OMITTED RAYS AND WEDGES OF FRACTIONAL CAUCHY TRANSFORMS

R. A. HIBSCHWEILER[™] and T. H. MACGREGOR

(Received 16 April 2004; revised 15 February 2005)

Communicated by P. Fenton

Abstract

For $\alpha > 0$ let \mathscr{F}_{α} denote the set of functions which can be expressed

$$f(z) = \int_{|\zeta|=1} \frac{1}{(1-\overline{\zeta}z)^{\alpha}} d\mu(\zeta) \quad \text{for } |z| < 1,$$

where μ is a complex-valued Borel measure on the unit circle. We show that if f is an analytic function in $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and there are two nonparallel rays in $\mathbb{C} \setminus f(\Delta)$ which do not meet, then $f \in \mathscr{F}_{\alpha}$ where $\alpha \pi$ denotes the largest of the two angles determined by the rays. Also if the range of a function analytic in Δ is contained in an angular wedge of opening $\alpha \pi$ and $1 < \alpha < 2$, then $f \in \mathscr{F}_{\alpha}$.

2000 Mathematics subject classification: primary 30E20; secondary 30H05.

1. Introduction

Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and $\Lambda = \{z \in \mathbb{C} : |z| = 1\}$, and let \mathscr{M} denote the set of complex-valued Borel measures on Λ . For $\alpha > 0$, let \mathscr{F}_{α} denote the set of functions $f : \Delta \to \mathbb{C}$ for which there exists $\mu \in \mathscr{M}$ such that

(1)
$$f(z) = \int_{\Lambda} \frac{1}{(1 - \overline{\zeta} z)^{\alpha}} d\mu(\zeta) \quad \text{for } |z| < 1.$$

The power function in (1) denotes the principal branch. Each function given by (1) is analytic in Δ . For $f \in \mathscr{F}_{\alpha}$, let $||f||_{\mathscr{F}_{\alpha}} = \inf ||\mu||$, where $||\mu||$ denotes the total variation of μ , and μ varies over all measures in \mathscr{M} for which (1) holds. This defines a norm on \mathscr{F}_{α} , and \mathscr{F}_{α} is a Banach space with respect to this norm. The family \mathscr{F}_{1}

^{© 2006} Australian Mathematical Society 1446-7887/06 \$A2.00 + 0.00

was first studied by Havin [2]. The general class \mathscr{F}_{α} , where $\alpha > 0$, was introduced in [5] and has been studied extensively. In [6] a survey is given about these so-called fractional Cauchy transforms.

Several conditions on an analytic function f are known to be sufficient to imply $f \in \mathscr{F}_{\alpha}$. Most of these conditions are analytic. Here we are concerned with geometric conditions. The Riesz-Herglotz formula provides information of this type. It implies that if $f: \Delta \to \mathbb{C}$ is analytic and $f(\Delta)$ is contained in a half-plane, then $f \in \mathscr{F}_1$. Another result of this kind was obtained by Bourdon and Cima in [1], namely, if $f: \Delta \to \mathbb{C}$ is analytic and there are two oppositely directed rays in $\mathbb{C} \setminus f(\Delta)$, then $f \in \mathscr{F}_1$.

This paper contains generalizations of the two results described above. We show that if $f(\Delta)$ is contained in an angular wedge with opening $\alpha \pi$ and $1 < \alpha < 2$, then $f \in \mathscr{F}_{\alpha}$. Also if there are two nonparallel rays in $\mathbb{C} \setminus f(\Delta)$ which do not meet and the angles at infinity between these two rays are $\alpha \pi$ and $\beta \pi$, then $f \in \mathscr{F}_{\gamma}$, where $\gamma = \max\{\alpha, \beta\}.$

If $f(\Delta)$ is contained in an angular wedge of opening less than π , then $f \in \mathscr{F}_1$, but f need not belong to \mathscr{F}_{α} for any α , $0 < \alpha < 1$. This holds more generally for bounded analytic functions. To see this, let

$$f(z) = \sum_{n=1}^{\infty} \frac{z^{2^n}}{n^2}, \quad |z| < 1.$$

The function f is analytic and bounded in Δ . However $f \notin \mathscr{F}_{\alpha}$ when $0 < \alpha < 1$. This is because the Taylor coefficients of f do not satisfy the condition $a_n = O(n^{\alpha-1})$, which is necessary for membership in \mathscr{F}_{α} .

Finally we mention that if $f : \Delta \to \mathbb{C}$ is analytic and $\mathbb{C} \setminus f(\Delta)$ contains a ray, then $f \in \mathscr{F}_2$ [5, Theorem 5].

2. Preliminaries

This section contains lemmas which will be used to prove the main results. The first two lemmas are in [5, Lemma 1]. Lemma 2.3 is in [3, Theorem 2]. Lemma 2.4 is known but we give a proof.

LEMMA 2.1. For every $\alpha > 0$, $f \in \mathscr{F}_{\alpha}$ if and only if $f' \in \mathscr{F}_{\alpha+1}$.

LEMMA 2.2. If $0 < \alpha < \beta$, then $\mathscr{F}_{\alpha} \subset \mathscr{F}_{\beta}$.

LEMMA 2.3. If $\alpha \geq 1$, $f \in \mathscr{F}_{\alpha}$ and the function $\varphi : \Delta \to \Delta$ is analytic, then the composition $f \circ \varphi \in \mathscr{F}_{\alpha}$.

LEMMA 2.4. Suppose that $f : \Delta \to \mathbb{C}$ is analytic and f' belongs to Hardy space H^1 . Then $f \in \mathscr{F}_{\alpha}$ for every $\alpha > 0$.

PROOF. Suppose that $f' \in H^1$ and let g = f'. Let $\zeta = e^{i\theta}$. Then

$$G(\zeta) \equiv \lim_{r \to 1^-} g(r\zeta)$$

exists for almost all θ in $[-\pi, \pi]$ and $G(e^{i\theta}) \in L^1([-\pi, \pi])$. Also g is represented by the Cauchy formula

(2)
$$g(z) = \frac{1}{2\pi i} \int_{\Lambda} \frac{G(\zeta)}{\zeta - z} d\zeta, \quad |z| < 1.$$

Equation (2) yields (1), where $d\mu(\zeta) = (G(\zeta)/2\pi i\zeta)d\zeta$ and hence $g = f' \in \mathscr{F}_1$. By Lemma 2.2, $f' \in \mathscr{F}_{\alpha}$ for $\alpha > 1$. Lemma 2.1 implies that $f \in \mathscr{F}_{\alpha}$ for all $\alpha > 0$. \Box

LEMMA 2.5. Suppose that the function g is analytic in a neighbourhood of Δ . Let N be a positive integer and suppose that $|\zeta_n| = 1$, $\alpha_n > 0$ for n = 1, 2, ..., N, and $\zeta_n \neq \zeta_m$ for $n \neq m$. Let

(3)
$$f(z) = \frac{g(z)}{\prod_{n=1}^{N} (z - \zeta_n)^{\alpha_n}}, \quad |z| < 1.$$

Then $f \in \mathscr{F}_{\alpha}$, where $\alpha = \max\{\alpha_n : 1 \leq n \leq N\}$.

PROOF. We give the proof for the case N = 2. A similar argument can be given for other values of N.

Suppose that $|\zeta| = |\sigma| = 1$, $\zeta \neq \sigma$, $\beta > 0$, and $\gamma > 0$. Suppose that the function g is analytic in a neighborhood of Δ and let

(4)
$$f(z) = \frac{g(z)}{(z-\zeta)^{\beta}(z-\sigma)^{\gamma}}, \quad |z| < 1.$$

We shall show that $f \in \mathscr{F}_{\alpha}$, where $\alpha = \max\{\beta, \gamma\}$.

The function $z \mapsto g(z)/(z - \sigma)^{\gamma}$ is analytic at $z = \zeta$, and hence

$$\frac{g(z)}{(z-\sigma)^{\gamma}} = \sum_{m=0}^{\infty} a_m (z-\zeta)^m,$$

for z in some neighbourhood of ζ . Let p be the least integer such that $p \ge \beta$ and let $s = p - \beta$. Then

(5)
$$f(z) = \sum_{m=0}^{p-1} \frac{a_m}{(z-\zeta)^{\beta-m}} + (z-\zeta)^s h(z),$$

where the function h is analytic in some neighbourhood of ζ . Suppose that β is not an integer. Then

$$\frac{d}{dz}\left[(z-\zeta)^{s}h(z)\right] = (z-\zeta)^{s}h'(z) + s(z-\zeta)^{s-1}h(z).$$

Since $(z - \zeta)^s$ is bounded in $\overline{\Delta} \setminus \{\zeta\}$, this implies that there is a positive constant A such that

(6)
$$\left|\frac{d}{dz}\left[(z-\zeta)^{s}h(z)\right]\right| \leq A|z-\zeta|^{s-1}$$

for $z \in \overline{\Delta}$, z near ζ , and $z \neq \zeta$. Likewise if γ is not an integer, q is the least integer such that $q \ge \gamma$ and $t = q - \gamma$, then

(7)
$$f(z) = \sum_{m=0}^{q-1} \frac{b_m}{(z-\sigma)^{\gamma-m}} + (z-\sigma)^{\prime} k(z),$$

where k is a function analytic in some neighbourhood of σ and b_m (m = 0, 1, ..., q-1) are suitable constants. Thus

(8)
$$\left|\frac{d}{dz}[(z-\sigma)^{\prime}k(z)]\right| \leq B|z-\sigma|^{\ell-1},$$

for $z \in \overline{\Delta}$, z near σ , and $z \neq \sigma$, where B is a positive constant. For $z \in \overline{\Delta} \setminus \{\zeta, \sigma\}$, let

(9)
$$r(z) = f(z) - \sum_{m=0}^{p-1} \frac{a_m}{(z-\zeta)^{\beta-m}} - \sum_{m=0}^{q-1} \frac{b_m}{(z-\sigma)^{\gamma-m}}.$$

The relations (5), (6) and (9) imply that there is a constant C such that

(10)
$$|r'(z)| \leq C|z-\zeta|^{s-1},$$

for $z \in \overline{\Delta}$, z near ζ , and $z \neq \zeta$. Likewise (7)–(9) imply that

(11)
$$|r'(z)| \le D|z - \sigma|^{t-1},$$

for $z \in \overline{\Delta}$, z near σ , and $z \neq \sigma$, where D is a positive constant.

The function $z \mapsto (z - \tau)^u$ belongs to H^1 when $|\tau| = 1$ and u > -1. Hence the inequalities (10) and (11) and the fact that r' is analytic in $\overline{\Delta} \setminus \{\zeta, \sigma\}$ imply that $r' \in H^1$. This proves that $r' \in H^1$ when β and γ are not integers. A similar argument shows that $r' \in H^1$ when only one of the numbers β and γ is not an integer. If both

371

 β and γ are integers then r = 0. Therefore, in general, $r' \in H^1$. Lemma 2.4 yields $r \in \mathscr{F}_{\delta}$ for every $\delta > 0$.

Equation (9) gives

(12)
$$f = f_1 + f_2 + r$$
,

where

$$f_1(z) = \sum_{m=0}^{p-1} \frac{a_m}{(z-\zeta)^{\beta-m}}$$
 and $f_2(z) = \sum_{m=0}^{q-1} \frac{b_m}{(z-\sigma)^{\gamma-m}}$.

The function $z \mapsto 1/(z-\zeta)^{\delta}$ belongs to \mathscr{F}_{β} when $0 < \delta \leq \beta$ and hence $f_1 \in \mathscr{F}_{\beta}$. Likewise $f_1 \in \mathscr{F}_{\gamma}$. Lemma 2.2 yields $f_1 \in \mathscr{F}_{\alpha}$ and $f_2 \in \mathscr{F}_{\alpha}$. Since $r \in \mathscr{F}_{\alpha}$, (12) implies that $f \in \mathscr{F}_{\alpha}$.

Lemma 2.5 contrasts with the following result obtained in [5, Lemma 1].

THEOREM 2.6. If $f \in \mathscr{F}_{\alpha}$ and $g \in \mathscr{F}_{\beta}$ then $f \cdot g \in \mathscr{F}_{\alpha+\beta}$.

Since the function g in Lemma 2.5 is analytic in $\overline{\Delta}$, g is a multiplier of \mathscr{F}_{δ} for every $\delta > 0$ [4, Theorem 3.5]. This fact and Theorem 2.6 imply that the function f in (3) belongs to $\mathscr{F}_{\alpha'}$, where $\alpha' = \sum_{n=1}^{N} \alpha_n$. Lemma 2.5 is clearly an improvement of this result. The assumption that $\zeta_n \neq \zeta_m$ for $n \neq m$ is critical in Lemma 2.5. To see how this is reflected in our argument, suppose that the numbers ζ_n (n = 1, 2, ..., N) are distinct, $\zeta_2 \rightarrow \zeta_1$, and the numbers α_n are fixed. Suppose that $\alpha = \max{\alpha_1, \alpha_2, ..., \alpha_N}$. Then the norm $||f||_{\mathscr{F}_n}$ of the corresponding function in (3) goes to infinity as $\zeta_2 \rightarrow \zeta_1$.

3. The main results

Let f be analytic in Δ . In this section we give two geometric conditions on $f(\Delta)$ sufficient to imply that $f \in \mathscr{F}_{\alpha}$.

THEOREM 3.1. Suppose that the function $f : \Delta \to \mathbb{C}$ is analytic and let $\Phi = \mathbb{C} \setminus f(\Delta)$.

(a) Suppose that Φ contains two nonparallel rays. Let $\alpha \pi$ and $\beta \pi$ denote the angles at ∞ between these two rays, where $\alpha \geq \beta$. If $\alpha < 2$, then $f \in \mathscr{F}_{\alpha}$. (b) If Φ contains a ray then $f \in \mathscr{F}_{2}$.

PROOF. First assume that Φ contains two nonparallel rays. Since $\alpha + \beta = 2$, the assumptions imply that $1 < \alpha < 2$. We may assume that the rays do not intersect.

Let F denote a conformal mapping of Δ onto the complement of the two rays. The Schwarz-Christoffel formula gives

(13)
$$F(z) = b \int_0^z \frac{(w - \zeta_1)(w - \zeta_2)}{(w - \zeta_3)^{\alpha + 1}(w - \zeta_4)^{3 - \alpha}} \, dw + c,$$

where ζ_1 , ζ_2 , ζ_3 , and ζ_4 are distinct points on Λ , and b and c are suitable complex numbers. Hence

$$F'(z) = \frac{g(z)}{(w - \zeta_3)^{\alpha + 1}(w - \zeta_4)^{3 - \alpha}}$$

where g is a quadratic polynomial. Since $3-\alpha < \alpha+1$, Lemma 2.5 yields $F' \in \mathscr{F}_{\alpha+1}$. Hence Lemma 2.1 implies $F \in \mathscr{F}_{\alpha}$.

Since $f(\Delta) \subset F(\Delta)$ and F is univalent, the function $\varphi = F^{-1} \circ f$ is analytic in Δ and maps Δ into Δ . Since $F \in \mathscr{F}_{\alpha}$ and $\alpha > 1$, Lemma 2.3 yields $f = F \circ \varphi \in \mathscr{F}_{\alpha}$. This proves the first assertion.

The second assertion can be proved in a similar way. The conformal mapping of Δ onto the complement of a ray has the form $F(z) = P(z)/(z-\zeta)^2$, where P is a quadratic polynomial and $|\zeta| = 1$. This yields $F \in \mathscr{F}_2$ and hence Lemma 2.3 yields $f \in \mathscr{F}_2$.

THEOREM 3.2. Suppose that f is analytic in Δ . If $f(\Delta)$ is contained in an angular wedge of opening $\alpha \pi$ and $1 < \alpha < 2$, then $f \in \mathscr{F}_{\alpha}$.

PROOF. The function $z \mapsto [(1+z)/(1-z)]^{\alpha}$ maps Δ one-to-one onto the wedge $\{w : | \arg w | < \alpha \pi/2 \}$. Hence there are complex numbers b and c such that the function defined by $F(z) = b[(1+z)/(1-z)]^{\alpha} + c \max \Delta$ one-to-one onto the angular wedge containing $f(\Delta)$. The function $z \mapsto 1/(1-z)^{\alpha}$ belongs to \mathscr{F}_{α} . Let $h(z) = (1+z)^{\alpha}$. Since $\alpha > 1$, h' is bounded. Thus $h' \in H^1$ and it follows that h is a multiplier of \mathscr{F}_{δ} for every $\delta > 0$ [4, Theorem 3.5]. Therefore $F \in \mathscr{F}_{\alpha}$. Since $f(\Delta) \subset F(\Delta)$ and F is univalent, we have $f = F \circ \varphi$, where the function $\varphi : \Delta \to \Delta$ is analytic. Since $F \in \mathscr{F}_{\alpha}$ and $\alpha > 1$, Lemma 2.3 gives $f \in \mathscr{F}_{\alpha}$.

References

- [1] P. Bourdon and J. A. Cima, 'On integrals of Cauchy-Stieltjes type', Houston J. Math. 14 (1988), 465-474.
- [2] V. P. Havin, 'On analytic functions representable by an integral of Cauchy-Stieltjes type', Vestnik Leningrad Univ. Ser. Mat. Meh. Astronom. 13 (1958), 66-79 (in Russian).
- [3] R. A. Hibschweiler and T. H. MacGregor, 'Closure properties of families of Cauchy-Stieltjes transforms', *Proc. Amer. Math. Soc.* **105** (1989), 615–621.

- [4] —, 'Multipliers of families of Cauchy-Stieltjes transforms', *Trans. Amer. Math. Soc.* 331 (1992), 377–394.
- [5] T. H. MacGregor, 'Analytic and univalent functions with integral representations involving complex measures', *Indiana Univ. Math. J.* **36** (1987), 109–130.
- [6] -----, 'Fractional Cauchy transforms', J. Comput. Appl. Math. 105 (1999), 93-108.

University of New Hampshire Department of Mathematics and Statistics Durham, NH 03824 USA e-mail: rah2@cisunix.unh.edu Bowdoin College Department of Mathematics Brunswick, ME 04011 USA

[7]