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Summary

Mapping quantitative trait loci (QTLs) for binary traits in backcross and F2 populations was
investigated using stochastic stimulation. Data were analysed using either linear regression or a
generalized linear model. Parameters which were varied in the simulations were the population size
(200 and 500), heritability in the backcross or F2 population (0-01, 0-05, 0-10), marker spacing (10
and 20 cM) and the incidence of the trait (0-50, 0-25, 010). The methods gave very similar results
in terms of estimates of the QTL location and QTL effects and power of QTL detection, and it
was concluded that in practice treating the zero-one data as continuous and using standard linear
regression was efficient.

1. Introduction

Methods for mapping quantitative trait loci (QTLs)
based on maximum likelihood (Lander & Botstein,
1989; Jansen, 1993, 1994; Zeng, 1993, 1994) or linear
regression (Haley & Knott, 1992; Martinez & Curnow,
1992) usually assume that residual errors, i.e. residuals
within QTL genotype classes, are normally distributed,
although recently a general non-parametric method
has been reported (Kruglyak & Lander, 1995).
However, many traits of interest in human, plant or
animal populations are not normally distributed. For
example, survival and disease status are generally
considered as binary traits, i.e. phenotypes are scored
either 0 (absence) or 1 (presence). Theoretically,
taking account of the distribution of residuals should
enhance the power of detecting QTLs in experimental
or field populations. Jansen (1992) presented a general
mixture model for mapping QTLs which uses the
distributional properties of the data by fitting a
generalized linear model (GLM).

It has been shown that, at least for normally
distributed traits in backcross and F2 populations,
linear regression (LRG) and maximum likelihood
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(ML) are very similar in terms of power and estimation
(Haley & Knott, 1992). However, if data are not
normally distributed but it is assumed they are, test
statistics will not be distributed as multiples of x2 or F-
ratios under the null hypothesis of no QTLs
segregating, and the methods are likely to be less
efficient.

Jansen (1992) gave an example for a trait in which
the residuals were from an exponential distribution,
and showed the increase in maximum likelihood by
using knowledge about the appropriate distribution
rather than assuming normality. However, Jansen
also noted that the estimates of recombination rates
and QTL effects were similar whether assuming
normal or exponential distribution of residuals. The
aim of this study was to investigate whether nonlinear
regression methods are better, in terms of power and
precision of parameter estimates, than LRG when
traits are not normally distributed. In particular, we
compared LRG with GLM (McCullagh & Nelder,
1989), using simulation of binary data in backcross
(BC) and F2 populations derived from inbred lines.
We used the BC population to study the mapping of
additive QTLs, and the F2 population to investigate
the methods of analysis when dominance effects are
included.
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2. Materials and methods

We assume that both the BC and F2 experimental
populations are derived from inbred lines. Genetic
markers are fully informative and equally spaced. We
assume Haldane's mapping function throughout.

The basis and theory of so-called threshold
characters are well understood (e.g. Falconer &
Mackay, 1996, chapter 18), and the binary trait in this
study is a special (and simplest) case of a threshold
character. An underlying unobservable continuous
variable, often called liability, is assumed to affect the
observed phenotype in a non-linear way. When the
value of the continuous variable for an individual is
below a certain threshold, the observed phenotype of
the individual is 'normal ' (in our study a score of 0),
and if the value of the continuous variable is above the
threshold, the phenotype is 'affected' (score of 1).

(i) Backcross population

Assume an additive model for a single QTL. QTL
genotypes and their effects are:

Population Genotype Value

fi-a

p + a,

p or {fi +a}.

Hence, we backcross to population 2. Let /JLC and ac

denote the overall mean and the QTL effect on an
underlying continuous normal scale in residual (en-
vironmental) standard deviation units. Throughout
this study we use an environmental variance (<x;;(c)) of
unity. The heritability always refers to the underlying
scale. On that scale:

1

2

F,

BC

QQ

Qq

Qq or QQ

h* = crl(c)/(a

with

a\{c) = a\l A.

= o\(c) / (p\(c) + 1-0),

Therefore, the phenotypic variance on the continuous
scale is the sum of the additive genetic and en-
vironmental variance ( = crjj(c) + <r\{c) = cr'l(c) + 1.0).
The relationship between ac and h2 is shown in
Table 1.

(a) Threshold determination for binary trait

Given the means and variances for the two genotype
populations, and given the overall required incidence
(P, i.e. the probability of an observation being 1 in the
BC population), the threshold (T) was determined
using the algorithm of Ducrocq and Quaas (1988). In
Table 1 the thresholds are shown for different
heritabilities and different incidences.

Table 1. Relationship between parameters on the
Normal and binary scale for backcross populations. T
and a,, are in environmental standard deviation units

h2

001

005

010

P

0-50
0-25
010
0-50
0-25
010
0-50
0-25
010

0-2010

0-4588

0-6667

T

01005
0-7784
1-3885
0-2294
0-9218
1-5446
0-3333
10460
1-6857

P(Qq)

0-4600
0-2182
00825
0-4093
0-1783
00612
0-3694
01478
00459

P(QQ)

0-5400
0-2818
0-1175
0-5907
0-3217
01388
0-6306
0-3522
01541

a o i

00800
00637
00350
01815
01434
00776
0-2611
0-2045
01082

h2 is the heritability, T is the threshold on the underlying
scale corresponding to incidence P, and P(Qq), P(QQ) and
P{qq) are the incidences for QTL genotypes Qq, QQ and qq,
respectively, ac is the additive QTL effect on the underlying
scale, and am is the additive QTL effect on the observed
scale.

(b) Transformation to other scales

On the observed 0/1 scale, the population means for
the two genotypes are

%), (1)

Ac-flc) (2)

(3)

and

= P(QQ)-P(Qg),

where O is the Normal cumulative density function
and P{Qq) and P(QQ) are the incidences for genotypes
Qq and QQ, respectively.

From 0/1 scale to underlying scale

We estimate /i0l and am (estimates of the mean and
additive effect on the observed scale), and wish to
estimate ac:

= P(QiX

E{an) = P{QQ)-p{Qq).

Using eqns (1) and (2).

l -/*oi-«oi)] = T-fie-ac,

and the parameter of interest, ae, is obtained by
difference:

ac =

From GLM probit analyses to 0/1 scale

Estimates on the probit scale (subscript p) are related
to the underlying Normal scale by

E(ap) = ac.
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Table 2. Relationship between parameters on the Normal and binary
scale for F2 populations, for a QTL with a heritability ofOlO. Models:
additive (add; aQ = 04714, dc = 0), dominant (dom; ac = 0-4851, dc =
0-4851) and recessive (rec; ac = 0-4851, dc = -0-4851)

Model

add

dom

rec

P

0-50
0-25
010
0-50
0-25
010
0-50
0-25
010

T

00
0-7106
1-3511
0-2568
0-9821
1-6233

-0-2568
0-4833
11597

P{qq)

0-3187
01184
00342
0-2291
00712
00175
0-4097
01664
00500

P{Qq)

0-5000
0-2383
00882
0-5903
0-3096
01275
0-4097
01664
00500

P(QQ)

0-6813
0-4050
01894
0-5903
0-3096
01275
0-7709
0-5005
0-2500

01813
01433
00776
01806
01192
00550
01806
01671
01000

00
-0-0234
-0-0235

01806
01192
0-0550

- 0 1 8 0 6
- 0 1 6 7 1
-01000

T is the threshold on the underlying scale corresponding to incidence P, and
P(Qq)> P(QQ) a n d P(qq) are the incidences for QTL genotypes Qq, QQ and qq,
respectively. «01 and d01 are the additive and dominance QTL effect on the
observed scale.

We wish to estimate a01 from /tp and ap:

so

From GLM logit analyses to 0/1 scale

On the logistic scale (subscript g),

g + ag)] = P(QQ)/(\+P(QQ)).

Hence,

P(Qq) = exp(/t,)/[l +exp(jig)],

P(QQ) =

The parameters on the logistic scale are difficult to
compare directly with the underlying scale. To make
a comparison possible, parameters on the logistic
scale can be transformed to the underlying Normal
scale using the approximation (e.g. Mood et al. 1974)

ac = ajcrg,

with

scale, and the heterozygote may be different from the
average value of the homozygotes because of domi-
nance :

F2 genotype

W

QQ

Qq

Value

fi-a,

li +a,

u + d.

Estimation and transformation of parameters is
straightforward. For example, the relationship be-
tween parameters on the observed and underlying
scale is:

P(qq) = 1 — <D(J—/ic + ac),
P(Qq) = \-<S>(T-iic-dc),

P(QQ)=\-®(T-fic-ac),

and

an = (P(QQ)~P(qq))/2,

4,i = p(Qq) - i(P(qq)+P(QQ))/2.

(4)

(5)

(6)

(V)

(8)

Under an additive model, the expectation of d01 is not
zero, because of the non-linearity of the frequencies
on the observed scale. Hence, we expect a dominance
effect on the observed scale, even if there is no
dominance effect on the underlying scale. Relation-
ships between population parameters on the observed
and underlying scale are presented in Table 2.

Note that the transformation to obtain an was
performed with the estimates on the logistic scale.

(ii) F2 population

Extension from a BC to an F2 population is relatively
straightforward. We now have an additional genotype
(qq) with effect {/ic — ac} on the underlying Normal

(iii) Simulation

A single chromosome of lOOcM with 6 or 11 evenly
spaced fully informative markers was simulated.
Parameters were estimated either using the linear
regression method of Haley & Knott (1992), or using
a GLM (Numerical Algorithms Group, 1990) with
either a probit or a logit link. For any location on the
chromosome, the values of the explanatory variables
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were exactly the same for both methods. Effects fitted
were an overall mean and the expectation, in terms of
either an additive effect or both an additive and
dominance effect, for the mean genotypic effect of a
putative QTL given its flanking markers (Haley &
Knott, 1992). The probit model is the more ap-
propriate one given the model of simulation, but both
probit and logit models are widely used in GLM
analyses of binary data and they tend to give similar
results (McCullagh & Nelder, 1989). Data were
simulated on an underlying Normal scale, and then
transformed to a 0/1 (binary) scale using the
appropriate threshold from Tables 1 and 2.

For the LRG method, the test statistic used was an
approximate likelihood ratio, i.e.

„ . . Ar, /Residual SS reduced model\
Test statistic = N log —-—-—, c o _ „ -r-.— ,

\ Residual SS full model /

where N is the number of observations (Haley &
Knott, 1992). The full model contains both a mean
effect and QTL effects (an additive effect in a BC
population, and both an additive and a dominance
effect in F2 populations), and in the reduced model
only an overall mean is fitted. The GLM produced an
average deviance between fitted and observed values.
For a single location on the chromosome, the
difference in the deviance for the full and reduced
model is asymptotically distributed as a x2 w>th
degrees of freedom equal to the difference in the
number of parameters fitted (i.e. 1 D.F. for BC
populations, and 2 D.F. for F2 populations when both
additive and dominance effects are fitted).

By chance, estimates of the mean or additive QTL
effect on the observed scale can be negative (for low
values of P and small population sizes) when using
linear regression. This occurs when the incidence
pertaining to one of the marker genotype classes is
either 0 or 1, i.e. no variation within a genotype class.
In that case, a transformed threshold on the underlying
scale was chosen so that the probability of obtaining
the observed incidence for a population size equal to
that particular genotype class was 0-5. For example, a
negative estimate for /ip from a BC population of N =
200 results from P(Qq) = 0. The frequency, say
P*(Qq), which would give P{Qq) = 0 in 50 % of
samples of 100 individuals from that genotype class is
calculated from [1 -P*(Qq)]100 = 05, which gives
P*(Qq) - 0-0069. Finally, the corresponding para-
meter on the underlying scale is calculated as (T—fic)*
= ®-1(l-P*(Qq)). For this example, (T-/ic)* =

246. For F2 populations (N = 500), the corresponding
value for (T—/tc + ac)* was 2-54.

To investigate the power of the different methods,
5 % significance thresholds were simulated from 10000
replicate populations.

Parameters which were varied for the additive
model in BC populations were population size (200 or
500, which are population sizes corresponding to real
experiments), incidence (010, 025 and 050), marker

Table 3. Simulated (10000 replicates) 5%
significance thresholds in a backcross population for
different incidences (P), population sizes (N), and
marker spacing (A, in cM), for linear regression
(LRG), GLM with probit link (GLM(p)), and GLM
with logit link (GLM(g)). The same data were used
for the different methods of analysis

p

0-50

0-25

010

N

200

500

200

500

200

500

A

10
20
10
20
10
20
10
20
10
20
10
20

LRG

7-5
70
7-4
6-8
7-3
6-9
7-4
6-9
7-2
6-9
7-3
6-8

GLM(p)

7-4
6-9
7-4
6-8
7-3
6-9
7-4
6-9
7-5
7-1
7-4
6-8

GLM(g)

7-4
6-9
7-4
6-8
7-3
6-9
7-4
6-9
7-5
7-1
7-4
6-8

spacing (10 or 20 cM), and the effect of the QTL (h2

of 001, 0-05 and 010).
F2 populations were simulated to investigate the

estimation of dominance effects for different models.
For all simulations, a population size of 500 and a
marker spacing of 20 cM were used, and incidences
were varied as before. A QTL was simulated which
was either additive (ac = 04714, dc = 0), completely
dominant (ac = 0-4851, dc = 0-4851) or completely
recessive (ac = 0-4851, dK = -0-4851). These three
genetic models correspond to a narrow sense heri-
tability of 10% in the F2 population.

3. Results

(ii) Backcross population

The 5% significance thresholds for BC populations
are presented in Table 3. For a particular population
size and incidence, all significance thresholds were
determined using the same data, i.e. the same data
were analysed with all three models. For each
combination of incidence and population size, the 5 %
thresholds are very similar for all models. There is no
difference in thresholds to the accuracy shown between
the two GLMs. In general, threshold values do not
change much with different values of the proportion
affected or population size. This suggests that the
likelihood ratio approximation used by Haley &
Knott (1992) is robust to departures from normality.

A comparison between GLM using either the probit
or logit link was made for a marker spacing of 20 cM,
based on 1000 replicate populations. To calculate the
power of the models, the 5 % significance threshold
for GLM(p) and GLM(g) from Table 3 were used.
The results (which are not shown elsewhere) showed
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Table 4. Comparison between analyses for backcross populations using
linear regression (LRG) and GLM(p) on the same data for P = 0-50,
0-25 and 0-10, and a marker spacing of 20 cM. Results for 1000
replicates

P N

0-50 200

500

0-25 200

500

010 200

500

ft*

001
005
010
001
005
010
001
005
010
001
005
010
001
005
010
001
005
010

0-24
0-51
0-71
0-22
0-48
0-68
0-22
0-52
0-72
0-23
0-48
0-68
0-25
0-56
0-78
0-24
0-51
0-71

LRG

0094
0199
0-274
0089
0189
0-267
0-068
0159
0-218
0071
0151
0-209
0041
0086
0116
0041
0084
0113

Power (%)

12
52
86
27
93

100
12
46
80
22
87
99

7
28
53
16
66
93

0-24
0-51
0-71
0-23
0-48
0-68
0-22
0-52
0-72
0-22
0-48
0-68
0-25
0-57
0-79
0-24
0-50
0-70

GLM(p)

«01

0094
0199
0-274
0089
0189
0-267
0068
0160
0-219
0071
0151
0-209
0041
0086
0117
0041
0084
0113

Power (%)

12
52
86
27
93

100
12
46
80
22
87
99

8
28
53
17
66
93

Symbols are explained in previous tables.

that in terms of the average test statistic, power and
the estimate of the additive effect on the observed
scale, the models gave the same averages up to at least
two significant digits. Therefore, we use only the
probit link in further analyses.

Table 4 shows the comparison between LRG and
GLM(p) for different values of P, N and h2. The
similarity between the estimates on both scales and
the power for both models of analysis is striking.
Estimates of the QTL effect on both the observed (a01)
and underlying scale (ac) were usually biased upwards
for both models (compared with the population values
from Table 1). However, for QTL of large effects (h2

= 5 % or 10 %) and N = 500, the biases were not very
large. Additional to the simulations with a marker
spacing of 20 cM (Table 4), simulations were per-
formed with a marker spacing of 10 cM. However,
there was little difference in power for different marker
spacings, and results for a marker spacing of 10 cM
are not shown in Table 4. Typically, the power for the
reduced marker spacing was 1-2% higher. Power
decreased with decreasing heritability and incidence
and smaller population size, and for low powers the
average estimated position of the QTL tended towards
the middle of the chromosome (results not shown).
For example, the power and average location for a
QTL explaining 10% of the variation for N = 200
was 89 % and 27 cM for an incidence of 0-50 (Table
4), and 56% and 31 cM for P = 010 (Table 4).

Table 5. Comparison between analyses using linear
regression (LRG) and a generalized linear model
(GLM) on the same data for F2 populations. Results
for 1000 replicates. Pos., average location of QTL in
cM. Dominance effects were fitted but not simulated.
N = 500, A = 20 cM, h2 = 0-10

p

0-50

0-25

010

Method

LRG
GLM
LRG
GLM
LRG
GLM

0-48
0-48
0-49
0-48
0-50
0-52

de

001
001
000
001
000
005

«01

0183
0-182
0145
0144
0079
0079

0002
0002

- 0 0 2 6
- 0 0 2 3
- 0 0 2 9
- 0 0 2 3

Pos.

24
24
24
24
26
26

Power
(%)

99
99
98
98
87
87

Symbols are explained in previous tables.

(ii) F2 population

Simulated thresholds for an F2 of 500 individuals for
the LRG and GLM(p) models were 10-2 and 10-2 (P
= 0-50), 9-9 and 9-9 (P = 0-25)and 100 and 10-2 (P =
010), respectively. As expected, these values are larger
than the threshold values from the BC populations,
because an additional parameter was estimated.
Again, threshold values were similar when using
either LRG or a GLM.

Results for a simulated additive model are presented
in Table 5. Both models of analysis produce similar
results. For incidences of 0-25 and 010, the average
estimated dominance is significantly different from
zero for both models. Hence, although no dominance
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16-
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6H
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2 -

0
0 20 40 60 80

Location on chromosome (cM)
100

Fig. 1. Average test statistic (over 1000 replicates) per
chromosome location for an F2 population (TV = 500)
under an additive QTL model (ac = 0-4714, dc = 0) and
incidence of 10%. Continuous line, LRG; dashed line,
GLM.

1 6 -

14-

12-

•I 10-

«s o ~
B
c
« c
o> D ~

4 -

2 -

0

20 40 60 80
Location on chromosome (cM)

I
100

Fig. 2. Average test statistic (over 1000 replicates) per
chromosome location for an F2 population (N = 500)
under a dominant QTL model (ac = 0-4851, dc = 0-4851)
and incidence of 10%. Continuous line, LRG; dashed
line, GLM.

was simulated, a small effect (about —002 on the
observed scale, equivalent to a dominance ratio (d/a)
of around —0-3 for 10% incidence data) was
estimated. In Fig. 1, the average test statistic along the
chromosome is plotted for both models for an
incidence of 10 %. This confirms that the methods are
very similar in power.

Results for a completely dominant and recessive
QTL are shown in Table 6. Estimates and power for
the two methods are similar, except for an incidence of
P = 010 for the dominant genetic model (the positive
QTL allele is completely dominant). In that case, the
GLM method appears better, in that the power is
significantly larger than the power obtained from
linear regression (87% v. 78%, respectively). The
average test statistic along the chromosome for both

methods is shown in Fig. 2. For the recessive QTL,
although there is no difference in power at the 5%
level (both methods having 100% power), an investi-
gation of the test statistics revealed that the average
test statistic for LRG was larger than that from GLM.
This is shown in Fig. 3.

4. Discussion

We have shown that mapping QTL for binary traits
on the observed 0/1 scale using a linear model gives
very similar results to more sophisticated GLMs.
Jansen (1992) noted for an example with exponential
residuals that although the maximum likelihood was
much larger under GLM, parameter estimates were
similar.

Table 6. Comparison between analyses using linear regression (LRG) and
a generalized linear model (GLM) on the same data for F2 populations.
Results for 1000 replicates. Pos., average location of QTL in cM. N =
500, A = 20 cM, h2 = 0-10. The QTL was either completely dominant
(dom) or completely recessive (rec)

Gene action P Method #„ Pos. Power (%)

dom

rec

0-50

0-25

010

0-50

0-25

010

LRG
GLM
LRG
GLM
LRG
GLM
LRG
GLM
LRG
GLM
LRG
GLM

0-49
0-49
0-52
0-48
0-53
0-55
0-50
0-49
0-49
0-50
0-51
0-53

0-49
0-48
0 51
0-50
0-53
0-58

-0-49
-0-49
-0-50
-0-49
-0-50
-0-45

0-182
0180
0121
0118
0057
0054
0183
0181
0167
0170
0101
0105

0-179
0179
0120
0122
0055
0059

- 0 1 8 2
- 0 1 8 2
- 0 1 7 1
- 0 1 7 0
- 0 1 0 3
- 0 1 0 1

24
24
24
24
26
25
24
24
24
24
24
24

100
100
99

100
78
87

100
100
100
100
100
100

Symbols are explained in previous tables.
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40 -i

3 5 -

3 0 -

o
• | 2 5 "
3
S 20-

J . 5 H
10-

5 -

0
0 20 40 60 80 100

Location on chromosome (cM)

Fig. 3. Average test statistic (over 1000 replicates) per
chromosome location for an F2 population (N = 500)
under a recessive QTL model (ac = 0-4851, dc = -0-4851)
and incidence of 10%. Continuous line, LRG; dashed
line, GLM.

Theoretically, using all information on the data,
including their distribution, should be better, so that
we would expect the GLM model to do better.
However, in terms of estimates of QTL effects and
power, no differences were found. Even for more
extreme incidences, differences between the models
were very small. For example, for a BC population
with P = 0-01 and #=1000, powers for QTL
explaining 5% or 10% of the variance were 29% and
46% for LRG, and 28% and 45% for GLM (results
not shown in tables). For smaller population sizes
and/or more extreme incidences the models may
produce different results, but the power for such
populations would be very small. Several studies in
the animal breeding literature which compare linear
models with non-linear models for estimation genetic
parameters such as heritabilities and genetic corre-
lations and for prediction of breeding values have
come to similar conclusions, i.e. that linear models are
robust to departures from normality (e.g. Meijerink &
Gianola, 1985; Perez-Enciso et al. 1993).

The few cases for which there was a difference
between LRG and GLM in terms of power are
interesting, and need explanation. For example, a
difference of 9% in power was observed for the
dominant QTL (Table 6), with GLM being the more
powerful model. From simulation we found that the
distributions of the test statistic for LRG and GLM
under the null hypothesis were very similar (results
not shown). Therefore, the cause of the greater power
must solely be the higher average test statistic for
GLM when the dominant QTL is present (Fig. 2). We
calculated the value of the test statistics for LRG and
GLM assuming that the QTL was at a single marker
(in that case regression is equivalent to maximum
likelihood for normally distributed data) and using
the population values for parameters in the likelihood

equations, and compared these expected test statistic
values with simulation results (also for a single
marker). We found that the GLM test statistic was
larger than the one from LRG, and that predicted and
simulated results were similar. For example, LRG and
GLM were compared in an F2 population of 500
individuals, with a mean incidence of 0-25, and test
statistics were averaged over 1000 replicate popu-
lations. The expected difference in the likelihood ratio
test statistic between the linear and generalized linear
model, i.e. (test LRG-test GLM), were 0-4, -4-8 and
7-8 for an additive, dominant and recessive model,
respectively, while the observed values from simu-
lation were 0-5, — 5-3 and 8-2, respectively. Details of
these calculations are shown in the Appendix. For a
recessive QTL it was found by simulation that the
average test statistic for LRG is larger than that for
GLM (Fig. 3) (therefore, where power is intermediate,
that for LRG is likely to be higher than that for
GLM). Again, likelihood calculations for a single
marker (see example above and the Appendix) reveal
that for the set of parameters we used for the recessive
QTL the test statistic for LRG is larger than the test
statistic for GLM, as observed by simulation.

When the power is low, both methods apparently
give estimates of the QTL location which are biased
towards the centre of the chromosome. However, the
average location of a QTL which is presented in the
tables is an average over all replicates, irrespective of
the strength of evidence for a QTL in any particular
sample. In some of the replicate populations the
location with the largest test statistic will represent a
type I error, and, on average, the corresponding
estimated QTL location pertaining to these samples
will be in the centre of the chromosome. Hence the
average QTL location over all replicate samples will
be biased towards the centre of the chromosome. If
the size of the test statistic for each replicate population
is taken into account, for example by summing the
test statistic for each chromosome location over
replicates, the location with the largest average test
statistic corresponds to the location of simulated QTL
(results not shown), so that the location estimate is
unbiased when using the criterion of average test
statistic per chromosome location.

In practice, LRG has the advantages that it is easier
and quicker to use, for example, facilitating more
detailed analyses such as bootstrapping and per-
mutation tests. Our study suggests that LRG may be
used in practice for binary traits, and perhaps for
traits with other non-Normal distributions as well.
There are no apparent drawbacks in using LRG, with
the direction of any differences in power from GLM
being dictated by the underlying genetic model, which
is unlikely to be known in advance.
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Appendix

(i) Expected test statistics for LRG and GLM in F2

populations

We consider a simple case where the QTL genotypes
are known, i.e. we consider a single marker, and the
QTL is at the marker. Notation is as follows:

/>(1) = E{P{qq)) = expected incidence of genotype qq,

p(2) = E{P{Qq)) = expected incidence of genotype Qq,

p(3) = E(P(QQ)) = expected incidence of genotype QQ,

«(1) = E(n(qq)) = TV/4,

«(2) = E(n(Qq)) = N/2,

n(3) = E(n(QQ)) = N/A,

P — overall incidence in F2 population.

ML estimates for linear and generalized linear model

For both models, assume that, under the null
hypothesis (i.e. no QTL, fit just an overall mean), the
expected parameter estimates on the observed scale
are

The test statistic, /(LRG) = 2(ML(full)
— ML(reduced)), then becomes

(A 1)

<r2 = \LntP({\ -Pi)]/N. (A 2)

Hence, when the null hypothesis Ho (no QTL) is true:

(ii) Linear model

The log-likelihood can be written as

L oc - \[N log cr2 + Z, Z,(y(j-/.,.)
2/<r2]

(i=\,1;j=\,nd, (A3)

The (expected) maximum likelihood (ML) values are
obtained by substituting the expected parameter
estimates under the full and reduced model into eqn
(A 3), i.e.

-Pt)\/N,

f(LRG) = N[(\og(ji{\ -/i))-\og(o*un)].

(iii) Generalized linear model

(A 4)

The log-likelihood and maximum log-likelihood
equation are (from McCullagh & Nelder, 1989), again
using expected parameter estimates,

L(GLM) = I , . I , [ ^ ^

£(ML(GLM) w l[ntPi log (pt) + «f(l -pt) log (1 -Pl)l

For the full model, pt is P(qq), P{Qq) and P(QQ),
respectively. For the reduced model, px (only a single
probability fitted) is /i = \Lntp^/N.

The likelihood ratio test for GLM then becomes

O'r = M1 -/

r(GLM) = 2 { £ [ K ^ log (Pl) + n,(l -Pi) log (1 -pt)]

-Njilog(p)-N(l-/i)log(l-fi)}. (A 5)
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