(X), 
so cl(Z') ^ cl(X). Thus Zorn's Lemma applies, so Z exists as asserted. 

To simplify notation, we may assume X = Z. Let Y = (F,G/A). 
Since 

Y ^X (cl(F) > c l ( X ) ) 

it follows that A ^ 1, so there exists a £ A, a ^ 1. Thus F Ç I ( a ) C j , 
Since cl(Z) < co, there exists K G, M 1, such that X(a) C X{b) C 
X, X(6) maximal. Thus D(l,b) is minimal, ie., D{l,b) = {1,6}. By the 
minimal choice of X( = Z), it follows that cl(X(b)) > cl(X). On the 
other hand it follows from Lemma 1.9 that c\(X(b)) ^ c\(X). This is a 
contradiction. 

The proof of 1.9 is broken into three cases: ft = l,ft = 2 , f t ^ 3 . The 
case ft = 2 is the difficult case. 

Suppose ft = 1: In this case do is represented by 

(1,^X1,6) ^ (1,6) 0 ai(l,6), 

so by O4, 3 u,v Ç D(l,b) such that a0 is represented by (u,div), i.e., ua0 is 
represented by (l,aiuv). Take aQ' = ua§, a / = d\uv. 

Suppose ft = 2: We may as well assume that modulo D(l,b), 

(1) a0 ^ 1, a2 ^ — 1 and a*_i ^ a< i = 1,2. 

For if a0 = 1, a2 = —1, or a*_i = a* for i = 1 or 2, then by taking 
do' = 1 (resp. a,2 = — 1 , resp. a*_i' = a / ) we would be down to the case 
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k = 1. By the case k = 1, we may also assume (replacing at by atb if 
necessary) that 

(2) D(l,aQ) C D(l ,a i) and D(lfiai) £ £>(M2>. 

We may also assume 

(3) D<l,ai) g Z><l,a2>, £ ( 1 , ^ ) g J9<l,6a2>, # < W £ B ( 1 M ) , 

and 

D{l,bao) g f l ( l M ) . 

We complete the proof by showing that (1), (2), and (3) together with 
D{l,b) = {1,5} imply a contradiction. 

Denote by G' the subgroup of G generated by b, a0, ai, a2, and — 1, and 
by X' the restriction of X to x(G'). By (1) and (2), there exist «i, a2, «3, 
ou 6 X ' defined by 

a0 
a-i a2 

+ + + 
+ + -

+ — — 

By (2), these are the only characters in X' making b positive. There may 
also be a character a5 G X' satisfying a5(b) — — 1, 0:5(01) = 1. By (2) it 
follows that 0:5(̂ 0) = l,a5(a2) = —1, so there is at most one such charac
ter. There may also be characters «6, on, as, a$ £ X' defined by 

b a0 a,\ a2 

a, - + - + 
a7 — + — — 
«8 — ~ ~ + 
«9 — — — — 

By (3) and (2) certain of these characters do, in fact, exist, namely 
(*): one of each of the following pairs exist: 

«6 , «8Î « 7 , « 9 ; «g , «9Î « 6 , 0:7. 

It is clear that «i, a2, . . . , a:9 exhaust all possible elements of X''. Note 
that there are 5 independent characters in X'(eg., «i, a2, «3, a4, and any 
one of a6, «7, «8, «9 which exists), so G' is 5-dimensional over Z/2Z, and 
the generators &, a0, ai, a2, —1 are a basis of G'. There are two subcases 
to consider: 

Subcase A. a6 and a9 both exist. In this case let vi, cr2, 0-3, cr4, <r5 € X ' 
be defined by 

(7l = « 2 , <T2 = « 3 , 0"3 = « 1 , 0"4 = « 6 , 0"5 = « 9 -
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Then one verifies 

« 4 = G\V<LVz<J\<Jh, « 5 = a20"30"4, Oil = O'lG'30'4, « 8 = 0"i(73(75. 

Choose pi, . . . , p& € G' dual to the basis au > • , o"5 of x(G')> i-e., ^ ( p , ) = 
1 if i 9^ j , <Ti(pj) = — 1, if i = j . As in the proof of Lemma 3.1 of [9], 
the forms 

/ = (li PiPiPzPi, P1P2P&5) and g = (pip2p4pb, p2pz, pzpi) 

are isometric over X. Note that £4£Ô is positive at aif o-2, 0"3, and negative 
at (j4, 0-5, as is 6, so p^ps = ft. Thus (1,£4£Ô) only represents 1, £4^5 over 
X. Thus, we obtain a contradiction exactly as in [9, Lemma 3.1] ; namely 
/ must represent p\pip\p*> on the one hand, but on the other hand, this 
is impossible. 

Subcase B. One of a& and a9 (? X'. Then by (*), a? and ag both exist. 
In this case consider the basis <n, . . . , 0-5 defined by 

^ 1 = « 1 , er2 = 0:3 , cr3 = a 2 , cr± = « 7 , (T5 = « g . 

With respect to this basis, 

«4 = = 0"iO"2(730"4(7'5, « 5 = G*tP%Q\, <*6 = 0'i(T30"4, « 9 = <Ti0-3(r5. 

Let £1, . . . , p5 6 G' be the dual basis to aiy . . , 0-5 and proceed as in 
subcase A. 

Suppose k ^ 3. By induction (replacing ax by a*6 wherever necessary) 
we may assume 

D(l,aQ) C Z><1, ai) C . . . ÇZ}(1,ÛM>. 

Also by induction there exist af £ {ai}aib} such that 

£ > < W ) Ç . . . C D ( l ( f l / ) . 

Replacing ak by fra* if necessary, we may assume ak* = ak. If either 
#i* = a>\ or a*_i* = ak-U we are done, so we may assume ax* = bai, 
ak-i* — bak-\. Applying induction a third time there exist elements 
di € {audib) such that 

# < W > C . . . Ç £><l,a*_2> C £><W>. 

If a / = ai*, we are done, so we may assume a,\ = ax. We claim now that 

D{hak^)QD(l,ak
f). 

Once this is proved we are done. For suppose a £ X is such that 
0"(#A:') = 1. Since ak Ç {#*,#*&} it follows that if a(b) = 1, then ^(a*) = 1. 
Since 
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this implies a(ak-.i) = 1. Now suppose <r(b) = — 1. Since 

ax = ax
f e £ > < W > C D ( W > , and <j{aj) = 1, 

we must have o-(ai) = 1, i.e., 

o-(ai*) = a(ba\) = — 1. 

Since 

5 ( l , f l l * > Ç 5 ( l , Û M * > , 

this implies a (a^-i*) = — 1. B u t a ^ - i * = bak^x. T h u s 

cr(a,_1) = *(&)*(<**_!*) = ( - 1 ) ( - 1 ) = 1. 

Thus , in any case a(ak) = 1 => <r(ak-i) = 1, so 

D i l A - O Ç D i l A ' ) . 

2 . C o m p o n e n t s . W e define simply connected as in [9], i.e., for a, 
T (z X, a ~s T <=> either a = T, or there exists a 4-element fan V C X 
such t ha t a-,7 G F. I t is mentioned in [9] t h a t ~s is an equivalence 
relation on X, but this is never proved explicitly. T o give a proof we need 
some preliminary results. 

(2.1) Remark. M a n y results in [9] carry over with little or no modifica
tion to infinite spaces of orderings. We have already remarked this for 
Theorem 4.1 of [9] (see [11, Lemma 4.1]). For S a subset of x(G) , and 
7 G x(G) , denote by yS the translat ion of 5 by 7, i.e., 

yS = M * e S} C X (G) . 

Lemma 4.2 of [9] goes through in the following modified form: ' 'Suppose 
5 is a subset of X which generates X, and suppose 7 Ç x(G) satisfies 
7 5 C X . Then 7 X = X " . T h e proof is an easy modification of t h a t in 
[9]. For a £ x(G) define Xa as in [9], ie., 

Xa = XC\ aX = {a e X\aa £ X}. 

Lemmas 4.3, 4.4, 4.5, 4.6 of [9] carry over word for word to the infinite 
case. 

(2.2) LEMMA. Suppose gr(X) ^ 1, \X\ ^ 3. Then <r ~s r holds for all 
<J,T £ X. 

Proof. Let 7 £ g r ( X ) , 7 3^ 1. Let O,T £ X, a j£ r. Fi rs t suppose 
r ^ 7c . Then V = {<J,T, ay, ry) is a 4-element fan containing a, r. 
Suppose r = 7(7. Since |X | ^ 3, there exists a' £ X, a' 5e (7,(77. Then 
V = {cr, a', (77, CT'Y} is a 4-element fan containing a-, r. 

(2.3) T H E O R E M . ^ S is an equivalence relation on X. 
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Proof. Let <n, a2, ^ f I satisfy ai ~s o-2, <r2 ~s 0-3. We wish to show 
o"i ~s o"3- We may assume alf <r2, o"3 are all distinct. Let Vi, Vi be 4-
element fans in X such that ci, a2 £ Fi, o-2, 0-3 Ç F2. Pick 7* <G gr(F*), 
7i 5̂  1. This is possible, since |gr(F<)| = 4. Then it is clear that Vt C 
Xy,., i = 1,2. Moreover Xyi Pi Xy2 ^ 0 since 

(72 G 7i n 72 ç z T 1 n z 7 2 . 

Thus, by Lemma 4.6 of [9] (and remark 2.1, above) there exists 7 £ x(£)> 
7 ^ 1 such that Xyj, X72 C Xy. Thus <n, cr3 Ç Xy. Also |X7| ^ 4 and 
gr(X7) ^ 1 (since 7 G gr(X7)), so by Lemma 2.2, <n ~s 0-3. 

As in [9], we refer to the equivalence classes of X with respect to ~s 

as the (connected) components of X, and we say X is connected if it has 
only one component. It follows from Corollary 7.5 (i) of [11] that every 
connected space is indecomposable. The converse is false (see remark 
3.15). Recall (in [10]) a space of orderings X is called an elementary indé
composable space if either gr(X) 7e 1, and |X| ^ 4; or \X\ = 1. We will 
refer to this type of space as an El-space for short. Note by Lemma 2.2, 
every such space is connected and hence is indeed indecomposible. In 
[9] it is proved that for X finite, the components of X are subspaces 
(in fact El-subspaces). This is not valid in general (see remark 2.9), but 
it is true for two special classes of spaces which we discuss now. 

(2.4) THEOREM. Suppose there exists a finite set of fans 

7 , = (VitG/At)i = 1 , . . , « 

in X which generate X. Then X has only finitely many components 
Ci, . . . , CSJ each Ct is an El-subspace of X, and X = d © . . © Cs. 

Before beginning the proof note that this generalizes the main struc
ture result in [9] (since finite spaces are certainly generated by finitely 
many fans). 

Proof of 2.4. By decomposing two-element fans into two 1-element 
fans, we may assume \Vt\ 9^ 2, so each Vt is connected. Fix o-f Ç Vt. 
Then Vt = o-igr(Fy), so aigr(Vt) VJ gr{Vt) is a closed subgroup of X(G) 
containing V t. It follows that 

X(G/At) = atgriVi) Ugr (7<) , 

i.e., every element of x(G/A<) is a product of 1 or 2 elements of V{. Since 
U*=i Vt generates X, it follows that fYLi A,- = 1, i.e., 

x(G) = II x(G/a<). 

(This product is not necessarily direct.) Thus every element of x(G) 
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(and hence of X) is a product of a finite number of (at most 2n) elements 
of U"-iKi. 

Now let a G X, and represent a as 

a — n . . . TU TV G U F*, ^ = 1, . . . , /. 

We may assume n , . . , rt are independent (taking a shorter expression 
if necessary) so by Lemma 3.2 of [9], a ~ n . Say ri G F*. Then TI~ at 

(Vf is connected), so a ~ at. Thus every element a G X is connected to 
one of <7i, . . , <rn. This proves the first assertion. 

Note since each Vt is connected, F* P\ C.? ^ 0 => F* C Cj. Denote 
by Sj the set {i|l ^ i ^ . ^ Ç Cj}. Thus S, H 5^ = 0 for j ^ j v , and 
VJ 5; = {1, 2, . . , n). The claim is that Cj is generated by the set of fans 
Vu i G Sj. For let a G C;-, and represent o- as 

w 

CT = Tl . . . T„ Tv G U F*, V = 1, . . . , /, 
1 = 1 

with n , . . . , TJ independent. Consider TC; say TP G F*. Then by Lemma 
3.2 of [9], T V ^ a-, and since a G C;, it follows that Tr G Cjy soF* P\ Cj 5̂  0, 
i.e., i G 5^, i.e., 

r„ 6 UtzSjVi iorv = 1, . . . , t. 

This proves the claim. 
Now consider a component Cj. We wish to prove it is an El-subspace. 

We may assume \Cj\ 9e 1. By replacing each Vh i G 5^ by a larger fan, 
if necessary, we can assume | F*| è 4. Since a{ ~ ov for all i,i' G 5^, 
i T* ir, there exists a four-element fan Vw Q X such that <JU <SI> G Fir-
Choose elements yt G gr(F<), 7ir G gr(F i f /) 7* 5̂  1, 7™, 7e 1 for all 
i,i' G 5^, i 5^ i'y and consider the corresponding subspaces Xyt, Xyii>. 
Since <?-* G Xyt- C\ Xyii>, it follows by repeated application of Lemma 4.6 
of (9), there exists 7 G x(G), 75^ 1 such that 

Xyi1 Xyii> C Z 7 V v ' G S, i 5̂  i'. 

In particular (since F* Ç Xyi) it follows that 

UttSjVtQXy. 

Since the former generates Cj, this implies C ; C Xy. Since X7 is con
nected by Lemma 2.2, Cj = Xy. 

Note that X = d 0 . . . © Cs follows immediately from Corollary 
7.5, [11] (although it can also be proved independently of the represen
tation theorem for W(X) by the techniques of [9, Theorem 3.3]). 

(2.5) Remark. Note if X satisfies the hypothesis of Theorem 2.4, then 
cl(X) < 00 (by the part of Theorem 1.6 which is proved). Note also that 
the conclusion of 2.4 implies, in particular, that either gv(X) 5̂  1, or 
\X\ — 1, or X decomposes. Thus we have proved an important special 
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case of Theorem 1.3: If X is generated by a finite set of fans, then the 
conclusion of 1.3 holds. 

A reader mainly interested in the proof of Theorem 1.3 should proceed 
now directly to § 3. 

(2.6) T H E O R E M . Suppose X has no infinite fans F C I {For example, 
this holds if s t ( X ) < oo, by Theorem 6.4 of [11].) Then every component 
of X is an YA-sub space. 

The following characterization of fans is useful in the proof of 2.6. 

(2.7) LEMMA. A subset Y of X is a fan (and a subspace) if and only if 
Y is closed in X and satisfies afiy £ Y \/a, 0, 7 G F . 

Proof of 2.7. (=>) Y is closed, being a subspace. Since Y is a fan and 
( —1)( — 1) ( —1) = - 1 , the second condition holds by [11, 4.2(H)]. 

(<=) Fix a £ F. Then YY = I F F = a2YY = a{aYY) C aY. I t 
follows easily from this tha t F U a Y is a (closed) subgroup of x(G), so, 
by Pontryagin Duali ty, ( F U « Y)-1-1 = Y^JaY. Since a G F, ( F U a F)-1 

= F-1. Thus Y±A- = F U a K Thus , if 7 G F-1-1, T ( - 1 ) = - 1 , then, 
since all elements r £ a F satisfy r(— 1) = 1, 7 £ F This shows F is a 
fan, using [11, 4.2(ii)], (and also a subspace, since it implies in particular 
t ha t F - ^ H X C F) . 

Proof of 2.6. Let C C X denote the component generated by a £ X. 
We may assume \C\ ^ 1. Then, by the proof of 2.2 C is the union of 
the collection of sets 

5 = { Z 7 | 7 G x(G) , 7 * 1,0- G X 7 , | Z 7 | ^ 4}. 

By Lemma 4.6 of [9] this system of sets is directed, so it is enough to 
show S has a maximal element, i.e., we must show there do not exist 
elements yt G x ( £ ) such tha t 

(*) Xyi£X7l+l,i= 1,2,3, 

Suppose such a chain does exist. Fix an element a G Xyi and consider 

Vn = JO", 0"71» 0"72, C7172, . . . . , 0-7172 • • • 7n}-

Clearly Vn Q X and F„ is a fan (by 2.7). We claim tha t | Vn\ = 2*. For 
otherwise two of the displayed elements of Vn would be equal, and 
cancelling a we would obtain (after taking all the terms to one side and 
reindexing the 7*'s) a relation of the form 

7 1 7 2 . . . ys = 1. 

Thus , 71 = 72 . . . 7s- Now let r G Xy2. Then ryi = T72 . . ys £ X, i.e., 
r 6 Z 7 1 . Thus Xyi = Xy2, contradicting (*). Hence \Vn\ = 2n. Now let 
V denote the closure of U?=i Vt. Thus V is closed in X, and 

a,f3,y Ç F=»aj87 Ç F 
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(this holds for U Vt so it holds for V by the continuity of multiplication). 
It follows by Lemma 2.7 that F is a fan (and a subspace of X). Since 
| V] = co, this contradicts the assumption, and proves the theorem. 

(2.7) Remark. Suppose X has finite stability index and components 
Xi, i £ 7. Each non-trivial fan in X is connected, and hence lies in a 
component. Thus, by Theorem 5.5 of [11], W(X) consists of all / G 
C(XjZ) which satisfy 

f\Xte W(Xt),a.nd 

f(a) = f(r) (mod 2) for all a G Xî} r G X,, i,j Ç I,i ^ j . 

Further, if s t (Z) ^ 1, then by Theorem 6.4 of [11], 

st(X) = max{st(X*)K e 7Î-

By Theorem 2.6, either \Xt\ = 1, or gr(Xi) ^ 1. In the former case 

s t(Z,) = 0, and W(Xt) 9* Z. 

In the latter case, 

W(Xt) ^ W(X/)[G/G/] 

with X( — the residue space of Xu and G/ = gr(Xi)
1- C G (by [10, 

remark 3.8]). Also, in this case, st(X f) = wf + s t ( X / ) , where 2n* = 
(G:G/). (If F is a fan in X7-, its image V in «XV is a fan, and the inverse 
image of V in X t is a fan in X t containing V.) Since s t ( X / ) < st(X^), 
this gives a rough inductive description of the Witt ring of a space of 
orderings with finite stability. 

For the remainder of this section, let X denote the space of orderings 
of some formally real field K. For v a valuation on K denote by Av 

(resp. Uv) the valuation ring (resp. the unit group) of {K,v). Let Xv 

denote the subspace of X consisting of orderings compatible with v in 
the sense of [3] and let Xv denote the order space of the residue field of 
OK». Thus 

Xv ^ 0 <^XV * 0, 

and Xv is a group extension of Xv. Let or, r £ X, a ~s r, a ^ r. Thus 
there exists a 4-element fan V C X such that o-,r Ç F. By [3, Theorem 
2.7] there is a real valuation v of K such that F Ç I , and the image of 
V in Xv is a trivial fan. Since V itself is not trivial this implies K' 7e 

UVK'2, so gr(Xv) 7e 1. Thus Xv is connected by Lemma 2.2. It follows 
that the (non-trivial) component generated by <J is {JvesaXv where Sa 

denotes the set of valuations î^onZ" satisfying 

I*, | ^ 4, K- 9* K'2UV, a e Xv. 

Note the valuations in Sa are comparable [12, Theorem 7.18(1)]. Now 
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suppose st(X) < oo. Then K'/UVK'2 is finite for each v G Sff [2, (3.18)]. 
Choose v0 G Sa such that the index is minimal, and define a valuation w 
on K by 

Aw = \Jvç.saAv. 

It follows that w is non-trivial, and w G 5<r, in fact, 

UWK'* = t ^ i T 2 . 

By [12, Theorem 7.18(2)] 

U ^ s ^ » = Xw. 

Thus we have proved: 

(2.8) THEOREM. Suppose X is the space of orderings of a formally real 
field K, st(X) < co. Then every non-trivial component of X has the form 
Xvfor some real valuation v on K satisfying 

UVK-* *K\ \XV\ ^ 4. 

(2.9) Remark. It is known, in the infinite stability case, that the com
ponents of X need not be subspaces. One such example can be obtained 
by taking K to be the rational function field in countably many variables 
over 0 and using a construction of A. Prestel. This yields a component C 
which is dense in X but is not all of X. In particular, C is not closed, so is 
not a subspace. On the other hand, it is known (Corollary 3.18) that a 
closed component of X is a subspace. (The corresponding question is still 
open for abstract spaces of orderings.) Here are two problems that appear 
to be open: 

(i) Suppose a non-trivial component of X is closed (and hence a 
subspace). Then is this subspace an EI-subspace? 

(ii) Supposing it is an EI-subspace, does this mean it has the form Xv 

for some real valuation v satisfying UVK'2 ^ K'l (We have seen in 2.8 
that the answer to both questions is "yes" if X has finite stability.) 

3. P-structures. Suppose, for the moment, X is the space of orderings 
of some formally real field K. Denote by M the set of "real" places K, 
i.e., places a: K —•> R U {co }. Then M induces a partition of X: X = 
{Ja(zMX(a), which satisfies the following properties: 

P], Each X(a), a G M, is a fan; 
P2 . Each fan V Q X intersects at most 2 of the sets X(a),a 6 M; 
P3 . The induced (quotient) topology on M is Hausdorff; 
P4 . For each non-empty closed C C M, the set {JaecX(a) is a sub-

space of X. 

(These results are fairly well known. All are collected in [6, § 2]. Speci-
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fically P i is 2.2, P 3 is 2.1, P 4 is 2.8, and P 2 follows from the first claim of 
2.3.) 

For most of this section we concentrate on the following partial abstrac
tion of this situation. 

(3.1) Definition. Let X be an arbitrary space of orderings. A partition 
X = \Ja^MX(a) will be called a P-structure on X if it satisfies P i and P2 . 

P-structures satisfying P 3 and P 4 are discussed briefly at the end of this 
section. The immediate goal is to prove the following two theorems. 

(3.2) THEOREM. Every space of orderings admits a P-structure. 

(3.3) THEOREM. Let X = \Ja^MX(a) be a given P-structure on X. Then 

cl(Z) < oo <=» |M| < co. 

In fact, if either is finite, then 

\M\ ^ c\(X) ^ 2\M\. 

This will complete the proof of Theorem 1.3. For suppose c\(X) < oo . 
By Theorem 3.2, there exists a P-structure X = KJa<iMX(a) on X. By 
Theorem 3.3, \M\ < co. Thus X is generated by the finite set of fans 
Z (a ) , a e M, so by Remark 2.5, either gr(X) 9* 1, or \X\ = 1, or X 
decomposes. 

Before proving 3.2 and 3.3, several preliminary results are required. 

(3.4) Definition, (i) Suppose X = \JaeMX(a) is a P-structure on X, 
and F is a subspace of X. The induced P-structure on F is 

F = UazNY(a) where 

TV = {a G M|X(a) H F ^ 0} and F (a) = X(a) n Y\/a £ N. 

(ii) Suppose X = Xi © . . . © Xn and that X* = U a ^ i ^ i W is a 
P-structure o n ! , ; , 1 ^ i ^ n. The induced P-structure on X is 

-X' = UaeM^(a) where 
n 

M = U M* and X(a) = I ^ a ) if a 6 Af <. 
i = i 

(iii) Suppose X' — \Ja(zMX'(a) is a P-structure on the residue space 
of X' of X. The induced P-structure on X is X — \Ja^MX(a) where 
X(a) is the inverse image of X' (a) under the natural projection. 

It is easily verified that the induced P-structures in (i), (ii), and (iii) 
above, are indeed P-structures. 

(3.5) Definition. Suppose X is generated by a finite set of fans. The 
canonical P-structure on X is defined by 
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(i) if \X\ = 1, it is the only possible thing; 
(ii) if gr(X) 9e 1, it is that induced by the canonical P-structure on 

the residue space of X ; 
(iii) otherwise it is that induced by the canonical P-structures on the 

components of X. 

Note that, by induction on c\(X), (i), (ii), and (iii) do indeed define a 
canonical P-structure on X (refer to Theorem 2.4 and its proof, Remark 
2.5, and Theorem 1.7). If X = \Ja^MX(a) is the canonical P-structure 
of such a space X, we will find it useful, in the following, to refer to the 
fans X(a), a 6 M as X-places. To clarify a possible misconception, one 
should note that (unless \X\ = 1) the canonical P-structure on such a 
space X is not the only P-structure on X. 

(3.6) LEMMA. Suppose F Ç F Ç X where F, X are each finitely 
generated by fans, V is a fan which is not a Y-place, and V is maximal in X 
(in the sense that if W C X is a fan, V C W, then V = W). Then the 
canonical P-structures on X and Y each induce the same P-structure on the 
subspace V. 

Proof. We claim thatgr(X) C gr(F) C gr(V). For suppose y € gr(X). 
Then yVQyX = X,soW = V\J yV QX. Since Wis a fan, it follows 
by the maximality of V that W = V, i.e., yV Q V i.e., yV = V, i.e., 
7 € gr(F) . Thus gr(X) Q gr(V). A similar argument shows gr(F) C 
gr(F) . With 7 as above note y Y C 7X Ç X. Also, since 7 G gr(F) C 
[F] C [F], it follows that 7 F Ç [F][F] = [F]. (Recall: [F] denotes the 
closed subgroup of x(G) generated by F.) Thus ) 7 C [ F ] n i = Y (Y 
is a subspace of X). Thus 7 F = F, so gr(X) Ç gr(F) . This proves the 
claim. 

The lemma is proved by induction on c\(X). Note that by replacing 
X by its residue space and F, V by their images in the residue space of 
X, we reduce to the case gr(X) = 1. Thus by Remark 2.5 either \X\ = 1 
or X has two or more components. But \X\ ^ 1 (\X\ = 1 =» F = F = 
Z => F is a F-place). Thus X has 2 or more components. Suppose 
gr(F) ^ 1. Then | Y\ 9* 2 (for if | Y\ = 2, then F is a fan, so F = F, 
i.e., F is a F-place). Thus, by Lemma 2.2, F is connected. Replacing X 
by the component of X containing F we are done, by induction on the 
chain length. Thus, we may assume gr(F) = 1. Again \Y\ 7e 1 (V is not 
a F-place), so by Remark 2.5, F also has two or more components. Now 
look at V. li\V\ ^ 4, then by Lemma 2.2, Fis connected, so by replacing 
Y,X by the components of F and X respectively that contain V, we are 
done by induction. Thus we may assume \V\ ^ 2 . But | V\ ^ 1 (\X\ 9e 1, 
so a maximal fan in X has at least two elements). Thus | V\ = 2. Being 
a maximal fan, V cannot lie wholly in a component of X or of F (since a 
maximal fan lying in a non-trivial component has at least 4-elements). 
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Say V = {o-, T} . It follows that the induced P-structure on V is {a} U {r j 
in both cases. This completes the proof. 

(3.7) Terminology, (i) We say X is P-finite if X is generated by a finite 
set of fans. 

(ii) Let F be a fan in X. We say a P-finite subspace Y Q X partitions 
V stably if V C F, and V P-finite spaces Z, F Ç Z Ç I implies the 
canonical P-structures on F and Z each induce the same P-structure on 
V. 

(3.8) LEMMA. Let X be an arbitrary space of orderings, V an arbitrary 
fan in X. Then there exists a P-finite subspace Y Q X which partitions V 
stably. 

Proof. Let W be a maximal fan in X subject to V C W. (The existence 
of such W is by Zorn's Lemma, and an argument similar to that in the 
proof of Theorem 2.6.) If IF is a Z-place for every P-finite space Z, 
W Ç Z C X, take Y = W. Otherwise there exists a P-finite space 
Y, W Ç F Ç X such that W is not a F-place. By Lemma 3.7, F parti
tions W (and hence F) stably. 

We now give a proof of Theorem 3.2. Define a relation = on X as 
follows: For a,r G X, let F be any P-finite subspace of X which parti
tions the fan {o-, r} stably. Write <r = r if and only if o-, r lie in the same 
F-place. = is a well-defined equivalence relation on X. This follows from 
Lemma 3.8 and the fact that the subspace of X generated by a finite 
number of P-finite subspaces of X is again P-finite. 

The claim is that the resulting partition of X is a P-structure. Let 
F C X be a fan, and let F be a P-finite subspace of X which partitions 
F stably. Let 0-1,0-2 G F, ai & o-2, and let a G F. Since F is a fan in F, 
F intersects at most two F-places, so either a = <n, or 0- = o-2. This 
shows P2. 

It remains to verify Pi . Let T be an equivalence class with respect to 
= , and let ci, 0-2, o-3 G P. Thus 0-1 = o-2, 0-2 = C3, so there exists a P-finite 
space Y Q X which partitions {0-1, a2} and {0-2, 0-3} stably. Thus o-i, <T2, O-3 

all lie in the same F-place. Since F-places are fans, it follows that 
o"io-20-3 lies in this F-place so, in particular, 0-10-20-3 G X. Now let Y' be a 
P-finite space partitioning the fan {0-1,0-2,0-3,0-10-20-3} stably. Since 
ai == 0-2 = o-3, 0-1,0-2,0-3 all lie in the same F'-place. Thus o-io-2o-3 lies in this 
F'-place, so 

O-1O-2O-3 = 0"! = 0"2 = 0"3, 

i.e., 0-10-20-3 G T. This proves 

0-1,0-2,0-3 G T =» 0-10-20-3 G P. 

By continuity of multiplication this will also hold for P, the closure of P, 
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so P i s a fan (by 2.7). Let Y" be a P-finite subspace of X partitioning 
T stably. Thus T is the intersection of some F"-place with T. Since T 
is closed and each F"-place is closed (in Y" and hence in X), it follows 
that T is closed. Thus T = T is indeed a fan. This proves Pi . 

(3.8) LEMMA. Let X = \Ja^MX(a) be a P-structure on X, let S be any 
(non-empty) finite subset of M, and let Y = UaçsX(a). Then Y is a sub-
space of X. 

Proof. If a G [F], it follows (as in the proof of the first claim of 
Theorem 2.4) that there exist o-i, . . , <rs G F such that 

a — <j\<Ji . . . as. 

Now let 0-1,0-2,0-3 G F and suppose a = 0-1(720-3 G X. If there is a G S such 
that en,0-2,0-3 G X(a), then 0- G ̂ ( a ) by Pi , so 0- G F. Otherwise the fan 
F = {0-1,0-2,0-3,0-} intersects X(a) and X(fi) for some a,0 £ 5, a 9^ 0. 
B y P 2 , 

VQX(a) U X((3) C F, 

so o- G F. Thus F satisfies the following closure property: 

(*) 0-1,0-2,0-3 G F , 0-10-20-3 G X = » 0-10-20-3 G F . 

That Fis a subspace now follows immediately from the following lemma. 

(3.9) LEMMA. Let Y be any (non-empty) subset of X satisfying (*) and 
suppose every element of [ Y] is a finite product of elements of F. Then Y is 
a subspace of X. 

Proof. It is enough to show [F] C\ X = Y. Let a G [F] Pi X and 
express a as 

0- = (j\ . . . as; ai, . . , as G F . 

By taking 5 minimal, we can assume 0-1, . . , as are independent. Note 5 
is odd. If 5 = 1, 0- is clearly in F. If 5 = 3, a is in F by (*). Suppose 
s ^ 5 . Then by [9, Theorem 3.1] (reindexing if necessary) 3 t, 3 ^ t < s, 
such that T = 0-1 . . . a t G X. By induction on s, r G F and 0- = 
ro-,+1 . . . o-, G F. Thus, in any case, a G F. 

(3.10) LEMMA. 7/ X w wo/ a fan, then any P-structure on X is induced 
by a P-structure on the residue space (X',G') of X. 

Proof. If gr(X) = 1, then X' = X, so the result is clear. Let X = 
\Ja<zMX(a) be a given P-structure on X. For a G M, denote by X(a) ' 
the image of X(a) under the natural projection. The only thing not clear 
is that the fans X(a)', a G M are disjoint (for if they are disjoint, then 
X' = {JaeMX(aY is a P-structure on X' inducing the given P-structure). 
Suppose there exist a, 0 G M, a ^ /3 such that X(a)' C\ X($)' ^ 0. Let 
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<T G X(a) be such that its image is in X{a)' C\ X(p) and let 5 € x(G/Gf) 
be such that ad 6 X(0). Suppose M ^ {a,p}. Let y e My y ^ a,|3, and 
let r (E X ( T ) . Then W = {GT,C7<5,T,TC)} is a fan in X intersecting X(a), 
X(/3) and X(y). This contradicts P 2 and proves M = {«,/?}. Thus 

X = X(a) U X(/3) and X ' = X(c*)' U X(/3)'. 

Now take T £ X(a) and W as above. Then TO € X(/3), since 

rÔ G X(a) =»<rô = ((T)(T)(T<5) Ç X(a) . 

This proves Z ( a ) ' C X(/3)', i.e., that X ' = X(p)' is a fan. But then X is 
a fan, since it is a group extension of a fan. This contradicts the hypo
thesis and proves the lemma. 

We are now in a position to give a proof of Theorem 3.3. Suppose 
\M\ < oo. Then cl(X) ^ 2[M| by Remark 1.2 and Theorem 1.7(i). Still 
assuming |M| < oo, we now prove, by induction on cl(X), that \M\ ^ 
cl(X). This is clear if IXI = 1. Suppose gr(X) ^ 1. If X is a fan, cl(X) = 
2 ^ I Ml. If X is not a fan then, by Lemma 3.10, M is induced by a 
P-structure M' on the residue space X'. Then \M\ = |M'| and, by 
Theorem 1.7 (iii), cl(X) = cl(X'). Thus, replacing X by X', we may 
assume gr(X) = 1. Thus by Remarks 2.5, X decomposes, say X = 
Xi © X2. Let My denote the P-structure on Xt induced by M (see 
Definition 3.4(i)). Clearly 

|Mi| + |M2| ^ |M|. 

Also 

cUXO + cl(X2) = cl(X), 

by Theorem 1.7(H). Since Xt has smaller chain length than X, i = 1,2, 
the result follows by induction. 

Now suppose only that cl(X) < oo. Let S C M be a. finite subset. By 
Lemma 3.8, F = \JaeSX(a) is a subspace of X. By Theorem 1.8, 
cl(F) ^ cl(X). But by applying what we have just proved to the space 
Y with P-structure Y = \JaesX(a), we have |5| ^ c l (7) . Thus |5| S 
cl(X). It follows, since 5 C M is an arbitrary finite set, that \M\ < oo. 

For the rest of this section, fix a P-structure X = UacjifXCa) on X. 
For a £ M, let A (a) = X(a)-L. Thus, as a space of orderings, 

X(a) = (X(a),G/A(a)). 

Now suppose a,/5 G M, a ^ /5. By Lemma 3.8, 

X(a) W X(£) = (X(a) U X(/5), G/A(a) H A(0)) 

is a subspace of X. Denote by Ga|s the group G/A(a)A(P). For 7 G 
x(Gap) C x(G), we have y( — 1) = 1 (for X(a) , X(£) are fans, so if 

https://doi.org/10.4153/CJM-1980-047-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-047-0


SPACES OF ORDERINGS 623 

7 ( - l ) = - 1 , then y G X(a) H X(p), a contradict ion) . I t follows tha t 
- 1 G A(a)A(0) . 

Theorem 1.6 together with Theorem 3.3 completely classify spaces 
satisfying \M\ < co. One may also consider spaces satisfying 

\X(a)\ ^ 2 V a G M, and Ga/3 = 1 W , 0 G M, a ^ 0. 

These are easily seen to be jus t the spaces satisfying s t ( X ) ^ 1. Such 
spaces are well understood. There is a larger class of spaces including 
both the above types. This is classified in the following. 

(3.11) T H E O R E M . The following are equivalent: 
(i) There exists a finite S C M satisfying \X(a)\ ^ 2 \/ a G S, and 

Ga0 = 1 V a, 0, a ^ 0, a G 5. 
(ii) Tfe subspace of X generated by the non-trivial fans [11, 7.3] has finite 

chain length. 

Proof, (i) => (ii). Define Y = \JaeS X(a). F is a subspace of X by 
Lemma 3.8. I t is finitely generated by fans so has finite chain length. 
Thus it suffices to show tha t each four-element fan V C X lies in F. 
Let V = {<TI, o"2, o"3, c4} be a 4-element fan in X . Suppose F Pi X ( a ) 
9* 0. If F C X(a), then | X ( a ) | ^ 4 so a G 5 and V C F. Otherwise 
F intersects some I ( )3 ) , )3 5^ a, and F C X ( a ) U X(/3). Reindexing 
the elements of F, we may assume au o-2 G -^ (a ) , 0-3,0-4 G -X"(/3). (For if 
o"i,(72,cr3 G X(a), then 0-4 = CTIO-2CT3 G X ( a ) , i.e., F Ç X(a). Similarly, if 
ai, <T2, <?3 £ X(/3)f then VQX(fi).) Thus the non-trivial character 
crio-2 = 0-30-4 is trivial on A(a)A(@), so Ga$ 9e 1. Thus a, 0 G S, so F C F. 

(ii) =» (i). Let F denote the subspace of X generated by the non trivial 
fans, and suppose cl ( F) < 00 . Thus , all 4-element fans of X lie in F, and 
the induced P-s t ruc ture in F i s finite, i.e., S: = {a. G M\X(a) H F ^ 0} 
is finite. Suppose a d S. Then X ( a ) $£ F, so | X ( a ) | ^ 2. Suppose also 
(3 G M, P s* a. lî Gap 9e 1, then there is a 4-element fan {0-,7,0-7,77} 
not in F obtained by picking any o-,7,7 subject to 7 G x(Gap), 7 5^ 1, 
ex G - X » , 7 G X(/3). Thus 6 ^ = 1. 

We now present an abs t rac t version of the "exactness" proper ty of 
fields conjectured in [5], and proved in [1]. Denote by â the canonical 
image in Gap of a G G. Also denote by (j>ap the canonical ring homomor-
phism 

4>af>:W(X(a)) ->Z/2Z[GaP] 

given by <t>ap(ai, . . , an) = â\ + . . . +ân. I t may not be apparen t a t first 
glance tha t ct)ap is well-defined. However, since —1 G A (a) A (fi) and 
W(X(a)) is an integral group ring [10, Remark 3.8], this is easily verified. 

(3.12) T H E O R E M . Let g G C(X,Z). Then g G W(X) if and only if 
(i) g\X(a) G W(X(a))\/a G M and 
(ii) 4>ap(g\X(a)) = <t>pa{g\X(P))\/a,P G M, a * 0. 
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Proof. The necessity of (i) and (ii) is clear. Conversely, assume (i) 
and (ii). By [11, Theorem 5.3] it suffices to show g is represented over each 
fan V QX. If VQX(a), this is true by (i). Otherwise, by P2 , there 
exist a, |8 G M, a j* 0 such that V Q X (a) \J X (p). In this case, it is 
enough to show g\ Y Ç W( Y) where Y denotes the space X(a) VJ X(/3). 
By (i) there exist forms/ i , / 2 representing g over X (a) and X(/3) respec
tively. By collecting entries having the same value in Ga& we can write 
ft as 

fi ~ £jP£Gapfip 

where, for each p, 

ftp ~ {(lap, &i2p, . . • • ) 

with âijp = p (and/ip is the zero form for all but a finite number of p). 
By (ii), 

*a/3(/l) = foaifï)-

This implies t h a t / i P and /2 p have the same dimension modulo 2, so by 
modifying by hyperbolic planes, we may assume 

dim/]2, = Up = dim/2 p V P £ Gap. 

For fixed j,p, âijp = p = â 2 # so ai;pa2;z? G A(a)A(/3). Thus there exist 
Ci# G A (a), c2jp G A(jS) such that 

(lljpCl2jp — CijpCijp. 

Define ajp = aijvcijp = a^jpC^jp, and define fv by 

J p = y^lpj • • • > ttripP/' 

Then clearly / = ]Tp € Gai2/p is a form representing g over Y. 

For the rest of the section we consider P-structures satisfying P 3 and 
P 4 (see the first paragraph of § 3). 

(3.13) PROPOSITION. The following are equivalent: 
(i) M satisfies P 3 ; 

(ii) UaçA(a)^(a) is open in X \/ a £ G; 
(iii) J/ M is topologized by declaring the sets 

M{a) = | a Ç M\a 6 A(a)}, a 6 G, 

to be a subbasis for open sets, then the natural map X: X —* M is continuous. 

Proof, (i) =» (ii). Let a Ç G. X{ — a) is closed in X, and hence 
compact. Thus \{X( — a)) is compact and hence is closed in M, i.e., 
X~1(X(X( —a))) is closed in X. The result follows by noticing that 
\Ja£Ma)X{a) is just the compliment of X-1(X(X( — a))). 

(ii) =» (iii). This is clear from X_1(M(a)) = U a ^ w ^ W -
(iii) =» (i). Let a, 0 G M, a ^ 0. Since - 1 Ç A(a)A(j3), there exists 
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a G G such that a G A (a), -a G A(/3). Thus a G Af(a),/3 € M ( - a). Since 
M(a) C\ M ( — a) = 0, this proves the topology of M generated by this 
subbasis is Hausdorff. Thus C C M is closed in this topology if and 
only if X~1(C) is closed in X, i.e., this topology is the quotient topology. 

(3.14) PROPOSITION. The following are equivalent: 
(i) M satisfies P±; 

(ii) V closed disjoint C\, C2 Q M, there exists a G G such that 
CiQ M(a), C2Q M(-a); 

(iii) V closed C Q M and V OL G M, a G C, //zere £#wte a £ G such that 
C Ç il/f(a),a G ikf ( — a). (Here, the topology on M is the quotient topology.) 

Proof, (i) =» (ii). Let C = C\ W C2. Then C is closed, and 

Ua,CX(a) = ( U « € C i * ( « ) ) ^ ( U « € C ^ ( « ) ) . 

The sets \JaçaX(a) (i = 1,2) are closed and disjoint in the space 
\JaecX(a). Thus the function 

/ : UaccX(a)-*[l, - 1 } 

defined by 

/ = 1 on Ua£CiX(a) a n d / = - 1 on Uaec2X(a) 

is continuous. It is easily verified that / satisfies the fan condition of 
[11, Theorem 7.2], i.e., if V is any 4-element fan in X, then 

] W / M ^ 0 (mod 4). 

It follows that there exists a G G representing / . Then d C X(a), 
C2QX(-a). 

(ii) =» (iii) is obvious, since points are closed in M. 
(iii) => (i). Let C C M be closed, and let Y = (Y, G/A) denote the 

subspace of X generated by \JpecX(fi). If Y 7e U/sçc^(/5), then the 
induced P-decomposition of Y has the form 

Y = ( U f l ^ W ) W ( F H X(a)) VJ . . . , with 

yniw * 0. 
By (iii), there exists a G G such that C £ M (a), a G M( —a). From 
C C M (a), it follows that 

a G fWA(/3) . 

Since \JpecX(l3) generates F, this is just A, i.e., a G A. But 3 a G 
F P \ X(a) , and (since a G Af( —a)) it follows that a (a) = — 1. This is 
a contradiction. Thus F = \J$<zCX(fi). 

(3.15) Remark. Since, in any case, points are closed in M, and M 
satisfies 3.8, it follows that any finite P-structure does satisfy P 3 and P4 . 
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On the other hand P-structures exist which violate P 3 . In fact, if X is 
the space of orderings of the rational function field K = Q(t), one can 
verify that its canonical P-structure (i.e., the one used in the proof of 
Theorem 3.2) violates P3 . (This is also an example of an indecomposible 
space which is not connected.) It is not known if P-structures exist 
violating P4 . Note, by the proof of Lemma 3.8, that if S C M, then 
F = {JatsX(a) satisfies condition (*). It is conjectured that a closed 
subset F C X satisfying this closure condition is automatically a sub-
space. If true, this would imply P 4 holds for any P-structure. 

The following theorem is an interesting application of the isotropy 
theorem (Theorem 1.4). Note its relation with the conjecture mentioned 
in the above remark. 

(3.16) THEOREM. A non-empty subset Y C X is a subspace if and only 
if it is clop en in the subspace it generates and satisfies: 

(*) If <S\,(7<L,<JZ 6 Y, and G\<J<L<JZ Ç X, then <J\<J<L<JZ £ Y. 

Proof. To prove the non-trivial implication, we assume that Y satisfies 
(*) and (replacing X by the subspace generated by Y if necessary) that 
Y is clopen in X. Thus, if g: X —» Z denotes the characteristic function 
of F, then g £ C(X, Z), so by [11, Lemma 5.4] there exists n ^ 1 such 
that 2ng £ W(X). L e t / = (&i, . . , ax) be an anisotropic form represen
ting 2ng. Thus <jf = 2n, if a Ç F, and <rf = 0, if a <2 F. It is enough to 
show I = 2W, for then F = X(#i, . . , az), a subspace of X. By Theorem 
1.4 there exists a finite subspace Z ol X over which / is anisotropic. 
YC\ Z satisfies (*), so by Lemma 3.9 (applied to the space Zand the 
subset Y C\ Z) Y C\ Z is a subspace of Z. Thus there exist bi, . . , bk £ G 
such that 

YC\Z = Z(6 i , . . ,6 f c ) . 

If & > », then 

£: = <l,6i) ® . . . ® <1,6*> ^ 2k~nf (over Z), 

so />' represents 1 (over Z), and by [11, Lemma 6.3] we can reduce k. 
Thus we may assume k g w, so / == 2n_fc£ (over Z). Thus, comparing 
dimensions, / = 2n. 

It was remarked in 2.9 that if X is the space of orderings of a formally 
real field, then every closed component of X is a subspace. We are now 
in a position (after the following lemma) to prove this for any space of 
orderings which admits a P-structure satisfying P4 . 

(3.17) LEMMA. Let Cbea component of X, \C\ ^ 1, and let a 6 M. Then 
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Proof. If \X(a)\ ^ 2, X(a) is connected (Lemma 2.2), so X(a) C C. 
Suppose \X(a)\ = 2, let a € X(a) C\ C, let r <E C, r ^ (7, and let F be a 
4-element fan a, r Ç F. Since F is connected, F C C . Since |X(a) | = 2, 
F g X(a), so there exists 0, p ^ a, F C X(a) U * (0). Since F n X(a) , 
F H X(0) are both (non-empty) fans \Vr\X(a)\ = 2, so 

X{a) = X ( a ) n F Ç F Ç C . 

(3.18) COROLLARY. / / X admits a P-structure M satisfying P4 , then 
each closed component of X is a subspace. 

Proof. Let C be a closed component of X. The result is clear if \C\ = 1. 
Otherwise, by Lemma 3.17, C = \~l(\(C)). This is a subspace by P4 . 
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