FINITE LINEAR GROUPS OF DEGREE SEVEN. I

DAVID B. WALES

1. This paper is the second in a series of papers discussing linear groups of prime degree, the first being (8). In this paper we discuss only linear groups of degree 7 . Thus, G is a finite group with a faithful irreducible complex representation X of degree 7 which is unimodular and primitive. The character of X is χ. The notation of (8) is used except here $p=7$. Thus P is a 7 -Sylow group of G. In $\S 2$ and 3 some general theorems about the 3 -Sylow group and $\check{\jmath}$-Sylow group are given. In $\S 4$ the statement of the results when G has a non-abelian 7 -Sylow group is given. This corresponds to the case $|P|=7^{3}$ or $|P|=7^{4}$. The proof is given in $\S \S 5$ and 6 . In a subsequent paper the results when P is abelian will be given. These correspond to the case that $|P|=7$ or $|P|=7^{2}$. In $\S 6$ characters are denoted by χ_{i}, their degrees by x_{i}. Set $|G|=g=7^{a_{7}} \cdot 5^{a_{5}} \cdot 3^{a_{3}} \cdot 2^{a_{2}}$. By (3, 3E), $a_{5} \leqq 7, a_{3} \leqq 8, a_{2} \leqq 10$. By (8, Theorem 2.2), $a_{7} \leqq 4$.

Acknowledgment. I wish to thank Professor R. Brauer for his help.
2. Some properties of P_{5}. We begin with a discussion of the 5 -Sylow group P_{5} of G showing first that it is abelian. This extends (8, Theorem 5.1).

Theorem 2.1. A 5-Sylow group P_{5} of G is abelian.
Proof. If P_{5} is not abelian, then $X \mid P_{5}$ has a 5-dimensional constituent and two linear ones. A suitable element Q in $Z\left(P_{5}\right) \cap P_{5}{ }^{\prime}$ has five eigenvalues $\lambda=e^{2 \pi i / 5}$ and two eigenvalues $1 . \dagger$ We will show in a series of lemmas that this is impossible. We will also need the lemmas later.

Lemma 2.2. Suppose that H has a faithful representation Y of degree 2, not necessarily unimodular. Suppose, further, that H has two 5-elements Q_{1} and Q_{2} which do not commute. Then there is an element T in any commutator of H such that $Y(T)$ has eigenvalues $\left\{-\lambda^{2},-\lambda^{3}\right\}$ where $\lambda=e^{2 \pi i / 5}$. Furthermore, $H^{\prime}=H^{\prime \prime}$ is the unimodular subgroup of $Y(H)$. Furthermore, there is an involution J in $Z\left(H^{\prime}\right)$ such that

$$
Y(J)=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad H^{\prime} /\langle J\rangle \cong A_{5} .
$$

[^0]Proof. Identify H with $Y(H)$. Let $c_{i}=\operatorname{det} y\left(Q_{i}\right), i=1,2$. Adjoin to $Y(H)$ the matrices $\pm\left(\sqrt{ } c_{i}\right)^{-1} I$. Let K be the new group. Let S be the subgroup of K consisting of unimodular matrices. There are scalar multiples of $Y\left(Q_{i}\right)$, $i=1,2$, in S which do not commute, and hence S contains two 5 -elements which do not commute. As a 5 -Sylow group is abelian, it is not normal in S. The group $S / Z(S)$ must be one of the linear groups in two variables all of which are listed in (1). The only possibility is $S / Z(S) \cong A_{5}$ as this is the only one in which the 5 -Sylow group is not normal. Let $S_{0}=S \cap H$. Clearly, $S_{0} \triangleleft S$ and S / S_{0} is abelian. We have $S \triangleright S_{0} \triangleright Z\left(S_{0}\right) \triangleright e$. Since S has a composition factor A_{5} and S / S_{0} and $Z\left(S_{0}\right)$ are abelian, we have $S_{0} / Z\left(S_{0}\right) \cong A_{5}$. Here $Z\left(S_{0}\right)$ can contain only $\pm I$. Since A_{5} has no representation of degree 2 , we see that $Z\left(S_{0}\right)= \pm I$. Furthermore, $S_{0}{ }^{\prime}=S_{0}$. We have $H D S_{0}$ with H / S_{0} abelian. This shows that $H^{\prime}=S_{0}=H^{\prime \prime}=H^{(n)}$. In S_{0} an element T of order 5 has eigenvalues $\left\{\lambda^{2}, \lambda^{3}\right\}$ for an appropriate power of T. Multiplying by $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ we obtain an element with eigenvalues $\left\{-\lambda^{2},-\lambda^{3}\right\}$. The proof is complete.

Lemma 2.3. Let H be the group generated by two non-commuting elements Q_{1} and Q_{2} of order 5. Suppose that there is a faithful representation Y of H of degree 4 which has a two-dimensional invariant subspace. Furthermore, $Y\left(Q_{1}\right)$ and $Y\left(Q_{2}\right)$ have eigenvalues $\{1,1, \lambda, \bar{\lambda}\}$ or $\{1,1, \lambda, \lambda\}$. Then there is an element T in H such that $Y(T)$ has eigenvalues $\left\{1,1,-\lambda^{2},-\lambda^{3}\right\}$ or

$$
\left\{-\lambda^{2},-\lambda^{2},-\lambda^{3},-\lambda^{3}\right\} .
$$

Here $\lambda=e^{2 \pi i / 5}$.
Proof. Let $Y=Y_{1} \oplus Y_{2}$, where Y_{1} and Y_{2} are 2-dimensional. Identify H with $Y(H)$. Adjoin to H the matrices $\lambda^{r} I, r=1,2,3,4$. Let K be this new group. Let S be the subgroup of K such that Y_{1} is unimodular. There is a scalar multiple $\lambda^{r} I$ of $Y\left(Q_{1}\right)$ in S and a scalar multiple of $Y\left(Q_{2}\right)$ in S. This means that S contains at least two non-commuting elements of order 5 . Call these R_{1} and R_{2}. Clearly, $Y_{i}\left(R_{1}\right)$ and $Y_{i}\left(R_{2}\right)$ cannot commute for both $i=1$ and 2 . If $Y_{i}\left(R_{1}\right)$ and $Y_{i}\left(R_{2}\right)$ do commute, the group $\left\langle Y_{i}\left(R_{1}\right), Y_{i}\left(R_{2}\right)\right\rangle$ is commutative. Applying Lemma 2.2 to a commutator of $\left\langle R_{1}, R_{2}\right\rangle$ yields an element with eigenvalues $\left\{1,1,-\lambda^{2},-\lambda^{3}\right\}$.

We can therefore assume that $Y_{i}\left(R_{1}\right)$ and $Y_{i}\left(R_{2}\right)$ do not commute for $i=1,2$. It follows easily that $S=\left\langle R_{1}, R_{2}\right\rangle$. By Lemma $2.2, S^{\prime}=S$ and thus $\operatorname{det} Y_{2}(S)=1$. Let $Q=R_{i}, i=1,2$. We can assume that $Y_{1}(Q)$ and $Y_{2}(Q)$ have eigenvalues $\left\{\lambda^{2}, \lambda^{3}\right\}$. For if not, Q_{1} or Q_{2} cannot be written as a scalar multiple of any non-identity power of Q as the eigenvalues for such a scalar multiple are $\left\{c \lambda, c \lambda^{2}, c \lambda^{3}, c \lambda^{4}\right\}$. This means that $Y_{1}(Q)$ and $Y_{2}(Q)$ have eigenvalues $\left\{\lambda^{2}, \lambda^{3}\right\}$ and $Y(Q J)$ has eigenvalues $\left\{-\lambda^{2},-\lambda^{3},-\lambda^{2},-\lambda^{3}\right\}$, where J is the involution in $Z(S)$. This completes the proof of the lemma.

Lemma 2.4. Suppose that H has a faithful representation Y of degree 3. Suppose also that H is generated by two non-commuting 5-elements $Q_{i}, i=1,2$,
such that $Y\left(Q_{i}\right)$ has eigenvalues $\left\{\alpha_{i}, \alpha_{i}, \beta_{i}\right\}$. There is then an element T in any commutator of H such that $Y(T)$ has eigenvalues $\left\{1,-\lambda^{2},-\lambda^{3}\right\}$. Again $\lambda=e^{2 \pi i / 5}$.

Proof. $Y\left(Q_{i}\right), i=1,2$, has a 2-dimensional invariant subspace U_{i} on which $Y\left(Q_{i}\right) \mid U_{i}$ is $\alpha_{i} I$. Any subspace of U_{i} is an invariant subspace of $Y\left(Q_{i}\right)$. Clearly, $U_{1} \cap U_{2}$ is an invariant subspace for $Y\left(Q_{1}\right)$ and $Y\left(Q_{2}\right)$ and hence for $Y(H)$. This shows that Y is not irreducible. Since H is not abelian, there must be a 2 -dimensional component. Lemma 2.2 can be applied to H^{\prime} to obtain an element of the desired form.

Lemma 2.5. There can be no element Q_{1} in G such that $X\left(Q_{1}\right)$ has eigenvalues $\{\lambda, \lambda, \lambda, \lambda, \lambda, 1,1\}$.

Proof. Suppose that $X\left(Q_{1}\right)$ has eigenvalues $\{\lambda, \lambda, \lambda, \lambda, \lambda, 1,1\}$. Since G cannot have a normal 5 -subgroup containing Q_{1}, there must be a conjugate Q_{2} of Q_{1} such that Q_{1} and Q_{2} do not commute. Let $U_{i}, i=1,2$, be the subspaces of the representation space V of X on which $X\left(Q_{i}\right)=\lambda I$. It is clear that $U_{1} \cap U_{2}$ is an invariant subspace for $X\left(Q_{i}\right)$, and hence for $X(H)$, where H is the group generated by $Q_{i}, i=1,2$. Clearly, $U_{1} \cap U_{2}$ has dimension 5, 4, or 3. Furthermore, $X\left(Q_{i}\right) \mid U_{1} \cap U_{2}=\lambda I$. Let W be a complementary subspace to $U_{1} \cap U_{2}$ with respect to $X(H)$. We see that W has dimension 2, 3, or 4 . If $\operatorname{dim} W=2, U_{1}=U_{2}$, and Q_{1} and Q_{2} commute. This is a contradiction. If $\operatorname{dim} W=3$, Lemma 2.4 gives an element T in H^{\prime} such that $X(T)$ has eigenvalues $\left\{1,1,1,1,1,-\lambda^{2},-\lambda^{3}\right\}$, contradicting Blichfeldt's theorem ($\mathbf{1}$ or $\mathbf{8}, \S 2$). This follows since $X\left(Q_{i}\right) \mid W$ must have eigenvalues $\{1,1, \lambda\}$. If $\operatorname{dim} W=4$, the eigenvalues of $X\left(Q_{i}\right) \mid W$ are $\{1,1, \lambda, \lambda\}$. As in (1, p. 143) there is a 2 -dimensional invariant subspace and Lemma 2.3 gives an element T in H such that $X(T)$ has eigenvalues contradicting Blichfeldt's theorem. This completes the proof of the lemma and the proof of Theorem 2.1.

Corollary 2.6. If $|G|=7^{a} \cdot 5^{b} \cdot g_{1}$, then $b \leqq 6$.
Proof. This follows from (3, 3D) or the proof of (3, 3E).
We now show that there can be no element Q such that $X(Q)$ has eigenvalues $\{1,1,1,1,1, \lambda, \bar{\lambda}\}, \lambda=e^{2 \pi i / 5}$. This will be used to obtain properties of the 5 -Sylow group P_{5}. The proof is fairly involved. Part of it will be given by means of a lemma at the end.

Theorem 2.7. There can be no element Q in G such that $X(Q)$ has eigenvalues $\{1,1,1,1,1, \lambda, \bar{\lambda}\}, \lambda=e^{2 \pi / 5}$.

Corollary 2.8. An elementary abelian subgroup of P_{5} has order at most 5^{4}.
Proof of Corollary 2.8. Suppose that there is an elementary abelian subgroup of order 5^{5}. A basis ξ_{1}, \ldots, ξ_{5} for P_{5} can be chosen so that $X\left(\xi_{i}\right)$ is diagonal and $\left(X\left(\xi_{i}\right)\right)_{i i}=\lambda, \quad\left(X\left(\xi_{i}\right)\right)_{j j}=1$ for $1 \leqq j \leqq 5, j \neq i, \quad\left(X\left(\xi_{i}\right)\right)_{66}=\lambda^{r_{i}}$, $\left(X\left(\xi_{i}\right)\right)_{77}=\lambda^{-\left(r_{i}+1\right)}, i=1,2, \ldots, 5$. Here r_{i} is an integer $0 \leqq r_{i} \leqq 4$. The
last component $\left(X\left(\xi_{i}\right)\right)_{77}$ is $\lambda^{-\left(r_{i}+1\right)}$ by the unimodularity. If all of the r_{i} are distinct for $i=1,2, \ldots, 5$, some r_{i} is 0 . For this $i, X\left(\xi_{i}\right)$ has eigenvalues $\{1,1,1,1,1, \lambda, \bar{\lambda}\}$, contradicting Theorem 2.7. This means that two r_{i} are equal, say $r_{i}=r_{k}$. Now $X\left(\xi_{i}\left(\xi_{k}\right)^{-1}\right)$ has eigenvalues $\{\lambda, \bar{\lambda}, 1,1,1,1,1\}$, again contradicting Theorem 2.7. This proves the corollary.

Proof of Theorem 2.7. Let Q_{1} be an element in G such that $X\left(Q_{1}\right)$ has eigenvalues $\{1,1,1,1,1, \lambda, \bar{\lambda}\}$. Let $Q_{1}, Q_{2}, \ldots, Q_{r}$ be all of the conjugates of Q_{1} in G. The group $H=\left\langle Q_{1}, Q_{2}, \ldots, Q_{r}\right\rangle$ is a normal subgroup of G not in the centre, and thus $X \mid H$ must be irreducible. We will obtain a contradiction by showing that this is not true.
(1) For $i=1,2, \ldots, r$ let U_{i} be the unique 5 -dimensional subspace on which $X\left(Q_{i}\right)=I$. Any subspace of U_{i} is an invariant subspace for $X\left(Q_{i}\right)$. For any given $i, 1 \leqq i \leqq r$, there is a j such that Q_{i} and Q_{j} do not commute since otherwise $Q_{i} \in Z(H)$ and $X \mid H$ cannot be irreducible. Assume that Q_{i} and Q_{j} do not commute. Let $U_{i j}=U_{i} \cap U_{j}$. We know that $U_{i j}$ is an invariant subspace for $X\left(Q_{i}\right)$ and $X\left(Q_{j}\right)$. Let $V_{i j}$ be a complementary invariant subspace to $U_{i j}$ with respect to $X\left(\left\langle Q_{i}, Q_{j}\right\rangle\right)$. Let $Y_{1}=X\left|U_{i j}, Y_{2}=X\right| V_{i j}$. If $V_{i j}$ is 2 -dimensional, $Y_{2}\left(Q_{i}\right)$ and $Y_{2}\left(Q_{j}\right)$ have eigenvalues $\{\lambda, \bar{\lambda}\}$. Since Q_{i} and Q_{j} do not commute, $Y_{2}\left(Q_{i}\right)$ and $Y_{2}\left(Q_{j}\right)$ do not commute and thus Lemma 2.2 gives an element T such that $X(T)$ has eigenvalues, contradicting Blichfeldt's theorem. This means that $V_{i j}$ has dimension 3 or 4 .

Suppose now that $V_{i j}$ has dimension 4, or, equivalently $U_{i j}$ has dimension 3. In this case, $Y_{2}\left(Q_{i}\right)$ and $Y_{2}\left(Q_{j}\right)$ have eigenvalues $\{1,1, \lambda, \bar{\lambda}\}$. We will show that this is impossible. To do this, the following lemma is needed. The lemma will be proved at the end of the proof of this theorem. We state the lemma here for convenience.

Lemma 2.9. Let i_{1}, \ldots, i_{s} be a set of integers $1 \leqq i_{1}<i_{2}<\ldots<i_{s} \leqq r$ and set $H_{i_{1}, \ldots . i_{s}}=\left\langle Q_{i_{1}}, \ldots, Q_{i_{s}}\right\rangle$. Suppose that U is a 4 -dimensional invariant subspace for $X\left(H_{i_{1}}, \ldots, i_{s}\right)$. Let $X\left(H_{i_{1}}, \ldots, i_{s}\right)=Y \oplus Y_{1}$, where

$$
Y=X\left(H_{i_{1}, \ldots, i_{s}}\right) \mid U
$$

Further, we assume that $Y\left(Q_{i_{1}}\right), \ldots, Y\left(Q_{i_{s}}\right)$ has eigenvalues $\{1,1, \lambda, \bar{\lambda}\}$ and Y_{1} is the identity. Then Y must be reducible.

Proof. Lemma 2.9 will be proved after the proof of Theorem 2.7.
This lemma applies to $V_{i j}$ since the eigenvalues of $Y_{2}\left(Q_{i}\right)$ are $\{1,1, \lambda, \bar{\lambda}\}$. It shows that Y_{2} must be reducible. If Y_{2} has a 2-dimensional invariant subspace, Lemma 2.3 gives an element in $\left\langle Q_{i}, Q_{j}\right\rangle$ contradicting Blichfeldt's theorem. This means that there must be a 3 -dimensional subspace. Let $Y_{2}=Y_{3} \oplus Y_{4}$, where Y_{3} is 3-dimensional.

Suppose that $Y_{3}\left(Q_{i}\right)$ has eigenvalues $\{1,1, \lambda\} . \operatorname{In}\left\langle Q_{i}, Q_{j}\right\rangle$ there is a conjugate R of Q_{i} which does not commute with Q_{i}. If this were not so, Q_{i} would be in all 5 -Sylow groups of $\left\langle Q_{i}, Q_{j}\right\rangle$, and thus Q_{i} and Q_{j} would commute since a 5-Sylow group must be abelian. Applying Lemma 2.4 to $\left\langle Q_{i}, R\right\rangle^{\prime}$ yields an
element contradicting Blichfeldt's theorem. This shows that $Y_{3}\left(Q_{i}\right)$, and similarly $Y_{3}\left(Q_{j}\right)$ have eigenvalues $\{1, \lambda, \bar{\lambda}\}$. Consequently, $Y_{4}\left(Q_{i}\right)=$ $Y_{4}\left(Q_{j}\right)=1$. This means that $U_{i} \cap U_{j}$ is 4 -dimensional and thus $V_{i j}$ is 3 -dimensional, contrary to our assumption.

We have shown that if Q_{i} and Q_{j} do not commute, $U_{i} \cap U_{j}$ is 4-dimensional, or equivalently $V_{i j}$ is 3 -dimensional. Furthermore, Y_{2} must be irreducible otherwise Lemma 2.2 yields an element contradicting Blichfeldt's theorem. Let $e_{\lambda}{ }^{i}$ be an eigenvector of $X\left(Q_{i}\right)$ with eigenvalue λ. Similarly, let $e_{\bar{\lambda}}{ }^{i}, e_{\lambda}{ }^{j}, e_{\bar{\lambda}}{ }^{j}$ be appropriate eigenvectors of $X\left(Q_{i}\right)$ and $X\left(Q_{j}\right)$. Since Y_{2} is irreducible and $V_{i j}$ is 3 -dimensional, we see that $V_{i j}=\operatorname{Sp}\left\{e_{\bar{\lambda}}{ }^{i}, e_{\lambda}{ }^{i}, e_{\lambda}^{j}, e_{\lambda}^{j}\right\}$, where $\operatorname{Sp}\left\{v_{1}, \ldots, v_{s}\right\}$ is the linear span of the vectors v_{1}, \ldots, v_{s}.
(2) Suppose that Q_{k} is a second element which does not commute with Q_{i}. We can define $V_{i k}$ as above and show again that $V_{i k}$ is 3 -dimensional. We will show that in fact $V_{i j}=V_{i k}$. Suppose then that $V_{i j} \neq V_{i k}$.

Let $V=\operatorname{Sp}\left\{V_{i j}, V_{i k}\right\}$. Define e_{λ}^{k} and e_{λ}^{k} as we did e_{λ}^{j} and $e_{\lambda}{ }^{j}$. Clearly, $e_{\lambda}{ }^{i}$ and $e_{\bar{\lambda}}{ }^{i}$ are in $V_{i j} \cap V_{i k}$ and, since $V_{i j} \neq V_{i k}$, we see that $V_{i j} \cap V_{i k}$ has dimension at most two. This means that $\left\langle e_{\lambda}{ }^{i}, e_{\bar{\lambda}}{ }^{i}\right\rangle=V_{i j} \cap V_{i k}$. Let e_{j} be an eigenvector of $X\left(Q_{i}\right)$ in $V_{i j}$ with eigenvalue 1. A basis for $V_{i j}$ is $\left\{e_{\lambda}{ }^{i}, e_{\bar{\lambda}}{ }^{i}, e_{j}\right\}$. Similarly define e_{k}. A basis for V is $\left\{e_{\lambda}^{i}, e_{\bar{\lambda}}^{i}, e_{j}, e_{k}\right\}$.

We will show now that V is an invariant subspace for $X\left(Q_{i}\right), X\left(Q_{j}\right)$, and $X\left(Q_{k}\right)$. Certainly, V is invariant under $X\left(Q_{i}\right)$ as the basis is a basis of eigenvectors. For $X\left(Q_{j}\right)$, it is only necessary to show that e_{k} is mapped into V as the remaining three vectors span $V_{i j}$. Clearly, $e_{j} \notin U_{i} \cap U_{j}$ as $e_{j} \in V_{i j}$. This means that $U_{i}=\operatorname{Sp}\left\{U_{i} \cap U_{j}, e_{j}\right\}$. This is so since $\operatorname{dim}\left(U_{i} \cap U_{j}\right)=4$ and $e_{j} \in U_{i}$. Since $e_{k} \in U_{i}$, we see that $e_{k}=e+r e_{j}, r$ a scalar, $e \in U_{i} \cap U_{j}$. Furthermore, $X\left(Q_{j}\right) e_{k}=X\left(Q_{j}\right) e+r X\left(Q_{j}\right) e_{j}=e+r X\left(Q_{j}\right) e_{j}$. Clearly, $e \in V$ and $X\left(Q_{j}\right) e_{j} \in V$. This shows that V is invariant under $X\left(Q_{j}\right)$. Similarly V is invariant under $X\left(Q_{k}\right)$.

Let $H_{i j k}=\left\langle Q_{i}, Q_{j}, Q_{k}\right\rangle, H_{i j}=\left\langle Q_{i}, Q_{j}\right\rangle$, and $H_{i k}=\left\langle Q_{i}, Q_{k}\right\rangle$. Furthermore, define $X\left(H_{i j k}\right) \mid V=Y$. The eigenvalues for $Y\left(Q_{i}\right), Y\left(Q_{j}\right)$, and $Y\left(Q_{k}\right)$ are $\{1,1, \lambda, \bar{\lambda}\}$. Lemma 2.9 shows that Y is reducible. Since $Y\left(H_{i j}\right)$ has an irreducible constituent of degree 3 , we see that $Y=Y_{4} \oplus Y_{5}$, where Y_{5} has degree 3 and Y_{4} is linear. Clearly, $Y_{5}\left(H_{i j}\right)$ is similar to $X\left(H_{i j}\right) \mid V_{i j}$. We see also that $Y_{5}\left(H_{i k}\right)$ is similar to $X\left(H_{i k}\right) \mid V_{i k}$. If V^{\prime} is the 3-dimensional subspace corresponding to Y_{5}, we see that $\left\{e_{\lambda}^{i}, e_{\bar{\lambda}}{ }^{i}, e_{\lambda}{ }^{j}, e_{\bar{\lambda}}^{j}, e_{\lambda}{ }^{k}, e_{\lambda}{ }^{k}\right\} \in V^{\prime}$. This shows that $V \subseteq V^{\prime}$, and thus V cannot be 4-dimensional. We have shown that $V=V_{i j}=V_{i k}$.
(3) Now start with Q_{1} and find a Q_{j} such that Q_{1} and Q_{j} do not commute. Relable Q_{j} as Q_{2}. Inductively relable Q_{i} after Q_{i-1} has been picked so that Q_{i} does not commute with some $Q_{j}, j<i$. This will continue until a Q_{s} is picked such that Q_{i} for all $i \leqq s$ commute with all unpicked Q_{t}.

We know that $V=V_{12}$ is an invariant subspace for $X\left(H_{1,2}\right)$. For any $i \leqq s$ there is a chain of integers $1=j_{1}<j_{2}<\ldots<j_{m}=i$ such that $Q_{j_{k}}$ and $Q_{j_{k+1}}$ do not commute. We have shown that V is an invariant subspace
for $X\left(Q_{j_{1}}, Q_{j_{2}}\right), \ldots, X\left(Q_{j_{m-1}}, Q_{j_{m}}\right)$. Clearly V is an invariant subspace for $X\left(\left\langle Q_{1}, \ldots, Q_{s}\right\rangle\right)$. Let $H_{1,2, \ldots, s}=\left\langle Q_{1}, \ldots, Q_{s}\right\rangle$.
(4) The group $\left\langle Q_{s+1}, \ldots, Q_{r}\right\rangle$ commutes with $H_{1,2, \ldots, s}$. Call

$$
\left\langle Q_{s+1}, \ldots, Q_{r}\right\rangle=\widetilde{H}_{2} \quad \text { and } \quad H_{1,2, \ldots, s}=\tilde{H}_{1} .
$$

We know that $X\left(\widetilde{H}_{1}\right)$ has V as an irreducible invariant subspace. On a complementary invariant subspace, $X\left(\tilde{H}_{1}\right)$ is trivial. By Schur's lemma, $X\left(\widetilde{H}_{2}\right)$ has V as an invariant subspace. This shows that V is an invariant subspace for $\left\langle\tilde{H}_{1}, \tilde{H}_{2}\right\rangle=\left\langle Q_{1}, \ldots, Q_{T}\right\rangle$, giving a contradiction.

We have completed the proof of Theorem 2.7 except for Lemma 2.9. In this lemma we can relable the elements $Q_{i_{1}}, \ldots, Q_{i_{s}}$ as Q_{1}, \ldots, Q_{s}.

Lemma 2.9 (restatement). Let $H=\left\langle Q_{1}, \ldots, Q_{s}\right\rangle$. Suppose that U is a 4-dimensional invariant subspace for $X(H)$. Let $X(H)=Y \oplus Y_{1}, X(H) \mid U=Y$. We assume that $Y\left(Q_{i}\right), i=1,2, \ldots, s$, has eigenvalues $\{1,1, \lambda, \bar{\lambda}\}$; this implies that $Y_{1}(H)$ is the identity. Then Y must be reducible.

Proof. We assume that Y is irreducible. Let $|H|=h$.
(1) Clearly $5 \mid h$. Suppose that $5^{2} \nmid h$. Applying the results of (2) we see that Y has 5 -defect 1 and $Y\left(Q_{1}\right)$ or a power must have eigenvalues $\left\{\lambda, \lambda^{2}, \lambda^{3}, \lambda^{4}\right\}$, $\{\lambda, \lambda, \bar{\lambda}, \bar{\lambda}\}$, or $\{\lambda, \lambda, \lambda, \lambda\}$. Since $\lambda\left(Q_{1}\right)$ has eigenvalues $\{1,1, \lambda, \bar{\lambda}\}$, this is a contradiction and we see that $5^{2} \mid h$.
(2) Since Y is irreducible, H is not abelian and thus there must be at least one pair i, j such that Q_{i} and Q_{j} do not commute. Since the 5 -Sylow group is abelian, there are at least two 5 -Sylow groups in H. Let two distinct ones be S_{5} and P_{5}. We will show that $S_{5} \cap P_{5}=e$.

Suppose then that $R \in S_{5} \cap P_{5}, R \neq e$. The eigenvalues of $Y(R)$ cannot all be equal as $\operatorname{det} Y(R)=1$. This means that $Y\left(\left\langle S_{5}, P_{5}\right\rangle\right)$ must be reducible since $R \in Z\left(\left\langle S_{5}, P_{5}\right\rangle\right)$. Furthermore, $\left\langle S_{5}, P_{5}\right\rangle$ does not have a normal 5 -Sylow group.

Let $\left\langle S_{5}, P_{5}\right\rangle=H_{0}$. Suppose that $Y\left(H_{0}\right)$ has two irreducible constituents of degree 2. By applying Lemma 2.2, it follows that there is an involution J in $Z\left(H_{0}\right)$ such that $Y(J)=-I$. The eigenvalues of $Y(R)$, or a power, are $\{\lambda, \lambda, \bar{\lambda}, \bar{\lambda}\}$ by the unimodularity. The eigenvalues of $X(R J)$ contradict Blichfeldt's theorem. Suppose that $Y\left(H_{0}\right)$ has a 2 -dimensional invariant subspace and two linear ones. Lemma 2.2 yields an element contradicting Blichfeldt's theorem. We see then that $Y\left(H_{0}\right)$ splits into two constituents of degrees 3 and 1 . The eigenvalues of $Y(R)$ or a power are $\left\{\lambda, \lambda, \lambda, \lambda^{2}\right\}$. There is a 3 -dimensional invariant subspace on which $Y(R)$ is λI. If there is a conjugate R_{1} of R in H which does not commute with R, there is a 2 -dimensional subspace on which $Y(R)$ and $Y\left(R_{1}\right)$ is λI. Lemma 2.2 yields an element contradicting Blichfeldt's theorem. This shows that all conjugates of R in H must commute, and thus the group generated by these conjugates must be an abelian normal 5 -subgroup. It is therefore in all 5 -Sylow groups, and hence
must commute with all $Q_{i}, i=1,2, \ldots, s$. It must therefore be in the centre of H, contradicting the irreducibility of Y. This means that $S_{5} \cap P_{5}=e$.
(3) The group H has a faithful unimodular representation Y of degree 4. It is generated by elements Q_{i} of order 5 such that $Y\left(Q_{i}\right)$ has trace $2+\lambda+\bar{\lambda}$. Suppose that Y is not primitive. A matrix of the form

$$
\left[\begin{array}{llll}
0 & 0 & * & * \\
0 & 0 & * & * \\
* & * & 0 & 0 \\
* & * & 0 & 0
\end{array}\right]
$$

or a 4×4 permutation matrix cannot have order 5 . This means that $Y\left(Q_{i}\right)$ must be diagonal or

$$
Y\left(Q_{i}\right)=\left[\begin{array}{llll}
* & * & 0 & 0 \\
* & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right]
$$

We see that in any case $Y(H)$ is reducible. This means that Y is primitive.
(4) Let $h=7^{b_{7}} \cdot 5^{b_{5}} \cdot 3^{b_{3}} \cdot 2^{b_{2}}$. Since $H \subseteq G, b_{7} \leqq a_{7}$. By (8, Theorem 3.1), $a_{7} \leqq 4$. By ($3,4 \mathrm{E}$) there can be no element in a 7 -Sylow group with three eigenvalues 1 if $a_{7} \geqq 3$. If $a_{7}=1$ or 2 , this is also true by ($3,4 \mathrm{~A}$) and the fact that X is of full 7 -defect. This means that $b_{7}=0$. Since $H \subseteq G$, we see that $b_{2} \leqq 10$. By the primitivity of $Y, b_{3} \leqq 3+1=4$, since $3 \nmid 4$ in $(3,3 \mathrm{E})$. The number of 5 -Sylow groups is congruent to $1\left(\bmod 5^{b_{5}}\right)$. The only possible such number is $2^{6} \cdot 3^{2}=576$. This means that $h=5^{2} \cdot 3^{b_{3}} \cdot 2^{b_{2}}$, where $2 \leqq b_{3} \leqq 4$, and $b \leqq b_{2} \leqq 10$. Furthermore, $\left|H: N\left(P_{5}\right)\right|=2^{6} \cdot 3^{2}$.
(5) Suppose that there is an element T of order 3 and an element Q of order 5 such that T and Q commute. Suppose also that T does not commute with P_{5}, the 5 -Sylow group containing Q. Since there are no 5 -Sylow intersection groups, T must normalize P_{5}. If P_{5} is cyclic, its order must be 5 by (3, 3B). This is impossible and thus P_{5} is elementary abelian. This means that $N\left(P_{5}\right) / C\left(P_{5}\right)$ is a subgroup of GL $(2,5)$. By taking a basis of P_{5} containing Q, we see T must correspond to a matrix $\left(\begin{array}{ll}1 & a \\ 0 & b\end{array}\right)$. No such matrix has order 3 , giving a contradiction. This means that any 3 -element which centralizes an element of order 5 centralizes the whole 5 -Sylow group containing it.
(6) Let P_{2} be a 2-Sylow subgroup of H. We know that

$$
X\left|P_{2}=1 \oplus 1 \oplus 1 \oplus Y\right| P_{2}
$$

Any abelian subgroup of P_{2} has variety at most 5 and so its order must be at most 2^{4} by (3,3D). We know that $\left|P_{2}\right| \geqq 2^{6}$.

If $Y\left(P_{2}\right)$ has two components, there is an abelian subgroup of index at most 2^{2} which can be found by putting each component in monomial form and taking the diagonal matrices. This implies that $\left|P_{2}\right|=2^{6}$. If $Y\left(P_{2}\right)$ is irreducible, there is an abelian subgroup of index at most 2^{3}. Here $\left|P_{2}\right| \leqq 2$. There must be a non-trivial element in $Z\left(P_{2}\right)$. Here $2^{6} \cdot\left|Z\left(P_{2}\right)\right| \leqq 2^{7}$ and
therefore $\left|Z\left(P_{2}\right)\right|=2$. Also $\left|P_{2}\right|=2^{7}$. Clearly $Z\left(P_{2}\right)=Z(H)$. We know that any 2 -element R centralizing Q normalizes P_{5}. If $\left|P_{2}\right|=2^{6}$, this is impossible. If $\left|P_{2}\right|=2^{7}$, then $R \in Z\left(P_{2}\right)$ and hence $R \in C\left(P_{5}\right)$.

This shows that if Q is a non-trivial 5 -element, $C_{H}(Q)=C_{H}\left(P_{5}\right)$, where P_{5} is a 5 -Sylow group containing Q. We can therefore apply the results of (4) to this case.
(7) We know that $2 \nmid N\left(P_{5}\right) / C\left(P_{5}\right) \mid$ and therefore $\left|N\left(P_{5}\right) / C\left(P_{5}\right)\right|$ is 1 or 3. Since $Y \mid P_{5}$ is not rational, Y must have an exceptional character. We use the notation of (4). Let Y be in the 5 -block B^{α}. We know that $r_{\alpha} s_{\alpha}=1$ or 3 and therefore $s_{\alpha}=1$ or 3 . In either case, $b_{\alpha}{ }^{\alpha}=0$ by (4, Eq. 4.9) and thus $\operatorname{deg} Y \equiv \epsilon_{\alpha} r_{\alpha} s_{\alpha} \operatorname{deg} \theta_{\alpha}(\bmod 25)$. This means that $4=\epsilon_{\alpha} r_{\alpha} s_{\alpha} \operatorname{deg} \theta_{\alpha}$. Clearly $\epsilon_{\alpha}=1, r_{\alpha} s_{\alpha}=1$, and $\operatorname{deg} \theta_{\alpha}=4$. However, θ_{α} is a representation of $C\left(P_{5}\right)$. This is impossible since $2^{2} \nmid\left|C\left(P_{5}\right)\right|$. This contradiction establishes the lemma and completes the proof of Theorem 2.7.

Note added in proof. Theorem 2.7 can be shortened by using the linear groups of degree 4.
3. Bounds for Sylow group orders when χ is real. In this section we obtain bounds for the orders of the 3 -Sylow group and the 5 -Sylow group valid when χ is real on these Sylow groups. This is particularly important when discussing the case $g=7^{3} \cdot g_{0}$ since by (8 , Theorem 4.6) χ is often real on these Sylow groups. It is also used later for the case $g=7 \cdot g_{0}$. Here P_{5} is a 5 -Sylow group of G, P_{3} a 3 -Sylow group of G.

Theorem 3.1. Let $|G|=g=7^{a_{7}} \cdot 5^{a_{5}} \cdot 3^{a_{3}} \cdot 2^{a_{2}}$. If $\chi \mid P_{5}$ is real, then $a_{5} \leqq 2$. If $\chi \mid P_{3}$ is real, then $a_{3} \leqq 5$.

Proof. (1) We first treat the case of P_{5}. By Theorem 2.1 we know that P_{5} is abelian. Let $\chi \mid P_{5}=\sum_{i=1}^{7} \lambda_{i}$, where λ_{i} is a linear character of P_{5}. Since χ is real we can assume that $\chi \mid P_{5}=\lambda_{1}+\bar{\lambda}_{1}+\lambda_{2}+\bar{\lambda}_{2}+\lambda_{3}+\bar{\lambda}_{3}+\lambda_{4}$ because the only real linear characters are trivial. This means also that $\lambda_{4}=1$. We will show that $a_{5} \leqq 2$ by showing that (a) there cannot be three independent elements of order 5 and (b) there cannot be two independent elements one of order 5^{2} the other of order 5 . This will show that $a_{5} \leqq 2$ as there cannot be an element of order $5^{3}(3,3 B)$.

Suppose: (a) there are three independent elements $\xi_{1}, \xi_{2}, \xi_{3}$ of order 5 in P_{5}. In the usual way, they can be chosen so that $\lambda_{i}\left(\xi_{i}\right)=\lambda=e^{2 \pi i / 5}$ and $\lambda_{j}\left(\xi_{i}\right)=1$ for $i \neq j$. This contradicts Theorem 2.7 for ξ_{i}. Here $i=1,2,3$.

Suppose: (b) there is an element ξ_{1} of order 5^{2} and an independent element ξ_{2} of order 5 . We can choose ξ_{1} and ξ_{2} so that $\lambda_{1}\left(\xi_{1}\right)=\mu=e^{2 \pi i / 25}, \lambda_{1}\left(\xi_{2}\right)=1$, $\lambda_{2}\left(\xi_{2}\right)=\lambda=e^{2 \pi i / 5}$. Suppose that $\lambda_{2}\left(\xi_{1}\right)=\eta_{1}, \lambda_{3}\left(\xi_{1}\right)=\eta_{2}$, and $\lambda_{3}\left(\xi_{2}\right)=\eta_{3}$. These specify $X\left(\xi_{1}\right)$ and $X\left(\xi_{2}\right)$ completely. We know that $\eta_{3} \neq 1$ or Theorem 2.7 is contradicted. Since ξ_{2} has order $5, \eta_{3}$ is a fifth root of 1 . Suppose that $\left(\eta_{1}\right)^{5}=\left(\eta_{2}\right)^{5}=1$. Then $\left(\xi_{1}\right)^{5}$ has eigenvalues contradicting Theorem 2.7. This means that at least one of η_{1}, η_{2} is a primitive 25 th root of 1 . Suppose that
one is only a fifth root of 1 , the other a 25 th root of 1 . By taking $\xi=\xi_{1}\left(\xi_{2}\right)^{s}$ for an appropriate s and rearranging if necessary we can obtain an element ξ such that $\lambda_{1}(\xi)=\mu, \lambda_{2}(\xi)=\eta, \lambda_{3}(\xi)=1$. If η is a fifth root of $1, \xi^{5}$ has eigenvalues contradicting Blichfeldt's theorem. Therefore $\eta=(\mu)^{t}$ for some $t, 5 \nmid t$. It can be seen by inspection that there is a value $r=1,2,3$, or 4 such that $r t \equiv-4,-3,-2,-1,1,2,3$, or $4(\bmod 25)$. The eigenvalues of $X\left(\xi^{r}\right)$ contradict Blichfeldt's theorem as they are all within an angle of $8 \pi / 25$ of 1 on the unit circle and 1 occurs as an eigenvalue. Also $8 \pi / 25<\pi / 3$.

The only case remaining is that η_{1} and η_{2} have primitive 25 th roots of 1 . In this case, either μ^{5} is one of $\left\{\left(\eta_{1}\right)^{5},\left(\bar{\eta}_{1}\right)^{5},\left(\eta_{2}\right)^{5}\right.$, or $\left.\left(\bar{\eta}_{2}\right)^{5}\right\}$ or $\left(\eta_{1}\right)^{5}$ is $\left\{\left(\eta_{2}\right)^{5}\right.$ or $\left.\left(\bar{\eta}_{2}\right)^{5}\right\}$. In the first case after rearranging and multiplying by $\left(\xi_{2}\right)^{\tau}$ we can obtain an element ξ such that $\lambda_{1}(\xi)=\lambda_{2}(\xi)=\mu$. As in the paragraph above, one of $\xi, \xi^{2}, \xi^{3}, \xi^{4}$ has eigenvalues contradicting Blichfeldt's theorem. In the second case we can rearrange to find new ξ_{1}, ξ_{2} such that $\lambda_{1}\left(\xi_{1}\right)=\eta_{1}$, $\lambda_{2}\left(\xi_{1}\right)=\eta_{2}, \lambda_{3}\left(\xi_{1}\right)=\mu, \lambda_{1}\left(\xi_{2}\right)=1$, and $\lambda_{2}\left(\xi_{2}\right)=\lambda$. Here $\left(\eta_{1}\right)^{5}=\left(\eta_{2}\right)^{5}$. This is the case just considered and so we have a contradiction.

We have shown that $a_{5} \leqq 2$.
(2) We now treat similarly the case of P_{3}. There can be no element of order 3^{3} by (3,3B). If H is an abelian subgroup of P_{3} again we have $X \mid P_{3}=\lambda_{1}+\bar{\lambda}_{1}+\lambda_{2}+\bar{\lambda}_{2}+\lambda_{3}+\bar{\lambda}_{3}+1$.

If H is an abelian subgroup with three independent elements of order 3 they can be chosen as $\xi_{1}, \xi_{2}, \xi_{3}$, where $\lambda_{i}\left(\xi_{i}\right)=\eta=e^{2 \pi i / 3}, \lambda_{i}\left(\xi_{j}\right)=1$ for $j \neq i$. It is clear that a fourth independent element of order 3 is impossible in H.

Suppose that H is an abelian subgroup of type $\left(3^{2}, 3^{2}, 3\right)$. Again we can pick a basis $\xi_{1}, \xi_{2}, \xi_{3}$ so that $\lambda_{1}\left(\xi_{1}\right)=\mu, \lambda_{2}\left(\xi_{1}\right)=1, \lambda_{3}\left(\xi_{1}\right)=\mu_{1} ; \lambda_{1}\left(\xi_{2}\right)=1$, $\lambda_{2}\left(\xi_{2}\right)=\mu, \lambda_{3}\left(\xi_{2}\right)=\mu_{2}$; and $\lambda_{1}\left(\xi_{3}\right)=\lambda_{2}\left(\xi_{3}\right)=1, \lambda_{3}\left(\xi_{3}\right)=\eta$. Here $\mu=e^{2 \pi i / 9}$, $\eta=e^{2 \pi i / 3}=(\mu)^{3}$. If $\left(\mu_{1}\right)^{3}=1$, an element $\xi_{1}\left(\xi_{3}\right)^{r}$ has eigenvalues ($\mu, \bar{\mu}, 1,1,1,1,1$), contradicting Blichfeldt's theorem. If $\left(\mu_{1}\right)^{3} \neq 1$, an element $\xi=\xi_{1}\left(\xi_{3}\right)^{r}$ has $\lambda_{1}(\xi)=\mu, \lambda_{2}(\xi)=1, \lambda_{3}(\xi)=\mu$ or $\bar{\mu}$. In either case, Blichfeldt's theorem is contradicted.

These arguments show that any abelian subgroup of P_{3} must have order at most 3^{4} or there would be a subgroup of type $(3,3,3,3)$ or $\left(3^{2}, 3^{2}, 3\right)$. If $a_{3} \geqq 6, P_{3}$ must be non-abelian. This means that $X \mid P_{3}$ must have a non-linear component U of degree 3 . Clearly U cannot be real since there is an element T in $Z\left(P_{3} /\right.$ ker $\left.U\right)$ for which $U(T)=\eta I$. This implies that $X \mid P_{3}=U \oplus \bar{U} \oplus y$, where y is linear. By putting U in monomial form we obtain an abelian subgroup of order 3^{5}, giving a contradiction. This implies that $a_{3} \leqq 5$ and proves the theorem.

4. Statement of the results.

Theorem 4.1. Suppose that G has a complex irreducible representation X of degree 7 which is faithful, unimodular, and primitive. If G has a non-abelian 7-Sylow group, G is one of the following groups:
(I) G is a uniquely determined group of order $7^{4} \cdot 48$ which has a non-abelian
normal subgroup D of order 7^{3} and exponent 1 such that $G / D \cong \operatorname{SL}(2,7)$;
(II) Certain subgroups of G in (I) containing D as a 7-Sylow group.

Remarks. Let $|G|=g=7^{a_{7}} \cdot g_{0},\left(7, g_{0}\right)=1$. If the 7 -Sylow group is nonabelian, then $a_{7} \geqq 3$. By (8 , Theorem 2.2) we know that $a_{7} \leqq 4$. We need only consider $a_{7}=3$ and $a_{7}=4$. The case $a_{7}=4$ is treated in $\S 5$, the case $a_{7}=3$ is treated in $\S 6$. The results of ($\mathbf{6}$ or $\mathbf{3}, 2 \mathrm{D}$) show that no prime higher than 7 occurs in g.
5. The case $a_{7}=4$. If there are non-abelian 7 -Sylow intersection groups, then (8 , Theorem 3.1) yields case (I). We will use (8, Theorem 4.2) to show that there are no other possibilities. We assume then that G has no (nonabelian) 7 -Sylow intersection groups.

By (3, 6A, 6B, 7B) and our assumption about non-abelian 7-Sylow intersection groups, we see that the only 7 -Sylow intersection groups are P and Z. This means that the number of 7-Sylow groups, $|G: N(P)|$, is congruent to $1\left(\bmod 7^{3}\right)$. Let this number be T. Certainly $H=O^{7^{\prime}}(G)$ has T-Sylow groups also and $X \mid H$ is primitive by (8, Theorem 4.2). We will therefore replace G by H in our discussion and thus assume that $O^{7^{\prime}}(G)=G$. Let $|G|=g=7^{4} \cdot 5^{a_{5}} \cdot 3^{a_{3}} \cdot 2^{a_{2}}$. We can apply (8, Corollaries 4.3 and 4.4) to see that $a_{5} \leqq 1$.

Suppose that there is an element R in G of order 3 such that \bar{R} centralizes an element of order 7 in \bar{P}. Since there are no non-trivial 7 -Sylow intersection groups in \bar{G}, \bar{R} must normalize \bar{P} and so R must normalize P. This means that R normalizes A, the unique abelian subgroup of P of order 7^{3}. Let $K=\langle P, R\rangle$. Clearly $X \mid K$ is irreducible and can be written in monomial form. The only diagonal matrices are in A by ($3,4 \mathrm{~F}$). This means that K / A is isomorphic to a subgroup of S_{7}, the symmetric group on 7 elements. There is a normal 7-Sylow group. The cycle structure of $X(R)$ considered as a permutation is therefore $(a b c)(d e f)$. Since the eigenvalues of $X(Q), Q \in A$, $Q \notin Z$, have multiplicity at most 2 by $(3,4 \mathrm{E})$, no $X(Q)$ can commute with $X(R)$. This means that there are no elements of order 21 in \bar{G}, and therefore by (8 , Corollary 4.3), $a_{3} \leqq 4$.

Finally, let $T=5^{b_{5}} \cdot 3^{b_{3}} \cdot 2^{b_{2}}$. We have shown that $b_{5} \leqq 1, b_{3} \leqq 4, b_{2} \leqq 10$. There are no values T of this form congruent to $1\left(\bmod 7^{3}\right)$. In fact, the only such values congruent to $1\left(\bmod 7^{2}\right)$ are 2304 and 540 . None of these are congruent to $1\left(\bmod 7^{3}\right)$ as a quick check shows. We have shown that there are no further groups with $|G|=7^{4} g_{0}$.
6. The case $a_{7}=3$. In this section we treat the case $g=7^{3} \cdot g_{0}$. If G has a normal 7-Sylow group, we have by (3, §8) $|N(P)|=7^{3} \cdot s$ with $s \mid 48$. This gives case (II) of Theorem 4.1. We will show that this is the only possibility. The results of (4) apply to \bar{G}.

Suppose then that G does not have a normal 7-Sylow group. We can replace
G by $O^{7^{\prime}}(G)$ and apply (8 , Theorems 4.5 and 4.6). Here χ on 7^{\prime}-elements is real and thus Theorem 3.1 applies. Let $g=7^{3} \cdot 5^{a_{3}} \cdot 3^{a_{3}} \cdot 2^{a_{2}}$. Theorem 3.1 shows that $a_{5} \leqq 2, a_{3} \leqq 5$. We know that $a_{2} \leqq 10$. We show first that $a_{2} \neq 10$.

Lemma 6.1. The value a_{2} is not equal to 10.
Proof. Suppose that $a_{2}=10$ and let P_{2} be a 2-Sylow group of G. Suppose that $X \mid P_{2}$ has constituents at most of degree 2 . There would be at most three such constituents. For each, there is an abelian subgroup of index two consisting of diagonal matrices. This means that there is an abelian subgroup of order 2^{7}, contradicting ($3,3 \mathrm{D}$). This means that there must be an irreducible constituent of degree 4 . Putting this constituent in monomial form yields a subgroup K of index at most 2^{3} consisting of diagonal matrices on this constituent. We see that there must then also be an irreducible constituent of degree 2 or there would be an abelian subgroup of order 2^{7}. Let $X \mid P_{3}=$ $Y_{1} \oplus Y_{2} \oplus Y_{3}$. Here Y_{1} is of degree 4, Y_{2} of degree 2 . We have seen that $Y_{2}(K)$ must be irreducible or there is an abelian subgroup of order 2^{7}. An involution J_{1} in $K^{\prime} \cap Z(K)$ has $Y_{1}\left(J_{1}\right)=I, \quad Y_{2}\left(J_{1}\right)=-I, \quad Y_{3}\left(J_{1}\right)=1$. There is a subgroup L of order 2^{9} on which Y_{2} is diagonal. Again $Y_{1}(L)$ must be irreducible or there is an abelian subgroup of order 2^{7}. This means that there is an involution J_{2} such that $Y_{1}\left(J_{2}\right)=-I, Y_{2}\left(J_{2}\right)=I, Y_{3}\left(J_{2}\right)=1$. Let $J=J_{1} J_{2}$. Clearly $J \in Z\left(P_{2}\right), \chi(J)=-5$. We see that $\chi \bar{\chi}(J)=25$.

Let $\chi \bar{\chi}=1+y$. Clearly $y(J)=24$. If y is irreducible, this is impossible since $(g /|C(J)|)(24 / 48)$ is not an algebraic integer. If y is not irreducible by (3, §8) we have (3, case II) and $y=\sum_{j=1}^{t} \chi_{0}{ }^{j}$. This means that $\chi_{0}{ }^{j}(J)=$ $(24 / t) \cdot 48$. Again $(g /|C(J)|)(24 / 48 \cdot t)$ is not an algebraic integer. This shows that $a_{2}<10$.

We now consider the different possible values $T=|G: N(P)|$ can have. Let $T=5^{b_{5}} \cdot 3^{b_{3}} \cdot 2^{b_{2}}$. We know that $b_{5} \leqq 2, b_{3} \leqq 5, b_{2} \leqq 9$. The possible values are $2^{8} \cdot 3^{2}, 2^{2} \cdot 3^{3} \cdot 5,2 \cdot 5^{2}$, and $2^{9} \cdot 3^{2} \cdot 5^{2}$. We treat each case separately. The results of (4) are used for \bar{G}. They are described explicitly in ($\mathbf{3}, \S 8$). We use the notation of ($\mathbf{3}, \S 8$) along with the numbering of the equations (8.4) to (8.7) of (3, § 8).

Suppose that $T=2^{9} \cdot 3^{2} \cdot 5^{2}$. Let $|N(P) / P|=s$. We know that $s \mid 48$. Also $|G|=7^{3} \cdot 5^{2} \cdot 3^{2} \cdot 2^{9} \cdot s$. The value s is not 1 as in (3, § 8, last paragraph). Since $2^{10} \nmid|G|$ by Lemma 6.1, we see that $s=3$. By Schur's theorem (7), χ cannot be rational on P_{5}. This means that there is a $\sigma \in G(K / Q[\epsilon]), \epsilon=e^{2 \pi i / 7}$ such that $\chi \neq \chi^{\sigma}$. By (8, Theorem 4.6) there is a character χ_{2} of degree 48 with $\chi_{2} \neq\left(\chi_{2}\right)^{\sigma}$. Equations (8.6) and (8.7) become

$$
\begin{gathered}
1-48-48+x_{0}(16 \gamma-\delta)=0 \\
1+1+1+15(\gamma)^{2}+(\gamma-\delta)^{2}=4
\end{gathered}
$$

Clearly $\gamma=0,-95-\delta x_{0}=0$, giving a contradiction. This means that $T \neq 2^{9} \cdot 3^{2} \cdot 5^{2}$.

Suppose that $T=2^{8} \cdot 3^{2}$. In this case $s=2,3,6$. If $s=2$, equation (8.6) becomes

$$
1-48+(24 \gamma-\delta) x_{0}=0
$$

Again (8.7) yields $\gamma=0$, and we have a contradiction. For the case $s=3$, γ is again 0 and we have

$$
1-48+b_{2} x_{2}-\delta x_{0}=0
$$

One of x_{2} or x_{0} must be odd and therefore must be a power 3^{r}. No power 3^{r}, $r \leqq 5$ is congruent to $\pm 1(\bmod 49)$. One of x_{2}, x_{0} must not be divisible by 3 and so must be a power 2^{r}. However, no power of $2^{r}, r \leqq 9$, is congruent to $\pm 1(\bmod 49)$. This means that x_{0} is a power of 2 and a power of 3 , giving a contradiction. The case $s=3$ is therefore impossible. If $s=6$, we have:

$$
\begin{gathered}
1-48+\sum_{i=3}^{l} b_{i} x_{i}+x_{0}(8 \gamma-\delta)=0 \\
1+1+\sum_{i=3}^{l}\left(b_{i}\right)^{2}+7(\gamma)^{2}+(\gamma-\delta)^{2}=7
\end{gathered}
$$

Clearly $\gamma=0, b_{i}= \pm 1, l=6$; or $\gamma=0, b_{3}= \pm 2, l=3$. As above, if $b_{i}= \pm 1, b_{i} x_{i}$ cannot be odd. If $b_{3}= \pm 2, b_{3} x_{3}$ cannot be odd. This means that δx_{0} must be odd. One of the x_{i} must then be a power of 2 . This is impossible if $b_{i}= \pm 1$. If $b_{3}=2$, the only possibility is $x_{2}=b_{2}=2$, which is impossible since P would be in the kernel of χ_{2} by (8.4). It is also impossible by an examination of the linear groups in two variables. This means that $T \neq 2^{8} \cdot 3^{2}$.

Suppose that $T=2 \cdot 5^{2}=50$. Again by Schur's theorem (7), χ is not rational on P_{5} and so by (8 , Theorem 4.6) there are at least two representations of degree 48 . In particular, $48 \mid g$. Also $g=7^{3} \cdot 2 \cdot 5^{2} \cdot s$. We see that $s=24$ or 48 . The possibilities for x_{i} and x_{0} are listed in Table A.

If $s=48$, let $b_{0}=\gamma-\delta$. Equations (8.6) and (8.7) become

$$
\sum_{i=0}^{l}\left(b_{i}\right)^{2}=49 \quad \text { and } \quad \sum_{i=0}^{l} b_{i} x_{i}=0 .
$$

We know that $b_{i}=x_{i}=1$ occurs once. It is clear from Table A that there is no other $b_{i} x_{i}$ which is odd except $b_{i}=x_{i}=3$ and $b_{i}=x_{i}=5$. In these cases, P is in the kernel of χ_{i} by (8.4), giving a contradiction. This means that $s=48$ is impossible.

We now consider the case $s=24$. Here we have

$$
1+\sum_{i=2}^{l} b_{i} x_{i}+(2 \gamma-\delta) x_{0}=0
$$

As in the above paragraph, no $b_{i} x_{i}$ can be odd, and thus $(2 \gamma-\delta) x_{0}$ must be odd. The only possibilities are $x_{0}=25, \gamma=\delta=1$, and $x_{0}=75, \gamma=2, \delta=1$. The case $\delta=-1$ can be discarded by interchanging the exceptional characters.

The case $x_{0}=75, \gamma=2$ is considered first. By checking Table A, it is clear that 5^{2} divides all x_{i} except $x_{i}=48$ since $96 \nmid g$. The equations become

$$
\begin{aligned}
& 1-48-48+\sum_{i=4}^{l} b_{i} x_{i}+3 \cdot 75=0 \\
& 4+1+1+1+1+\sum_{i=4}^{l}\left(b_{i}\right)^{2}=25
\end{aligned}
$$

or

$$
\sum_{i=4}^{l}\left(b_{i}\right)^{2}=17
$$

If 48 occurs u more times we have $1-48-48-48 u \equiv 0\left(\bmod 5^{2}\right)$ or $2 u \equiv-5\left(\bmod 5^{2}\right)$. The only solution is $u=10$. Let $b_{4}=b_{5}=\ldots=$ $b_{13}=-1, x_{4}=\ldots=x_{13}=48$. This leaves $\sum_{i=14}^{l}\left(b_{i}\right)^{2}=7$ and

$$
1-12 \cdot 48+225+\sum_{i=14}^{l} b_{i} x_{i}=0
$$

This last equation is $\sum_{i=14}^{l} b_{i} x_{i}=350$. The only possible values of x_{i} remaining are 50 and 100. There are two possible solutions:
(a) $1+12 \cdot 48 \cdot(-1)+50+50+50+2 \cdot 100+3 \cdot 75=0$;
(b) $1+12 \cdot 48 \cdot(-1)+7 \cdot 50+3 \cdot 75=0$.

Suppose that $x_{0}=25, \gamma=\delta=1$. Again there are twelve degrees 48 , as 96 is again impossible. The equations become

$$
\sum_{i=14}^{l} b_{i} x_{i}=550 \quad \text { and } \quad \sum_{i=14}^{l}\left(b_{i}\right)^{2}=11
$$

The remaining degrees are 50,100 , and 150 . Solutions are:
(c) $1+12 \cdot 48 \cdot(-1)+3 \cdot 150+50+50+25=0$;
(d) $1+12 \cdot 48 \cdot(-1)+50+50+50+2 \cdot 100+2 \cdot 100+25=0$;
(e) $1+12 \cdot 48 \cdot(-1)+2 \cdot 100+7 \cdot 50+25=0$;
(f) $1+12 \cdot 48 \cdot(-1)+11 \cdot 50+25=0$.

In each of these cases,

$$
(49)^{2}+\sum_{i=1}^{l}\left(x_{i}\right)^{2}+2\left(x_{0}\right)^{2}=7^{2} \cdot 5^{2} \cdot 3 \cdot 2^{4}
$$

and thus there are no more characters in G / Z. In each case, the only possibility for the degree equation of $B_{0}(3)$ is $1+49=50$ as a quick inspection shows. If π is a 3 -element and χ_{3} is the character of degree 50 in $B_{0}(3), \chi^{*}$ the character of degree 7^{2}, we have

$$
\chi_{3}(\pi)=-1, \quad \chi^{*}(\pi)=1
$$

If there is an element R of order 15 or 10 in \bar{G}, all characters are 0 on R except 1 and χ^{*}. This implies that $\chi^{*}(R)=-1 / 49$, a contradiction. There are no elements of order $7 \cdot 5$ in \bar{G} by $(3,4 \mathrm{~F})$. We see that if π is of order 5 in G contained in the 5 -Sylow group P_{5}, then $C(\pi)=P_{5} \times Z$. The results of (4) can be applied to both P_{5} in G and \bar{P}_{5} in \bar{G}. We apply them first for \bar{P}_{5} in \bar{G}. Let $s^{*}=N\left(P_{5}\right) / C\left(P_{5}\right), t^{*}=24 / s^{*}$. By Sylow's theorem, $7^{2} \cdot 3 \cdot 2^{4} \equiv s^{*}(\bmod 5)$.

Since $s^{*} \mid 24$, we have $s^{*}=2$ or 12 . If $s=12$, two of the characters of degree 48 are exceptional, the rest ordinary. However, $10 \cdot(2)^{2}>13$, giving a contradiction. This means that $s^{*}=2$. The degree equation must be

$$
1+48-49=0
$$

We now apply the results of (4) to P_{5} in G. Here $C=C\left(P_{5}\right)=P_{5} \times Z$, $H=N\left(P_{5}\right),|H|=5^{2} \cdot 7 \cdot 2$, and $Z \in Z(H)$. We use the notation of (4). By (4, Theorem 3A), the characters θ_{α} are the seven linear characters of Z. In each case, $\left|F\left(\theta_{\alpha}\right): C\right|=2=s_{\alpha}, r_{\alpha}=\left|H: F\left(\theta_{\alpha}\right)\right|=1$. Furthermore, $5^{2}-1=$ $\omega \cdot 2=12 \cdot 2$. Here $F\left(\theta_{\alpha}\right)$ is the inertial group of θ_{α} in H. Suppose that χ is in $B\left(\theta_{\alpha}\right)$. This yields $\sum_{i}\left(b_{i}\right)^{2}+(12-1)\left(b_{\alpha}{ }^{(\alpha)}\right)^{2}+\left(b_{\alpha}-\epsilon_{\alpha}\right)^{2}=3$. Clearly $b_{\alpha}{ }^{(\alpha)}=0$. Furthermore, $\left(b_{1}\right)^{2}+\left(b_{2}\right)^{2}+\left(\epsilon_{\alpha}\right)^{2}=3,\left|b_{i}\right|=\left|\epsilon_{\alpha}\right|=1$. This means that $\operatorname{deg} \chi_{i}{ }^{\alpha} \equiv b_{i}(\bmod 25)$ and $\operatorname{deg} \chi_{\beta}{ }^{\alpha} \equiv 2 \cdot \epsilon_{\alpha}(\bmod 25)$ by $(4,4 H)$. None of these can be 7 and so there is a contradiction. This eliminates the case $T=5^{2} \cdot 2$.

The final case is $T=2^{2} \cdot 3^{3} \cdot 5$. The possibilities for x_{i}, x_{0} are listed in Table B. The cases $b_{i}=x_{i}$ are impossible since P must be in the kernel of χ_{i} by (8.4). Thus, in particular, $b_{i}=3=x_{i}$ and $b_{i}=5=x_{i}$ need not be considered. We distinguish the cases of different s.
(1) $s=2, t=24$. Clearly $\gamma=0$. We have $x_{0} \equiv 2 \delta\left(\bmod 7^{2}\right)$. From Table B, x_{0} and x_{2} are even, and therefore $1+b_{2} x_{2}-\delta x_{0} \neq 0$.
(2) $s=3, t=16$. Again $\gamma=0$. This time $x_{0} \equiv 3 \delta\left(\bmod 7^{2}\right)$. Again x_{0} and x_{i} are even unless $x_{0}=3$. The simple linear groups of degree 3 are known and do not have order $|\bar{G}|$.
(3) $s=4, t=12$. Here $\gamma=0, x_{0} \equiv 4 \delta\left(\bmod 7^{2}\right)$. The only possible odd degree is $x_{0}=45$. Here $|\bar{G}|=7^{2} \cdot 5 \cdot 3^{3} \cdot 2^{4}$. All $\chi_{0}{ }^{j}$ are equal on all elements commuting with elements of P_{3} as there are no elements of order 21 in \bar{G} $(3, \S 8)$. This means that all $\chi_{0}{ }^{j}$ are in the same 3-block. However, this is impossible since the defect group is cyclic of order 3 .
(4) $s=6, t=8$. Again $\gamma=0$. The only possibilities for non-trivial x_{0}, x_{i} are even and so this case is impossible.
(5) $s=8, t=6$. Here $|\gamma| \leqq 1$. The only possibility for $x_{i}, x_{0}{ }^{j}$ to be odd is $x_{0}{ }^{j}=9$. Again, the $x_{0}{ }^{j}$ are all in one 3 -block of defect 1 , giving a contradiction.
(6) $s=12, t=4$. Here $|\gamma| \leqq 1$ as $3 \cdot 4+1+1+\ldots>13$. The only possibilities for odd x_{i}, x_{0} are 135 and 405 . Here $|G|=7^{2} \cdot 5 \cdot 3^{4} \cdot 2^{4}$. A character of degree 135 is of 3 -defect 1 . They must all be in the same 3 -block, giving a contradiction. If $x_{0}=405,4 \cdot(405)^{2}>7^{2} \cdot 5 \cdot 3^{4} \cdot 2^{4}$, giving a contradiction.
(7) $s=16, t=3$. Here $\gamma \leqq 2$ since $9 \cdot 2+\ldots>17$. There are no odd possibilities for $b_{i} x_{i}$ or $(3 \gamma-\delta) x_{0}$ and therefore this case is impossible.
(8) $s=24, t=2$. The only possibility for odd $x_{i}, x_{0}{ }^{j}$ is $x_{0}{ }^{j}=27$. Here, two characters of degree 27 would be in the same 3 -block. However, the defect group is of order 3 and implies a third character of degree 27 . This third character would lie in $B_{0}(7)$ for \bar{G} and must be non-exceptional. This is impossible.
(9) $s=48, t=1$. Since $t=1$, there is no difference between exceptional and non-exceptional characters. None of the $b_{i} x_{i}$ are odd and therefore this case is impossible.

This completes all cases and proves the theorem.
Table A

$$
T=50, \quad|G|=7^{3} \cdot s \cdot 50
$$

$$
\begin{aligned}
& x \leqq\left(7^{2} \cdot 5^{2} \cdot 2 \cdot 48\right)^{1 / 2} \leqq 7 \cdot 5 \cdot 10=350, \quad x \mid 5^{2} \cdot 3 \cdot 2^{5}, \\
& x \equiv \pm 1, \quad 1,50,48, \\
& x \equiv \pm 2, \quad 2,100,96 \quad(96 \text { is impossible if } s=24) \\
& x \equiv \pm 3, \quad 3,150, \\
& x \equiv \pm 4, \quad 4,200 .
\end{aligned}
$$

There are no further odd possibilities except $5,15,25,75$.
Table B

$T=5 \cdot 3^{3} \cdot 2^{2}, \quad\|G\|=7^{3} \cdot s \cdot T$
$\overline{x \leqq 7 \cdot 3^{2} \cdot 2^{3} \cdot \sqrt{ } 5 \leqq 1160, \quad x \mid 5 \cdot 3^{4} \cdot 2^{6},}$
$x \equiv \pm 1, \quad 1,540=5 \cdot 3^{3} \cdot 2^{2}, 48$,
$x \equiv \pm 2, \quad 2,1080=5 \cdot 3^{3} \cdot 2^{3}, 96$,
$x \equiv \pm 3, \quad 3,144$,
$x \equiv \pm 4, \quad 4,45,192,2^{6} \cdot 3$,
$x \equiv \pm 5, \quad 5,54,240=5 \cdot 3 \cdot 2^{4}$.

There are no further odd possibilities except $9,135,405,27,81,15$. Here $135 \equiv-12$, $405 \equiv 13,27 \equiv-22,81 \equiv-17$, and $15 \equiv$ $15\left(\bmod 7^{2}\right)$.

References

1. H. F. Blichfeldt, Finite collineation groups (University of Chicago Press, Chicago, Illinois, 1917).
2. R. Brauer, On groups whose order contains a prime number to the first power. I; II, Amer. J. Math. 64 (1942), 401-420; 64 (1942), 421-440.
3. - Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73-96.
4. R. Brauer and H. S. Leonard, Jr., On finite groups with an abelian Sylow group, Can. J. Math. 14 (1962), 436-450.
5. A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. 38 (1937), 533-550.
6. S. Hayden, On finite linear groups whose order contains a prime larger than the degree, Thesis, Harvard University, Cambridge, Massachusetts, 1963.
7. I. Schur, Über eine Klasse von endlichen Gruppen linearer Substitutionen, Sitzber. Preuss. Akad. Wiss. Berlin 1905, 77-91.
8. D. B. Wales, Finite linear groups of prime degree, Can. J. Math. 21 (1969), 1025-1041.

California Institute of Technology, Pasadena, California

[^0]: Received November 28, 1967. This work was part of the author's Ph.D. thesis at Harvard University in 1967 under the supervision of Professor R. Brauer. The research was supported by a Canadian National Research Council Special Scholarship.
 \dagger In (8, Theorem 5.1), the same method for $q \geqq 7$ gave an element contradicting Blichfeldt's theorem. However, since $360 / 5>60$, this is not true here, and other methods are needed.

