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Abstract

In this paper we study the existence and uniqueness of positive solutions of boundary value problems
for continuous semilinear perturbations, say / : [0, 1) x (0, oo) -* (0, oo), of a class of quasilinear
operators which represent, for instance, the radial form of the Dirichlet problem on the unit ball of R*
for the operators: p-Laplacian (1 < p < oo) and k-Hessian (1 < k < N). As a key feature, f(r, u)
is possibly singular at r = 1 or u = 0. Our approach exploits fixed point arguments and the Shooting
Method.
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1. Introduction

We study the existence and uniqueness of solutions for the class of quasilinear problems

{- (ra|u'\>>u')' = rYf (r,u) in (0, 1),j
[M > 0 in (0, 1), M(1) = w'(0) = 0,

where a, ft, y are given real numbers, / : [0, 1) x (0, oo) -> (0, oo) is continuous
and u' = du/dr. The main feature here is that / is possibly singular at r = 1 or
u = 0. The study of (1.1) is motivated by the search of radial solutions for several
classes of quasilinear problems. In fact, denoting by B the unit ball of RN, if/ is
x-radially symmetric, (1.1) is the radial form of

-Apu=f(x,u) in B, u>0inB, u-OondB,
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where Ap (1 < p < oo) stands for the p -Laplace operator, provided a = y — N - 1
and ft = p — 2, and is further the radial form of

( - 1 ) * S * ( V 2 H ) = f ( x , u ) in B , u > 0 in B , u = 0 o n d B ,

where 5t(V
2«) (1 < k < Af) is the k-Hessian operator,

5t(V2«)=

A.,-, denoting the eigenvalues of the Hessian of M, namely V2M = (d2u/dxidxj) where,
in the present case, a = N — k, y = N — 1 and /5 = k — 1. We also remark that
5I(V2M) = A, (the Laplacian), and SN(V2u) is the Monge-Ampere operator. We
refer the reader to Tso [20, 19] and its references for properties of the k-Hessian. It is
worth recalling that singular problems are also motivated by questions in the physical
sciences. The reader is referred to Nachman and Callegari [2] for the problem

% in (0, 1), n'(0) = II(1) = 0,

with it e (0, 1), which appears in the theory of pseudoplastic fluids and Fulks and
Maybee [ 11 ] f or singular equations driven by questions in the theory of heat conduction
in electrically conducting materials.

In the present article we shall exploit the following conditions:

(1.2) P>-1, y
(1.3) f(r,-) is locally Lipschitz continuous in (0, oo),

uniformly with respect to r 6 [0, 1),

(1.4) —-r—- is decreasing in s, for each r,

(1.5) lim —-^— = 0, uniformly in r.

Our main result is

THEOREM 1.1. Assume(1.2M1.5)hold. Thenthereisu e C2((0, l))nC'([0, l))D
C([0, 1]) solution of (1.1) provided either

(1.6a) a < 0 and lim '— = oo uniformly in r
j » 0 s"+

or
(1.6b) a > 0 and f (r, s) > ij,(r), 0 < r < 1/2, s < 8,

for some 8 > 0 and r)s € C((0, 1/2)) with rjs > 0. Moreover, u 6 C2([0, 1)) if and
only if fi < y — a and further u is uniquely determined iff (r, •) is nonincreasing for
each r.
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[3] Quasilinear singular equations 127

REMARK. Condition (1.6b) holds if / ( r , s) —*• oo uniformly with respect to
r € [0, 1/2).

A few examples of terms / (r, s) to which Theorem 1.1 applies are,

(r + l)3(r - 1 ) V ,

sin(r)s~p + cos(r)s\ 0 < q < 0 + 1,

1*2 + sin

provided either p > 0 and a > 0 or p > — 1 — ft and a < 0. Moreover, by our
theorem, (1.1) is uniquely solvable in the case of the first example, provided p > 0.

Theorem 1.1 improves the main result of Hai and Oppenheimer [12] on equations
like

(1.7) -(p(r)<p(u'))' = p(r)f (r, u) in (0, 1),

where <p : IR -> R is an increasing homeomorphism with concave inverse <p~\ for
instance, <p(r) = \r\pr with /S > 0 and the main result in Wong [22].

Concerning singular problems, we would like to refer to Crandall, Rabinowitz and
Tartar [8], Taliaferro [18], Kuzano and Swanson [17], Chabrowski [3], Choi, Lazer
and McKenna [5], Lair and Shaker [15], Choi and Kim [4], Zhang [23], Wong [21]
and their references.

For problems involving the operator in (1.7) or (ra\u'fu')', but with nonsingu-
lar term/(r, u), see Hai, Schmitt and Shivaji [14, 13], Clement, Figueiredo and
Mitidieri [6], Clement, Manasevich and Mitidieri [7], Figueiredo, Goncalves and
Miyagaki [10].

2. Auxiliary results

One basic tool in the proof of Theorem 1.1 is the shooting method. Consider the
following family of initial value problems,

f-(r-|«r«')' = r"/ (r, «) in (0, 1);
|«(0)=a, ra\u\r)\^1 ^l 0,

where a > 0 is the shooting parameter. We point out that solving (2.1) is equivalent
to solve the integral equation,

/

r r fs -11/(^+1)

\s-a / t*f{t,u{t))dt\ ds
L Jo J
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and that a solution u of (2.1) has zero derivative at r = 0. Letting

/

r r /.j -| 1/(0+1)

\s~a I tYf{t,u{t))dt\ ds
it follows that the eventual solutions of (2.2) are the fixed points of & in a suitable
function space. We state next a crucial result on (2.1).

THEOREM 2.1. Assume (1.2) — (1.4) hold. Then for each a > 0 f/iere « some
T(a) 6 (0, 1] and a unique solution u(; a) e C2((0, T(a))) f~l C'([0, 7(a))) o/ (2.1)

(2.4) u(r, a) - • 0 rar-> 7\a) provided T(a) < 1;

(2.5) ii(., a) 6 C2([0, 7\a))) i/anrf o«fy i/ £ < y - a.

The proof of Theorem 2.1 uses Banach's Fixed Point Theorem. The technical
lemmas below will be used in the proof of Theorem 1.1. In order to state the first
lemma we establish some notations. Given T e (0, 1) and h > 0 set

X = \w e C'([0, T])\w> h, ra\w'(r)f+l ^ i o j .

If w\, w2 e X let H : [0, T] -> K be a continuous function defined by

H(r) = r

for r 6 (0, T] and //(0) = 0. The first lemma is

LEMMA 2.2. Ifwu w2 e X, then

H{J) < f \(ra | ( ^ + 2 ) ) ' | " (wl
2

/ifi+2))

- (r° \(w\/(fi+2>)'( ( ^ r + ^ ^ r ^ H (v>i - ^2)dr.

Now, the second lemma

LEMMA 2.3. Assume a < b and let M(-, a), u(-, b) be the corresponding solutions
given by Theorem 2.1. Thenu(-,a) < u(,b)in[0, T (a)) and moreover T (a) < T(b).

The third one is
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LEMMA 2.4. Assume (1.2)-(1.4) hold. Let [an] be a sequence in (0, oo) such that
an / a or an \ a for some a > 0 and let «(-, an), «(-, a) be the solutions given by
Theorem 2.1. If K € (0, min{7(a), supn T(an)}) then

| |u(san)-M(- ,a) | | c " - ^ 0 and u1(r, an) "-^ u'(r, a), r € [0, K).

3. Proof of Theorem 2.1

Let a > 0. By (1.3) there is some /„ > 1 such that/ (r, •) is Lipschitz continuous
on [a/Ia, a] uniformly for r € [0, 1). Let e e (0, 1) small, set

Xa_e = {ue C([0, €]) | «(0) = a, a/Ia < u(r) < a, r e [0, e]}

and notice that (Xa€, || • H )̂ is a complete metric space. We claim that

(3.1) (i) ^ (X, , ( )CX a , ( , (ii)

for some e > 0 small enough, for all u\, u2 e Xa€ and for some k 6 (0, 1).
We present the proof of (3.1) in Appendix. Assuming it has been done, & has an

only fixed point u e Xa( and so (2.1) has a unique local solution. Setting

T(a) = sup{r e (0, 1) | (2.1) has an only solution in [0, r]}

and letting «(-, a) : [0, T{a)) -*• R be the solution of (2.1), notice that by (2.2),
«(•, a) e C([0, T(a))) and, in fact,

r"a / trf(t,u(t,a))dt\ , 0<r<T(a).

Consider the functions

(3.3) (i) m ( M ) s i f f l n ^ , (ii) W ( * , z ) s m a x ^
0<'£ " + 0</< JCP+1

where 0 < 5 < 1 and 0 < x < oo. Taking T < T(a), estimating in (3.2) with the use
of (3.3) (ii) and (1.4) we have,

(3.4) \u'(r, a)\»+l < W J' ^ ^ ^ d t

< -M{T, u(T, a))r*-+l, 0<r<T
y + 1
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so that by (3.4), «(-, a) e C([0, T]) and as a consequence, v = limr_7- «'(r, a) is
defined and v e (—oo, 0). Now, consider the initial value problem

[-(/•"Iv'\»vy = ryf(r,v) in (7\ 1),

whose solutions are the fixed points of

^v(r) = «(7\a) - J Is-" I r ^ r 1 + j t*f(t, v(t))dt\\ ds.

By the standard fixed point argument again, one infers the existence of a unique
solution of (3.5) on some interval [T, T + e) showing that u{-, a) is uniquely deter-
mined. We also have from the arguments above that u(T(a), a) = limf_,r(a) u(r, a),
«(•, a) e C([0, T(a)]) and further u(T(a), a)=0 when T(a) < 1. This shows (2.4).

Next we shall prove (2.5). From (3.2),

(3.6)

where

M"(r- °) = Q , ' r~" / rV (r, «(r, a)) dr
p + 1 L ô J

A(r,a)=/(r,«(r,a))-ar-("+1) / tyf(t,u(t,a))dt
Jo

and from (3.2) and (3.6), u = «(•, a) € C2((0, T(a))) D C'([0, T(a))). Moreover,

(3.7) ^LZ^±l

and using (3.3) (i)-(ii) and (1.4),

(3.8) n(r, a)^+1/n(r, a) < / (r, «(r, a)) < a"+1M(r, ii(r, a))

for r > 0. Consider the two cases below:

Case 1: — 1 < /8 < 0. Integrating from 0 to r in (3.8) we have,

[ ap+i
—-jM(r,u(r,a
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Hence,

(3.9)

-p/w+u
" I t*f(t,u(t,a))dt'

From (3.6), (3.7) and (3.9) it follows that limr_0 u"(r, a) exists if and only if /3 < y — a.
Case 2: 0 > 0. Again, from (3.8), we obtain

Af(r,«(r,a))r N t*f (t, u(t))dt
) '

and thus,

(3.10) j " - ^ - M(r, u(r, a)]

-P/ifi+i)

Therefore, it follows from (3.6), (3.7) and (3.10) that lim,-_>o u"(r, a) exists if and
only if ft < y — a.

4. Proofs of the lemmas

PROOF OF LEMMA 2.2. We will adapt arguments by Diaz and Saa [9] related to
Brezis and Oswald [1]. Consider the functional J : Ll([0, T]) -> R U {oo} defined
by

1 fT 1 ^+2

f * 1 UJ I U f* U / t y \ ,

J(w)= • P + 2J0 lv y

oo, w £ X.

It is straightforward to check that X and / are both convex. Now, letting W\, w2 € X,
r\ = ioi — u)2, p = jS + 2, remarking that u>2 + tr], wi — tr) € X, (0 < / < 1), and
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denoting by (J'(WJ), rj) the directional derivative of J at iy, in the direction JJ, we
claim that

(4.1) {J'(W]), -r,) = --Ta\{w\/p(T))'\p~2{W\/P(T))'w\l-p)/p(TMT)

+
I f

P Jo w.
-n(r)dr

and

(4.2) (J'(w2),r,) = -T°\(wl/p(T))'\p-2{wi
2

/l>(T))'w?-p)/P(TMT)

P Jo ,,(P-D/P
"2

•i)(r)dr.

We will show (4.1) next. Notice that,

,-r,) = -lim r«
P '^° Jo

_ r r ? ) i / | ' ' _ | ( u ; i / ' '

P y | ' ' _
JJ

By computing we find

(4.3) dr

where min{((u>, - /r;)1^)', (w\/p)'} < 0, < max {((«;, - trf)1")', (w\/p)'}. Now,
estimating and applying Lebesgue's Theorem to (4.3) we infer that

(J'iWi), -r,) = - - f r"\{w\lpy\p-\w\'py{wf-p)/pr]ydr,
P Jo

and computing the integral we get (4.1). The verification of (4.2) follows by the same
arguments. From (4.1) and (4.2),

(J'(w2), rj) - {J'(wl), n) = -H(T) - - I
P P Jo

w ^

- w2) dr.

Since J is convex, (J'(w0 - J'(w2), Wi - w2) > 0 and Lemma 2.2 follows. •

PROOF OF LEMMA 2.3. Assume, by the contrary, there is some T > 0 such that
both u(r, a) < u(r, b) for r e [0, T) and u(T, a) = u(T, b). Setting wa = u(-, a)fi+2
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and wb = «(-, b)P+2, notice that wa, u>b € X, where h in the definition of X is given

here by h = u(T, a)p+2. Notice that

^ _ t/«

Jo I u(-,by+i u(-,a)f>+i

Now, since H(T) = 0, by Lemma 2.2 the first integral just above is nonpositive,
while by (1.4), the second one is strictly positive, a contradiction. This proves
Lemma 2.3. •

PROOF OF LEMMA 2.4. Assume an / a, take K e (0, supn T(an)) and an integer
nK >\ such that T(anK) > K. By Lemma 2.3 and taking n > nK,

T{anK) < T{an) < T{a) and «(•, anK) < «(•, an) < «(-, a) < a.

We claim that {«(-, an)}^! is equibounded and equicontinuous in C([0, AT]). Indeed,
estimating as in (3.4) and using (3.3) (ii) we find

= K.

Hence there is 6n 6 (0, K) such that

\u(r, an) - u(t, an)\ = \u\6n, an)\\r - t\ < KlHfi+l)\r - t\.

It follows that {w(-, an)}^! is equibounded as well. So by the Arzela-Ascoli Theorem
there is v e C([0, £]) such that M(-, an) -*• v uniformly in [0, AT], up to a subsequence.
Next we remark, by letting gn(t) s= tYf (t, u(t, an)), 0 < t < K, that both

\gn(t)\ < — 2 tyf(t, u(t, anK)) & h(t), where h e Ll[0, K]
\_u{K,anK)\

and gn(t) -> tYf (t, v(t)) = g(t), t e (0, K]. So by Lebesgue's Theorem, for
r 6 [0, K],

f tYf(t,u(t,an))dt-> f tYf(t,v(t))dt.
Jo Jo

Hence,

|«'(',«„)IV(r,an)^ -r"« / tYf (t,v(t))dt
Jo
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and so u'(r, an) -> w(r), where w(r) = -(r'" /„' trf (t, v(t)) dt)W+l). By Lebes-
gue's Theorem again

r , r
I u(t,an)dt ->• / w(t)dt,

Jo Jo

and as a matter of fact, v(r) — a = fQ
r u;(r) rfr. Since v' = w we get,

| t /(r) |V(r) = - r -« / ff (t,v(t))dt.
Jo

Hence v is a solution of (2.1) and by uniqueness provided by Theorem 2.1 it follows
that v = M(-, a). We have shown that,

«(- ,a,)->H(-,a) in C([0, K]),

«'(-, an) -> «'(-, a) pointwisely in [0, K].

The case an \ a follows by similar arguments. Lemma 2.4 is proved. •

5. Proof of Theorem 1.1

Setting si = [a > 0 | T(a) = 1} we claim that si ^ <j>. Indeed, if si = <p then
u(ra, a) = a/2 for some ra e (0, T(a)), since u(r, a) ' :^>> 0 by (2.4). Using (2.2)
and estimating as in (3.4) we get

(5.1) -,<aM[r.,-J ( _ — -r>.,

where 9 = (y-a + p + 2)/(P + 1), and thus

h) e
for some ta e (0, ra). But this is impossible by (1.5) and so si ^ <j>. Setting
A s inf si we claim that 0 < A < oo. Indeed, at first notice that A < oo because
si ^ </>. Now, to show that A > 0 we consider two cases:
Case 1: a < 0. Set for r e [0, 1/2],

U{r, a) = u(r, a) — h(r, a), where h{r, a) = a — lar.

We claim that U(r, a) > 0. Indeed, notice first that U > 0 in (0, r0) for some
TO € (0, 1/2). If U(r2, a) < 0 for some r2 e (r0, 1/2) then we find some n e (r0, r2)
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with U'(rua) < 0 and further since £/(l/2, a) > 0 we find some r3 e (r2, 1/2) with
U'iri, a) > 0. But this is impossible because since a < 0 it follows using (3.6)
that U"(r, a) < 0 for all r e (0, 1/2). As a consequence, u(r, a) > a — 2ar for
r e [0, 1/2] and hence using (2.2) and (1.4),

1/2
-u(l/2,a)>-a + J Is'" J t*J-^-(a - 2at)fi+ldt I

/

1/2 r /.J

L-° / ty(i-2

= -a + am(l/2,ay/(*)+l)

Hence by (1.6a), — u(l/2, a) > 0 for some a small enough. But since u(-, a) is
a solution of (2.1), it follows that K(1/2, a) = 0 so that T(a) = 1/2. So using
Lemma 2.3, A > 0.
Case 2: a > 0. If A = 0 it follows using Lemma 2.3 that si = (0, oo) so that
M(1, a) > 0 for all a > 0. Now, since 2(K(1, a) - u(l/2, a)) = u'(6a, a), for some
6a e (1/2, 1) and 0 < M(1, a) < «(l/2, a) < a it follows that

/

Jo

By (1.6b) we get, for small a > 0,

/
1/2 /•«„

tym0)dt< / tyf(t,u(t,a))dt,
Jo

impossible. This shows that A > 0.
In order to prove that«(-, A) is a solution of (1.1) it suffices to show that A e n/ and

«(1, A) = 0. If T(A) < 1 pick e > 0 such that 7(A) + e < 1 and a sequence an e srf
with an \ A. Consider the sequence u(T(A) + e/2,an) which by Lemma 2.3
is decreasing and set T(A = infn{«(7(A) + e/2,an)}. We claim that T(A > 0.
Otherwise, it follows remarking that u(T(A) + e, an) < u(T(A) + e/2, an) and

u(T(A) + e, an) - u(T(A) + e/2, an) = u'(6n, an)(e/2)

for some 6n € (7\A) + e/2, 7(A) + e) that u'(0n, an) 4- 0. Now, since
trf(t, u(t,an))dt

/•ft
= - /

Jo

we get f0
T(A)/z

 tyf (t, «(r, an)) dr A 0.
By Lemma 2.4 we have

/

T(A)/2 rT(A)/2

tyf(t,u(t,an))dt^ / t*f(t,u(t,A))dt.
Jo
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But this is impossible, because fQ
T(A)/2 trf (t, u(t,A))dt > 0. Therefore T(A > 0.

Choose <50 > 0 such that u(r, A) < TfA/A for r e [T(A) - <$„, T(A) - S0/2]. By
Lemma 2.4,

||K(-, an) - u(-,

and so there is n0 > 1 such that

\u(r, a*) - ii(r, A)\ < 7^/4 for all r e [0, T(A) - So/2].

Thus, for r e [T(A) - <50, T(A) - 80/2] we have

u(r, aj < \u(r, ano) - u(r, A)\ + u(r. A) < Tt<A/2.

Since u(r, an) > T(_A for n > 1 and r e [0, T(A)], it follows that

u(T(A) - So, ano) < Tt,A/2 < Tt,A < u(T(A), ano),

impossible. Therefore A € &/. Now assume that M(1, A) > 0, and pick a sequence
an y A. We claim that

(5.2) T(an) A 1.

Indeed, notice that T(an) < T(an+l) < 1 and hence T(an) / T. If T < 1
set TA = u(T, A). For each n large enough (for instance, such that an > TA) take
tn e (0, T) satisfying u(tn, an) = TA/A.

Since «(-, an) is decreasing, consider 0 < tn < tn < T such that «(fn, an) — TA/2.
We will show next that in —> T. Indeed, noticing that tn is monotone, iH -*• f < T.
If f < T there is n0 > 1 such that T(ano) > t. Hence u(r, an) < 7^/2 for all n > n0

and r 6 [7, T(ano)] because otherwise, there would be some rh e [f, T(ano)] with
TA/2 < u{r-n, a-n) < u(th, ah) = TA/2, i m p o s s i b l e .

W e infer tha t \u{r, an) - u(r, A ) \ > TA/2 for r e [ f , f + e) and for s o m e e > 0
with f + € < T(ano). But this is impossible because by Lemma 2.4,

||«(-, an) - «(-, A)\\Ci[Of+(]) 4- 0.

Therefore, f = T. Now, noticing that

u(tn, an) - «(?„, an) = u'(0n, an)(tn - tn), in < 9n < tn,

we get

\u\Gn,an)\= TA A oo.
Mtn-tn\
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But this is impossible, because estimating as in (3.4) it follows that u'(r, an) is bounded
for r e [0, T]. Claim (5.2) is proved.

Set / = K(1, A). By (1.4) and (1.5) pick f, 6 (0, 1) such that

/

l r ps -] i/(0+D

s~° / tyf (f, Z/2) Jf ds < Z2/4A.
. L Jo J

Using Lemma 2.4 and (5.2), we have
II«(-, an) - u(-, A)||c([o,(,]) - • 0.

and as a consequence, \u(tlt an) — u(t\, A)| -> 0. But since u(t\, A) > Z + e for some
€ > 0 ,

u(ti,an) > u(tuA) -€ > I

for large n. Now pick f2 € (t\, 1) such that u(t2, an) = 1/2. We have,

/

h r /•»
5"a /

Estimating the above integral as in (3.4) and using (5.3), we get

, , 2A I2

u(t2,an) > I T7T-
Z 4A

contradicting Z/2 = u(t2, an). Therefore, M(1, A) = 0 and the solution u = «(-, A)
given by Theorem 2.1 solves (1.1).

It remains to show uniqueness. Let u = u(-, B) be another solution of (1.1) with
A < B. By Lemma 2.3, u(r, A) < u(r, B) for 0 < r < 1. Set co = u — u and
let r0 e [0, 1) be a point where co attains a local maximum so that a>(r0) > 0 and
co'(r0) = 0.

Integrating the differential equation in (1.1) from r0 to r with r e [r0, 1] and using
the fact that/ (r, s) is nonincreasing in s, we obtain

r"(\u(r)\fiu'(r) - \u\r)fu'(j)) = - f ty\f (t, u(t)) - f (t,u(t))]dt > 0.
Jr0

Using the following inequality (see Simon [16]),

if P > 0

for all *, y e IR and for some cfi > 0 it follows that co'(r) — u'(r) — u'(r) > 0 for
r e Oo, 1]. Hence 0 = a>(l) > aj(r0), a contradiction.
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6. Appendix

We prove (3.1) (i) first. If u e C([0, e]) then &u e C((0, e]). On the other hand,

\s- \ t*f(!,u(t))dt\ ds < aM(r, a/Ia)
mp+»\ ——\ e9-,

L A J LY + L] v
where r e (0, e], 6 as in (5.1). Actually,

M(r, a/Ia) —> .
a/Ia

As a consequence, &(u) e C([0, e]). Picking e > 0 small enough we have

h~ 1
<—f-a

so that a/Ia < &(u)(r) <a,0<r<€, showing (3.1) (i).
Next we show (3.1) (ii). Let M, e C([0, e]), i = 1, 2. We have

where X,(i) = s~a /„' r''/ (f, «,-(*)) c?' (i = 1, 2). Using the inequality

I k l ^ - | y | ^ | < cp(\xf + \yf)\x - y \ x , y e R

for some c^ > 0 where ^ > — 1, we have by making ^ = — /8/QS + 1)

We distinguish two cases.
Case 1: — 1 < /} < 0. Given e > 0 and taking s € [0, e] we have

and

-X2(s)\<s-a f ty\f(t,udt))-f{t,u2(t))\dt
Jo
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where K is the Lipschitz constant of/ on [a/Ia, a]. From these inequalities we infer
that

and (3.1) (ii) follows by taking e small.
Case 2: /J > 0. As in Case 1, given e > 0 we have,

\ 0 < S <€

and

showing (3.1) (ii).
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