SUITES D'INTERPOLATION POUR LES CLASSES DE BERGMAN DE LA BOULE ET DU POLYDISQUE DE Cⁿ

ERIC AMAR

INTRODUCTION

Soit $\mathbf{D}^n = \{\mathbf{z} = (z^1, \dots, z^n) \in \mathbf{C}^n, |z^i| < 1\}$ le polydisque de \mathbf{C}^n et λ_n la mesure de Lebesgue de \mathbf{C}^n normalisée sur \mathbf{D}^n . Pour b > 0, on définit les espaces de Bergman $A^p(\lambda_n)$ de la manière suivante:

 $A^{p}(\lambda_{n})$ est l'espace des fonctions analytiques dans \mathbf{D}^{n} telles que:

$$||f||_p^p = \int_{\mathbf{D}^n} |f|^p d\lambda_n < \infty.$$

Si $\sigma = \{\mathbf{z}_k, k \in \mathbf{N}\}$ est une suite de points de \mathbf{D}^n , on définit l'opérateur T_p de $A^p(\lambda_n)$ dans l'espace des suites par:

$$orall f \in A^p(\lambda_n), T_p f = \{((1 - |\mathbf{z}_k|^2))^{2/p} f(\mathbf{z}_k), k \in \mathbf{N}\},$$

$$\text{ou } ((1 - |\mathbf{z}_k|^2)) = \prod_{i=1}^n (1 - |z_k|^2).$$

On dit que σ est d'interpolation $A^p(\lambda_n)$ si $T_p(A^p(\lambda_n))$ contient $l^p(\mathbf{N})$.

On dit que σ est fortement d'interpolation $A^p(\lambda_n)$ si, de plus, T_p est borné de $A^p(\lambda_n)$ dans $l^p(\mathbf{N})$.

On dit que σ possède la propriété d'extension linéaire bornée s'il existe un opérateur linéaire U_p borné de $l^p(\mathbf{N})$ dans $A^p(\lambda_n)$ tel que T_pU_p soit l'identité de $l^p(\mathbf{N})$.

Enfin on dit que la suite σ est séparée s'il existe un réel positif δ tel que la distance de Gleason [8] de 2 points distincts de σ soit minorée par δ .

L. Carleson [5] a caractérisé les suites d'interpolation $A^{\infty}(\lambda_1)$; le premier résultat sur les suites d'interpolation $A^{p}(\lambda_1)$, où p est fini est un contre-exemple dû à D. Amar. Sarroste [1] et montrant qu'il existe une suite fortement d'interpolation $A^{2}(\lambda_1)$ et qui n'est pas d'interpolation $A^{\infty}(\lambda_1)$; ce qui souligne la différence avec le cas des suites d'interpolation pour les espaces de Hardy du disque [14].

L'essentiel des idées du présent travail se trouve dans [2].

Le but qu'on se propose est de montrer les résultats suivants, qui sont à rapprocher de ceux de [4]:

Reçu le 10 mars 1977 et sous forme revisée, le 18 janvier, 1978.

Theoreme 1. Soit σ une suite séparée dans \mathbf{D}^n ; alors pour tout p positif, σ est une réunion finie de suites σ_i fortement d'interpolation $A^p(\lambda_n)$; de plus si $p \geq 1$, σ_i possède la propriété d'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\lambda_n)$.

Ce résultat est le meilleur possible à cause du théorème suivant établi grâce aux travaux de C. Horowitz [9] sur les zéros des fonctions des classes de Bergman.

Theoreme 2. Pour tout p > 0, il existe deux suites σ_1 et σ_2 fortement d'interpolation $A^p(\lambda_1)$ telles que $\sigma_1 \cup \sigma_2$ soit séparée mais ne soit pas d'interpolation $A^p(\lambda_1)$.

On obtient encore un raffinement du théorème de D. Amar. Sarroste.

THEOREME 3. Pour tout p positif, il existe q > p et une suite σ fortement d'interpolation $A^p(\lambda_1)$ et qui n'est pas d'interpolation $A^q(\lambda_1)$.

Grâce à la méthode déjà utilisée dans [1] on démontre des théorèmes analogues aux théorèmes 2 et 3 pour les classes de Hardy du polydisque et de la boule unité \mathbf{B}_n de \mathbf{C}^n si $n \geq 2$.

On a aussi les mêmes résultats pour les classes de Bergman de la boule unité \mathbf{B}_n de \mathbf{C}^n :

THEOREME 4. Soit σ une suite séparée dans \mathbf{B}_n ; alors pour tout p positif, σ est une réunion finie de suites σ_i fortement d'interpolation $A^p(\mathbf{B}_n)$; de plus si $p \geq 1$, σ_i possède la propriété d'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\mathbf{B}_n)$.

Utilisant exactement la même méthode que dans [3] on obtient aussi:

Theoreme 5. Soit σ une suite d'interpolation $A^{\infty}(\mathbf{B}_n)$ (resp. $A^{\infty}(\mathbf{D}^n)$) alors pour tout p > 0, σ possède la propriété d'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\mathbf{B}_n)$ (resp. $A^p(\mathbf{D}^n)$).

Le même théorème, avec les mêmes preuves est valable pour les classes de Hardy de la boule et du polydisque [3] de \mathbb{C}^n généralisant ainsi des théorèmes de H. Shapiro et A. L. Shields [14] et Kabaila [11] obtenu pour n=1.

La preuve du théorème 1 donnée ici, plus simple que la preuve originelle, m'a été suggérée par A. Bonami qui m'a indiqué le lemme 2.1.2 de [7].

CHAPITRE I

1.1. Définitions et premières propriétés. Soient B_n la boule unité de \mathbb{C}^n ,

$$\mathbf{B}_n = \left\{ \mathbf{z} = (z^1, \dots, z^n) \in \mathbf{C}^n, \quad \sum_{i=1}^n |z^i|^2 < 1
ight\},$$

 S_n le bord de \mathbf{B}_n ,

$$S_n = \left\{ \mathbf{z} = (z^1, \ldots, z^n) \in \mathbf{C}^n, \sum_{i=1}^n |z_i|^2 = 1 \right\},$$

 λ_n la mesure de Lebesgue de \mathbf{R}^{2n} normalisée sur \mathbf{B}_n , et σ_n la mesure de Lebesgue normalisée sur S_n .

Soit p > 0; on définit l'espace de Hardy:

 $H^p(\sigma_n)$ est l'espace des fonctions f analytiques dans \mathbf{B}_n et telles que

$$\sup_{r<1} \int_{S_p} |f(r\zeta)|^p d\sigma_n(\zeta) = ||f||_p^p < \infty$$

et $H^{\infty}(\sigma_n)$ est l'espace des fonctions analytiques et bornées dans \mathbf{B}_n .

On définit de même les espaces de Bergman:

 $A^{p}(\lambda_{n})$ est l'espace des fonctions analytiques dans \mathbf{B}_{n} telles que

$$\int_{\mathbf{B}_n} |f(\zeta)|^p d\lambda_n(\zeta) = ||f||_p^p < \infty$$

et
$$H^{\infty}(\sigma_n) = A^{\infty}(\lambda_n)$$
.

Soit σ une suite, $\sigma = \{\mathbf{z}_i, i \in \mathbf{N}\}\$ dans \mathbf{B}_n et soit p un réel positif ou $p = +\infty$.

On définit deux opérateurs T_p^A et T_p^H à valeurs dans l'espace des suites.

$$\forall f \in A^{p}(\lambda_{n}), T_{p}^{A}f = \{ (1 - |\mathbf{z}_{i}|^{2})^{(n+1)/p}f(\mathbf{z}_{i}), i \in \mathbf{N} \}$$

$$\forall f \in H^{p}(\sigma_{n}), T_{p}^{H}f = \{ (1 - |\mathbf{z}_{i}|^{2})^{n/p}f(\mathbf{z}_{i}), i \in \mathbf{N} \}.$$

On peut alors donner les définitions suivantes:

On dit que σ est d'interpolation A^p si $T_p^A(A^p)$ contient $l^p(\mathbf{N})$.

On dit que σ est fortement d'interpolation A^p si de plus T_p^A est borné de A^p dans $l^p(\mathbf{N})$.

On dit que σ a la propriété d'extension linéaire bornée s'il existe un opérateur U_p^A , borné de $l^p(\mathbf{N})$ dans $A^p(\lambda_n)$ tel que $T_p^A U_p^A$ soit l'identité de $l^p(\mathbf{N})$.

On donne les définitions analogues dans le cas des classes de Hardy avec l'opérateur T_{p}^{H} .

Soit **z** un point de \mathbf{B}_n et soit p > 1; $e_{\mathbf{z}}^{(p)}$ est le noyau de Cauchy Bergman de **z** normalisé dans $A^p(\lambda_n)$.

$$e_{\mathbf{z}}^{(p)}(\boldsymbol{\zeta}) = c(\mathbf{z}, p, n) \frac{(1 - |\mathbf{z}|^2)^{(n+1)/q}}{(1 - \overline{\mathbf{z}} \cdot \boldsymbol{\zeta})^{n+1}} \quad \text{ou } q \text{ est le conjugue de } p.$$

$$\bar{\mathbf{z}} \cdot \boldsymbol{\zeta} = \sum_{i=1}^n \hat{z}^i \boldsymbol{\zeta}^i.$$

 $c(\mathbf{z}, p, n)$ est un réel tel qu'il existe 2 réels positifs indépendants de \mathbf{z} vérifiant:

$$(1.1) 0 < \alpha(p, n) \le c(\mathbf{z}, p, n) \le \beta(p, n).$$

On note $\Sigma^{(p)}$ la suite $\Sigma^{(p)} = \{e_{\mathbf{z}}^{(p)}, \mathbf{z} \in \sigma\}$ et $E_{\sigma}^{(p)}$ le sous-espace fermé de $A^p(\lambda_n)$ engendré par $\Sigma^{(p)}$.

On rappelle que $\Sigma^{(p)}$ est une base de $E_{\sigma}^{(p)}$ équivalente à la base canonique de $l^p(\mathbf{N})$ si on a la relation:

$$(1.2) \quad \exists D > 0, \forall a = \{a_i, i \in \mathbf{N}\} \in l^p(\mathbf{N}),$$

$$\frac{1}{D} ||a||_p \leq \left\| \sum_{i=1}^{\infty} a_i e_{\mathbf{z}_i}^{(p)} \right\|_p \leq D||a||_p.$$

On peut énoncer le lemme de dualité suivant (1/p + 1/q = 1):

Lemme 1.1.1. La suite σ de \mathbf{B}_n est fortement d'interpolation $A^p(\lambda_n)$ si le seulement si $\Sigma^{(q)}$ est une base de $E_{\sigma}^{(q)}$ équivalente à la base canonique de $l^q(\mathbf{N})$.

Preuve. Supposons que σ soit fortement d'interpolation A^p ; on considère $a = \{a_i, i \in \mathbb{N}\} \in l^q(\mathbb{N})$ et la fonction f définie par

$$f(\zeta) = \sum_{i=1}^{\infty} a_i e_{\mathbf{z}_i}^{(q)}(\zeta);$$

on va calculer le norme de f dans $A^q(\lambda_n)$ en utilisant le fait que le dual de $A^q(\lambda_n)$ est $A^p(\lambda_n)$, propriété qui sera démontrée au paragraphe suivant.

On a donc

$$||f||_q \le B_q \sup_{g \in A^p, ||g||_p = 1} \left| \int_{\mathbf{B}_n} g\bar{f} d\lambda_n \right|$$

où B_q est une constante.

$$\left| \int_{\mathbf{B}_n} g \tilde{f} d\lambda_n \right| = \left| \sum_{i=1}^{\infty} \tilde{a}_i \int_{\boldsymbol{\pi}_n} g \tilde{e}_{\mathbf{z}_i}^{(q)} d\lambda_n \right|$$

$$= \left| \sum_{i=1}^{\infty} \tilde{a}_i c(\mathbf{z}_i) (1 - |z_i|^2)^{(n+1)/p} g(\mathbf{z}_i) \right|.$$

Par Hölder il vient:

$$\left| \int_{\mathbf{B}_n} g\bar{f} d\lambda_n \right| \leq \left(\sum_{i=1}^{\infty} |\bar{a}_i c(\mathbf{z}_i)|^q \right)^{1/q} \left(\sum_{i=1}^{\infty} (1 - |\mathbf{z}_i|^2)^{n+1} |g(\mathbf{z}_i)|^p \right)^{1/p}.$$

Utilisant (1.1) et l'hypothèse que T_{p}^{A} est borné par c>0 (σ étant fortement d'interpolation A^{p}) on a:

$$||f||_q \leq B_q c \beta(q) ||a||_q$$
.

Réciproquement si T_{p}^{A} est continu et surjectif, il existe $g \in A^{p}(\lambda_{n})$ tel que

$$(1 - |z_i|^2)^{(n+1)/p} g(\mathbf{z}_i) = \bar{a}_i |a_i|^{q-2}.$$

 $||g||_p \le D_1 ||a||_q^{q-1}$ où D_1 est une constante indépendante de a (d'après le théorème de l'application ouverte).

On a donc:

$$\left| \int g f d\lambda_n \right| \leq ||f||_q ||g||_p \leq D_1 ||a||_q^{q-1} ||f||_q,$$

d'où

$$||f||_q \ge \frac{1}{D_1||a||_q^{q-1}} \sum_{i=1}^{\infty} |c(\mathbf{z}_i)||a_i|^q$$

d'où d'après (1.1),

$$||f||_q \ge \frac{\alpha}{D_1} ||a||_q.$$

Supposons maintenant que $\Sigma^{(q)}$ soit une base de $E_{\sigma}^{(q)}$ équivalente à la base canonique de $l^q(\mathbf{N})$ et soit $g \in A^p$; on a

$$\begin{aligned} ||T_p^A g||_p &= \sup_{a \in l^q(\mathbf{N}), ||a||_q = 1} \left| \sum_{a \in I^q(\mathbf{N}), ||a||_q = 1} \left| \sum_{a \in I^q(\mathbf{N}), ||a||_q = 1} \left| \sum_{a \in I^q(\mathbf{N}), ||a||_q = 1} \left| \int_{\mathbf{B}_n} \bar{f} g d\lambda_n \right| \end{aligned}$$

où l'on a posé $f = \sum_{i=1}^{\infty} a_i c(\mathbf{z}_i)^{-1} e_{\mathbf{z}_i}^{(q)}$.

D'après l'hypothèse $||f||_q \le (D/\alpha)||a||_q$, d'où:

$$||T_p^A g||_p \leq \frac{D}{\alpha} ||g||_p.$$

Pour obtenir l'autre inégalité, il suffit de montrer que l'adjoint T_p^{A*} de T_p^A vérifie $||T_p^{A*}a||_q \ge (1/D\beta)||a||_q$; mais pour $a = \{a_i, i \in \mathbb{N}\} \in l^q(\mathbb{N})$ on a:

$$T_{p}^{A^{*}}a = \sum_{i=1}^{\infty} a_{i}c^{-1}(\mathbf{z}_{i})e_{z_{i}}^{(q)}$$
 d'où $||T_{p}^{A^{*}}a|| \ge \frac{1}{D\beta}||a||_{q}$

grâce à (1.1) et l'hypothèse que $\Sigma^{(q)}$ est une base de $E_{\sigma}^{(q)}$ équivalente à la base canonique de $l^{q}(\mathbf{N})$.

Nous aurons aussi besoin de la notation suivante: Soient σ une suite dans \mathbf{B}_n , $\sigma = \{z_i, i \in \mathbf{N}\}$, p un réel plus grand que 1 et q le conjugué de p(1/p + 1/q = 1). On dit que σ est strictement d'interpolation $A^p(\lambda_n)$ si σ est fortement d'interpolation $A^p(\lambda_n)$ et si de plus le dual de $E_{\sigma}^{(q)}$ est isomorphe à $E_{\sigma}^{(p)}$. On a le lemme

Lemme 1.1.2 Si σ est une suite strictement d'interpolation $A^p(\lambda_n)$ dans \mathbf{B}_n , elle possède la propriété d'extension linéaire bornée.

Preuve. Puisque $\Sigma^{(q)}$ est une base de $E_{\sigma}^{(q)}$ équivalente à la base canonique de $l^q(\mathbf{N})$, il existe un opérateur bicontinu Q de $l^q(\mathbf{N})$ sur $E_{\sigma}^{(q)}$ tel que, si on appelle $\{\epsilon_i, i \in \mathbf{N}\}$ la base canonique de $l^q(\mathbf{N})$, on a

$$\forall \mathbf{z}_i \in \sigma, Q \epsilon_i = e_{\mathbf{z}_i}.$$

Par dualité on en déduit un opérateur Q^{-1^*} borné de $l^p(\mathbf{N})$ sur le dual de $E_{\sigma}^{(q)}$, c'est-à-dire par hypothèse sur $E_{\sigma}^{(p)}$; notons $\{\tilde{\epsilon}_i, i \in \mathbf{N}\}$ la base canonique de $l^p(\mathbf{N})$; pour $i \in \mathbf{N}$ on pose $\varphi_i = Q^{-1^*}\tilde{\epsilon}_i$.

La suite $\{\varphi_i, i \in \mathbb{N}\}$ est une base de $E_{\sigma}^{(p)}$ équivalente à la base $\{\tilde{\epsilon}_i, i \in \mathbb{N}\}$ et on a:

$$\forall i \in \mathbf{N}, \forall j \in \mathbf{N}, \langle \varphi_i, e_{\mathbf{z}_j}^{(q)} \rangle = \langle Q^{-1*} \tilde{\epsilon}_i, Q \epsilon_j \rangle$$

= $\langle \tilde{\epsilon}_i, \epsilon_j \rangle$
= δ_{ij} .

Soit maintenant $\omega = \{\omega_i, i \in \mathbb{N}\}\$ une suite de $l^p(\mathbb{N})$; on pose

$$U_{p}(\omega) = \sum_{i=1}^{\infty} c(\mathbf{z}_{i}, q) \omega_{i} \varphi_{i};$$

on a alors

$$T_p U_p(\omega) = \omega$$

car:

$$\forall f \in A^p(\lambda_n), \langle f, e_{\mathbf{z}_i}^{(q)} \rangle = f(\mathbf{z}_i)(1 - |\mathbf{z}_i|^2)^{(n+1)/p}c(\mathbf{z}_i, q)$$

et

$$||U_p(\omega)||_p = \|Q^{-1^*} \sum_{i=1}^{\infty} c(\mathbf{z}_i, q) \omega_i \tilde{\epsilon}_i\|_p \le ||Q^{-1^*}||\beta(q)||\omega||_p.$$

L'opérateur U_p répond à la question. Tous les résultats énoncés dans ce paragraphe pour les espaces de Bergman restent valables, avec des preuves analogues, pour les espaces de Hardy, et s'étendent au cas du polydisque de \mathbb{C}^n .

2. Un lemme de subordination. Soit (ζ, ξ) un point de \mathbf{B}_{n+1} où $\zeta \in \mathbf{B}_n$. Soit alors $f \in H^p(\mathbf{B}_{n+1}), \ p > 0$ et considérons la projection P ainsi définie

$$Pf(\boldsymbol{\zeta}, \boldsymbol{\xi}) = f(\boldsymbol{\zeta}, 0);$$

on a alors le lemme de "subordination".

Lemme 1.2.1. Soit p > 0 et $f \in H^p(\mathbf{B}_{n+1})$. Alors la projection P est une contraction de $H^p(\mathbf{B}_{n+1})$ sur $A^p(\lambda_n)$.

Preuve. Si $f \in L^1(\sigma_{n+1})$ ne dépend que de ζ , en appliquant le théorème de Fubini on a:

(2.1)
$$\int_{S_{n+1}} f(\zeta, \xi) d\sigma_{n+1}(\zeta, \xi) = \int_{\mathbf{B}_n} f(\zeta, 0) d\lambda_n(\zeta).$$

On a utilisé au paragraphe 1 la propriété que le dual de $A^p(\lambda_n)$ est $A^q(\lambda_n)$; on va maintenant le démontrer.

LEMME 1.2.3. Pour $1 , le dual de <math>A^p(\lambda_n)$ est $A^q(\lambda_n)$.

Preuve. On sait que le dual de $H^p(\sigma_{n+1})$ est $H^q(\sigma_{n+1})$ [12]. Il faut montrer qu'il existe $B_p > 0$ telle que:

$$\forall f \in A^p(\lambda_n), \quad ||f||_p \leq B \sup_{g \in A^q(\lambda_n), ||g||_q = 1} |\langle f, g \rangle|.$$

Pour cela considérons f comme élément de $H^p(\sigma_{n+1})$; on sait qu'il existe $B_p > 0$ telle que pour tout $f \in H^p(\sigma_{n+1})$, il existe $g \in H^q(\sigma_{n+1})$ vérifiant:

$$||f||_p \le B_p\langle f, g \rangle$$
 et $||g||_{H^q(\sigma_{n+1})} = 1$.

Mais f = Pf d'où:

$$\langle f, g \rangle = \langle Pf, g \rangle = \langle Pf, P^*g \rangle.$$

On a clairement

$$P^*g(\zeta) = g(\zeta, 0) = Pg(\zeta)$$

et d'après le lemme de subordination

$$||Pg||_{A^{q}(\lambda_n)} \leq ||g||_{H^{q}(\sigma_{n+1})} \leq 1,$$

d'où

$$||f||_p \leq B_p \langle f, g_1 \rangle$$
 avec $g_1 = Pg$ et $||g_1||_{A^q(\lambda_p)} \leq 1$

ce qui prouve le lemme 2.3.

Remarque 1.2.1. Soit $k \leq n-1$; considérons la mesure $\lambda_k^{(n)}$ sur \mathbf{B}_k définie par $\lambda_k^{(n)} = (1-|\mathbf{z}|^2)^{n-k+1}\lambda_k$.

Si $(\zeta, \xi) \in S_n$ avec $\zeta \in \mathbf{B}_k, \xi \in \mathbf{B}_{n-k}$ on définit le projecteur $P_{n,k}$ par:

$$\forall f \in H^p(\sigma_n), P_{n,k}f = f(\zeta, \mathbf{0})$$

alors

$$\int_{\mathbf{B}_{k}} |P_{n,k}|^{f} d\lambda_{k}^{(n)} = \int_{S_{n}} |P_{n,k}|^{f} d\sigma_{n} \leq \int_{S_{n}} |f|^{p} d\sigma_{n}.$$

Remarque 1.2.2. Il y a des résultats plus fins (l'existence d'une projection bornée de L^1 sur A^1) pour les classes de Bergman dans [13].

CHAPITRE II

2.1. Le théorème principal pour les classes $A^p(\lambda_1)$. On dit qu'une suite σ de \mathbf{D} est séparée s'il existe $\delta > 0$, tel que pour tout $z \in \sigma$, et tout $w \in \sigma$, $w \neq z$ alors $d(z, w) > \delta$, où d est la distance de Gleason, c'est-à-dire dans le cas de \mathbf{D} ,

$$d(z,w) = \left| \frac{z-w}{1-zw} \right|.$$

Theoreme 2.1.1. Soit σ une suite séparée dans \mathbf{D} ; alors pour $0 , <math>\sigma$ est une réunion finie de suites σ_i , $i = 1, \ldots, k$, fortement d'interpolation $A^p(\lambda_1)$; de plus si $p \ge 1$ chaque σ_i possède la propriété d'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\lambda_1)$.

On suppose d'abord p > 1.

Réduction du problème. Soit ν un entier positif; et soit $A = 2^{\nu}$. Considérons la partition de **D** en "cellules" allongées $D_{n,k}$ pour $n \ge \nu$ et $0 \le k < 2^{n-\nu}$ définies par:

$$D_{n,k} = \{ z = re^{i\theta}, 1 - 2^{-n} \le r < 1 - 2^{-n-1}, 2\pi k A 2^{-n} \le \theta < 2\pi (k+1) A 2^{-n} \}.$$

 σ étant séparée, chaque cellule $D_{n,k}$ contient un nombre de points de σ uniformément majoré par rapport à n et k par un entier M; on peut donc écrire $\sigma = \bigcup_{i=1}^{M} \sigma_i$ avec card $(\sigma_i \cap D_{n,k}) \leq 1$.

Considérons alors les quatre familles d'indices suivantes:

$$\Lambda_1 = \{ (n, k), \quad n \equiv 0 \pmod{2}, \quad k \equiv 0 \pmod{2} \}
\Lambda_2 = \{ (n, k), \quad n \equiv 1 \pmod{2}, \quad k \equiv 0 \pmod{2} \}
\Lambda_3 = \{ (n, k), \quad n \equiv 0 \pmod{2}, \quad k \equiv 1 \pmod{2} \}
\Lambda_4 = \{ (n, k), \quad n \equiv 1 \pmod{2}, \quad k \equiv 1 \pmod{2} \}.$$

On peut alors considérer les 4M sous-suites de σ :

$$\sigma_{i,j} = \bigcup_{(m,k) \in \Lambda_i} \{ \sigma_i \cap D_{m,k} \}$$

pour $1 \leq i \leq M$, $i \leq j \leq 4$.

Pour $m \in \mathbb{N}$, $m \ge \nu$, notons C_m la couronne

$$C_m = \bigcup_{l=0}^{2m-\nu-1} D_{m,l}.$$

On pose encore

$$\sigma_{i,j,k} = \bigcup_{m \equiv k \pmod{\nu}} (\sigma_{i,j} \cap C_m)$$

pour $1 \le i \le M$, $1 \le j \le 4$, $1 \le k \le \nu$.

Il suffit donc de montrer qu'on peut choisir ν pour que chaque $\sigma_{i,j,k}$ soit d'interpolation forte $A^p(\lambda_1)$.

Cette réduction étant faite, pour (i, j, k) fixé on pose $s = \sigma_{i,j,k}$ et $s_m = s \cap C_m$.

Grâce à la réduction, on note $z_{m,p}$ l'unique point, s'il existe, de $D_{m,t} \cap s_m$; si $z_{m,t} \in s_m$ et $z_{m,h} \in s_m$ on a $l = h \pmod{2}$.

On notera

$$\Lambda = \{(m, l), \text{ t.q. } z_{m, l} \text{ existe dans } s\}, \text{ et } \Lambda_m = \{l \in \mathbb{N} \text{ t.q. } \exists z_{m, l} \text{ dans } s \cap D_{m, l}\}.$$

Preuve du théorème. Soit p > 1. Soit donc s la suite obtenue après réduction; on va montrer que s est strictement d'interpolation $A^p(\lambda_1)$.

1ère partie. Soit
$$a = \{a_{n,l}, (n,l) \in \Lambda\} \in l^q(\mathbb{N})$$
 et posons

$$f = \sum_{(n,l) \in \Lambda} a_{n,l} e_{z_{n,l}}^{(q)};$$

on va montrer que f est borné dans $A^{q}(\lambda_1)$.

On a:

$$||f||_q \leq B_p \sup_{g \in A^p, ||g||_p=1} |\langle f, g \rangle|$$

grâce au lemme 1.2.2.

$$||f||_q \leq B_p \sup_{q} \left| \sum_{(n,l) \in \Lambda} \bar{a}_{n,l} \langle g, e_{z_{n,l}} \rangle \right|$$

par Hölder il vient

$$(1.1) ||f||_q \le \beta(q)B_p||a||_q \sup_{g} \left\{ \sum_{(n,l)\in\Lambda} |g(z_{n,l})|^p (1-|z_{n,l}|^2)^2 \right\}^{1/p}$$

Montrons alors le lemme.

Lemme 2.1.1. Soit s une suite séparée dans **D**; il existe alors une constante C positive telle que, pour 0 ,

$$(1.2) \quad \forall g \in A^{p}(\lambda_{1}), \; \sum_{z \in s} |g(z)|^{p} (1 - |z|^{2})^{2} \leq C||g||_{p}^{p}.$$

Preuve du lemme. a) $p \ge 1$: Puisque s est séparée il existe δ , $0 < \delta < \frac{1}{2}$, tel que les disques D_z de centre z et de rayon $\delta(1 - |z|^2)$ sont disjoints lorsque z est dans s.

Notons $|D_z| = \lambda_1(D_z)$, on a, grâce à la propriété de la moyenne:

$$I = \frac{1}{\delta^2} \sum_{z \in s} |D_z| \left| \left\{ \frac{1}{|D_z|} \int_{D_z} f(\varphi) d\lambda_1(\varphi) \right\} \right|^p = \frac{1}{\delta^2} \sum_{z \in s} |D_z|^{1-p} \left| \left\{ \int_{D_z} f \right\} \right|^p$$

utilisant alors Hölder dans l'intégrale:

$$I \leq \frac{1}{\delta^2} \sum_{z \in s} \int_{D_z} |f|^p d\lambda = \frac{1}{\delta^2} \int_{D_z} |f|^p \leq \frac{1}{\delta^2} ||f||_p^p.$$

b) $0 : Soit <math>f \in A^p(\lambda_1)$; alors $g = |f|^p$ est sous-harmonique dans **D** et est dans $L^1(\mathbf{D})$; on a donc:

$$I = \sum_{z \in s} (1 - |z|^2)^2 |f(z)|^p$$

$$= \sum_{z \in s} (1 - |z|^2)^2 g(z) \le \frac{1}{\delta^2} \sum_{z \in s} \int_{D_s} g d\lambda \le \frac{1}{\delta^2} \int_D g d\lambda$$

donc $I \leq (1/\delta^2)||g||_1 = (1/\delta^2)||f||_p^p$.

Appliquant le lemme 2.1.1 à (1.1) il vient:

$$(1.3) ||f||_{q} \le \beta(q) B_{q} C ||a||_{q}.$$

2ème partie. Pour montrer que s est strictement d'interpolation A^p il suffit alors de montrer que, avec f comme dans la première partie, il existe $\gamma > 0$ avec:

(1.4)
$$\sup_{E_{\mathcal{B}^p,||g||_p=1}} |\langle f,g\rangle| \ge \gamma ||a||_q$$

écrivant

$$g = \sum_{(m,k)\in\Lambda} b_{m,k} e_{z_m,k}^{(p)},$$

avec $b=\{b_{m,k},\ (m,\ k)\in\Lambda\}\in l^p(\Lambda)$ cela revient à montrer que l'opérateur matriciel

$$\widetilde{Q}_{p}(n, l; m, k) = \frac{(1 - |z_{n, l}|^{2})^{2/p} (1 - |z_{m, k}|^{2})^{2/q}}{|1 - \overline{z}_{n, l} z_{m, k}|^{2}}$$

est d'inverse borné de $l^q(\Lambda)$ dans $l^q(\Lambda)$.

Posons $Q_p = \tilde{Q}_p - I$, où I est l'identité de $l^q(\Lambda)$ dans $l^q(\Lambda)$; il suffit de montrer que $||Q_p||$ est strictement inférieure à un; pour cela on va utiliser le lemme suivant [7] issu d'un théorème de Schur.

LEMME 2.1.2. [7] Soit μ une mesure positive sur un espace X et Q une application de $X \times X$ dans $[0, +\infty]$; soit g une fonction positive sur X telle qu'il existe deux nombres a et b positifs tels que:

$$\int_{Y} Q(x, y)g(y)^{q} d\mu(y) \leq a^{q} [g(x)]^{q}$$

et

$$\int_X Q(x, y)g^p(x)d\mu(x) \le b^p[g(y)]^p,$$

alors l'opérateur

$$Tf(x) = \int_{X} Q(x, y) f(y) d\mu(y)$$

est borné de L^p dans L^p et on $a ||T|| \leq ab$.

On va prendre $X = \Lambda$, muni de la mesure de dénombrement, Q la fonction définie ci-dessus.

On va montrer, avec le ν de la réduction.

Proposition 2.1.1. Pour tout θ , $(2/q) - 1 < \theta < 2/q$ il existe une constante positive $K_{\theta,r}^p$ telle que

$$(1.5) \qquad \sum_{n,l} Q_p(n,l;m,k) \left(1 - |z_{n,l}|^2\right)^{\theta} \le K_{\theta,\nu} \left(1 - |z_{m,k}|^2\right)^{\theta},$$

et $K_{\theta,\nu}$ tend vers zéro quand ν tend vers l'infini.

Preuve de la proposition 2.1.1.

$$I = \sum_{(n,l)\in\Lambda} Q_p(n,l;m,k) (1 - |z_{n,l}|^2)^{\theta} = I_1 + I_2 + I_3 \text{ avec}$$

$$I_1 = \sum_{n < m} \sum_{l \in \Lambda_m} Q_p(n,l;m,k) (1 - |z_{n,l}|^2)^{\theta}$$

$$I_2 = \sum_{\substack{l \in \Lambda_m \\ l \neq k}} Q_p(n,l;m,k) (1 - |z_{n,l}|^2)^{\theta}$$

$$I_3 = \sum_{n > m} \sum_{l \in \Lambda_n} Q_p(n,l;m,k) (1 - |z_{n,l}|^2)^{\theta}.$$

Voyons I_1 . On a:

$$(1.6) \quad \forall (n, l) \in \Lambda, 2^{-n-1} \leq (1 - |z_{n, l}|^2) \leq 2^{-n+1}$$

à cause de la réduction, de plus,

$$|1 - \bar{z}_{n,l} z_{m,k}|^2 \ge \delta((2^{-(n+1)} + 2^{-(m+1)})^2 + (\varphi_{m,l} - \varphi_{m,k})^2)$$

où δ est une constante absolue et $\varphi_{n,l}$ est l'argument de $z_{n,l}$; cette relation vaut dès que $|z_{n,l}| \ge \frac{1}{2}$ et $|z_{m,k}| \ge \frac{1}{2}$ par exemple; à cause de la réduction, on peut réindicer les points pour écrire:

$$|\varphi_{n,l} - \varphi_{m,k}| \ge l2\pi 2^{-n+\nu-1};$$

il vient alors

$$(1.7) \qquad |1 - \bar{z}_{n, l} z_{m, k}|^2 \ge \pi^2 \delta 2^{-2n} 2^{2\nu} \left\{ l^2 + \frac{2^{-2\nu}}{4\pi^2} \left(1 + 2^{-(m-n)}\right)^2 \right\}$$

on en déduit

$$\sum_{l} \frac{1}{|1 - \bar{z}_{n, l} z_{m, k}|^2} \le \frac{2^{2n}}{\pi^2 \delta 2^{2\nu}} \sum_{l > 0} \frac{1}{l^2 + \frac{2^{-2\nu}}{4\pi^2} (1 + 2^{-(m-n)})^2}$$

que l'on peut majorer par:

$$\sum_{l} \frac{1}{\left|1 - \bar{z}_{n,l} z_{m,k}\right|^{2}} \leq \frac{2^{2n}}{\pi \delta 2^{\nu - 1} (1 + 2^{-(m-n)})} + \frac{2^{2n}}{\pi^{2} \delta 2^{2\nu}} \frac{2^{2\nu} 4 \pi^{2}}{(1 + 2^{-(m-n)})^{2}}$$

que l'on majore encore par

(1.8)
$$\sum_{l} \frac{1}{|1 - \bar{z}_{n, l} z_{m, l}|^2} \le \frac{2.2^m}{\delta (1 + 2^{-(m-n)})}.$$

On en déduit, puisque grâce à la réduction $m = n \pmod{\nu}$

$$I_1 \leq \frac{2}{\delta} 2^{-m(2/q)} \sum_{\substack{n < m \\ n \equiv m(r)}} \frac{2^{-n((2/p)+\theta)} 2^{2n}}{1 + 2^{-(m-n)}} \leq \frac{2}{\delta} 2^{-(2m/q)} \sum_{\substack{n < m \\ n \equiv m(r)}} 2^{n((2/q)-\theta)}.$$

Soit

$$I_1 \le \frac{2}{\delta} \frac{1}{2^{((2/q)-\theta)\nu} - 1} 2^{-m\theta}$$

et, grâce à (1.6) il vient

$$(1.9) I_1 \leq \frac{4}{\delta(2^{((2/q)-\theta)\nu}-1)} (1-|z_{m,k}|^2)^{\theta}.$$

Voyons I_2 .

$$I_2 = \sum_{\substack{l \in \Lambda_m \ l
eq k}} rac{(1 - \left|z_{n,\,l}
ight|^2)^{2/p} (1 - \left|z_{m,k}
ight|^2)^{2/q} (1 - \left|z_{m,\,l}
ight|^2)^{ heta}}{\left|1 - ar{z}_{m,k} z_{n,\,l}
ight|^2}$$

grâce à (1.6) et (1.7) avec n = m il vient:

$$I_2 \le 2^{-2m} \frac{2^{-\theta m} 2^{2m}}{\pi^2 \delta 2^{2\nu}} \sum_{l>1} \frac{1}{l^2 + \frac{2^{-2\nu}}{2\pi^2}},$$

où on a $l \ge 1$ grâce au fait que $z_{m,l} \ne z_{m,k}$; soit:

$$I_2 \le \frac{2^{-m\theta}}{\pi^2 \delta 2^{2\nu}} \sum_{l>1} \frac{1}{l^2} = \frac{2^{-m\theta}}{6\delta 2^{2\nu}};$$

par (2.6) on a

$$(1.10) \quad I_2 \leq \frac{1}{3\delta 2^{2\nu}} \left(1 - |z_{m,k}|^2\right)^{\theta}.$$

Voyons I_3 .

$${I}_{3} = \sum_{\substack{n > m \ n \equiv m(p)}} \sum_{l \in \Lambda_{n}} \frac{\left(1 - \left|z_{m,k}\right|^{2}\right)^{2/q} \left(1 - \left|z_{n,\,l}\right|^{2}\right)^{(2/p) + \theta}}{\left|1 - \tilde{z}_{m,k} z_{n,\,l}\right|^{2}}$$

grâce à (1.6) et (1.8) il vient

$$I_3 \leq 2^{-m(2/q)} \frac{2}{\delta} \sum_{\substack{n > m \\ n \equiv m(\nu)}} \frac{2^{-n((2/p)+\theta)} 2^{2n}}{1+2^{-(m-n)}} \leq \frac{2}{\delta} 2^{-(2m/q)} \sum_{\substack{n > m \\ n \equiv m(\nu)}} 2^{-n((2/p)+\theta-1)} 2^m$$

$$I_3 \le \frac{2}{\delta} 2^{-(2m/q)} 2^m \sum_{\substack{n > m \\ n \equiv m(p)}} 2^{-n(1-(2/q)+\theta)}$$

$$=\frac{2}{\delta} 2^{m(1-(2/q))} \frac{2^{-m(1-(2/q)+\theta)} 2^{-\nu(1-(2/q)+\theta)}}{1-2^{-(1-(2/q)+\theta)\nu}}$$

d'où (1.11)

$$I_{3} \leq \frac{4}{\delta} \frac{2^{-\nu(1-(2/q)+\theta)}}{1-2^{-(1-(2/q)+\theta)\nu}} \left(1-\left|z_{m,k}\right|^{2}\right)^{\theta}.$$

Posons alors:

$$K_{\theta,\nu}^{\ \ p} = \frac{4}{\delta} \left[\frac{1}{2^{((2/q)-\theta)\nu} - 1} + \frac{1}{12 \cdot 2^{2\nu}} + \frac{2^{-\nu(1-(2/q)+\theta)}}{1 - 2^{-(1-(2/q)+\theta)}} \right]$$

on a bien la proposition 2.1.1.

Soit alors p > 1 et posons $t_{n,l} = (1 - |z_{n,l}|^2)^a$, a > 0; grâce à la proposition 2.1.1 si

(*)
$$(2/q) - 1 < ap < 2/q$$

alors on a

$$(1.12) \quad \sum_{n,l} Q_p(n,l;m,k) t_{n,l}^p \leq K_{ap,\nu}^p t_{m,k}^p.$$

échangeant dans la proposition 2.1.1 les rôles de p et q il vient, si

$$(**) (2/p) - 1 < aq < 2/p,$$

$$(1.13) \quad \sum_{m,k} Q_p(n,l;m,k) t_{m,k}^{q} \leq K_{aq,\nu}^{q} t_{m,k}^{q}.$$

Mais p > 1 donné on voit que (**) implique 2/q - p/q < ap < 2/q et donc, en prenant

$$a = \frac{1}{2p} \left[\frac{2}{q} + \max \left\{ \left(\frac{2}{q} - 1 \right), \left(\frac{2}{q} - \frac{p}{q} \right) \right\} \right],$$

on a que (*) et (**) sont vérifiés donc aussi (1.12) et (1.13). Appliquant alors le lemme 2.1.2 à Q_p on a

$$(1.14) \quad \left\| \left\{ \sum_{n,l} Q_p(n,l;m,k) a_{n,l}, (m,k) \in \Lambda \right\} \right\|_q \leq \left(K_{ap,\nu}^{p} \right)^{1/p} \left(K_{aq,\nu}^{q} \right)^{1/q} ||a||_q.$$

Preuve du théorème pour p > 1. Soit $a = \{a_{n,l}, (n, l) \in \Lambda\} \in l^q(\Lambda)$ et $b = \{b_{n,l}, (n,l)\} \in l^p(\Lambda)$; posons

$$f = \sum_{(n, l) \in \Lambda} a_{n, l} e_{z_{n, l}}^{(q)}$$
 et $g = \sum_{(n, l) \in \Lambda} b_{n, l} e_{z_{n, l}}^{(p)}$.

Par (1.3) on a $||f||_q \le \beta(q)B_qc||a||_q$ et $||g||_p \le \beta(p)B_pc||b||_p$, et

$$\langle f, g \rangle = \sum_{\substack{(n, l) \in \Lambda \\ (m, k) \in \Lambda}} a_{n, l} \bar{b}_{m, k} \langle e_{z_n, l}^{(q)}, e_{z_m, k}^{(p)} \rangle$$

$$\langle f, g \rangle = \sum a_{n, l} c(z_{n, l}; q) \bar{b}_{m, k} c(z_{m, k}; p) \frac{(1 - |z_{n, l}|^2)^{2/p} (1 - |z_{m, k}|^2)^{2/q}}{(1 - \bar{z}_{n, l} z_{m, k})^2},$$

d'où avec la définition naturelle de $\tilde{R}_p(n, l; m, k)$:

$$\langle f, g \rangle = \sum a_{n,l} c(z_{n,l}; q) \bar{b}_{m,k} c(z_{m,k}; p) \tilde{R}_p(n, l; m, k).$$

Mais

$$\widetilde{R}_p(n,l;m,k) = I + R_p(n,l;m,k)$$

et grâce à (1.14)

$$||\{R_p(n,l;m,k)\}|| \le ||Q_p(n,l;m,k)|| \le (K_{ap,\nu}^p)^{1/p} (K_{aq,\nu}^q)^{1/q}.$$

Choisissons donc ν assez grand pour que la norme de $R_p(n, l; m, k)$ soit strictement inférieure à un; on en déduit que \tilde{R}_p est inversible et donc qu'il existe $\gamma > 0$ tel que pour tout $a = \{a_{n,l}, (n, l) \in \Lambda\} \in l^q(\Lambda)$ il existe

$$b = \{b_{n,l}, (n,l) \in l^p(\Lambda)\} \text{ avec } |\langle f, g \rangle| \ge \alpha(p)\alpha(q)\gamma||a||_q||b||_p.$$

On en déduit que

$$||f||_q \ge \sup_{\substack{g \in \mathcal{B}^{\sigma} \\ |g||_p < 1}} |\langle f, g \rangle| \ge \frac{\alpha(p)\alpha(q)\gamma||a||_q}{\beta(p)B_p}$$

donc que Σ^q est une base de E_{σ}^q équivalente à la base canonique de $l^q(\Lambda)$ d'une part, ce qui grâce au lemme 1.1.1 prouve que s est fortement d'interpolation $A^p(\lambda_1)$, et d'autre part cela prouve que le dual de E_{σ}^q est isomorphe à E_{σ}^p ce qui achève la preuve du théorème dans le cas p > 1, à cause du lemme 1.1.2.

Remarque 2.1.1. On a que l'opérateur \tilde{R}_p n'est autre que $\tilde{R}_p = T_q T_p^*$ et on vient de montrer que \tilde{R}_p est d'inverse borné. Il en va de même de $\tilde{R}_q = \tilde{R}_p^* = T_p T_q^*$; posons alors $U_p = T_q^* \tilde{R}_q^{-1}$. U_p est borné de $l^p(\mathbf{N})$ dans $E_s^p \subset A^p(\lambda_1)$ et on a $T_p U_p = T_p T_q^* (T_p T_q^*)^{-1}$ = identité de l^p ; on a donc directement l'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\lambda_1)$.

Cette remarque vaut également pour les chapitres suivants.

2.2. Cas p < 1. Soit $\sigma = \{z_i, i \in \mathbb{N}\}$ une suite dans \mathbb{D} .

On dit que $\Sigma = \{e_z^{(2)}, z \in \sigma\}$ possède une suite de conjugués bornés s'il existe une suite $\{\varphi_i, i \in \mathbb{N}\}$ d'éléments de $A^2(\lambda_1)$ vérifiant:

$$(2.1) \quad \forall i \in \mathbb{N}, \forall j \in \mathbb{N}, \langle \varphi_i, e_{z_i}^{(2)} \rangle = \delta_{ij} = \varphi_i(z_j)c(z_j, 2)(1 - |z_j|^2)$$

$$(2.2) \quad \exists K > 0, \forall i \in \mathbb{N}, ||\varphi_i||_2 \leq K.$$

On a alors

PROPOSITION 2.2.1. Si σ est une suite telle que $\Sigma = \{e_z^{(2)}, z \in \sigma\}$ possède une suite de conjugués bornés alors σ possède la propriété d'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\lambda_1)$ pour tout p de la forme $p = 1/k, k \in \mathbf{N} - \{0\}$.

Preuve. Soit $\omega = \{\omega_i, i \in \mathbb{N}\} \in l^{1/k}(\mathbb{N})$. On pose:

$$U_{1/k}(\omega) = \sum_{i} \omega_{i} c(z_{i}, 2)^{-2k} \varphi_{i}^{2k}.$$

On a:

$$||U_{1/k}(\omega)||_{1/k}^{1/k} = \int \left| \sum_{i} \omega_{i} c(z_{i}, 2)^{-2k} \varphi_{i}^{2k} \right|^{1/k} d\lambda_{1}$$

$$\leq \int \alpha(2)^{-2} \left(\sum_{i} |\omega_{i}|^{1/k} |\varphi_{i}|^{2} \right) d\lambda_{1}$$

$$\leq \alpha(2)^{-2} \sum_{i} |\omega_{i}|^{1/k} \int |\varphi_{i}|^{2} d\lambda_{1}$$

$$\leq \alpha(2)^{-2} K^{2} ||\omega||_{1/k}^{1/k}$$

d'après (4.2) d'où $U_{1/k}$ applique $l^{1/k}(\mathbf{N})$ dans $A^{1/k}(\lambda_1)$. D'après (2.1) on a clairement $T_{1/k}U_{1/k}(\omega)=\omega$.

COROLLAIRE 2.2.1. Si σ est une suite séparée dans \mathbf{D} , alors σ est une réunion finie de suites σ_i telles que pour $k \in \mathbf{N} - \{0\}$, σ_i possède la propriété d'extension linéaire bornée de $l^{1/k}(\mathbf{N})$ dans $A^{1/k}(\lambda_1)$.

Preuve. Grâce au § 1 on peut écrire σ comme réunion de suites σ_i , $i=1,\ldots,M$, telles que σ_i soit fortement d'interpolation $A^2(\lambda_1)$. Mais $E_{\sigma_i}^{(2)}$ étant un

espace de Hilbert, son dual est isomorphe à $E_{\sigma_i}^{(2)}$ et donc σ_i est strictement d'interpolation $A^2(\lambda_1)$.

Il existe donc une suite $\{\varphi_k, k \in \mathbb{N}\}$ dans $E_{\sigma_i}^{(2)}$ telle que $\langle \varphi_k, e_{zl}^{(2)} \rangle = \delta_{k, l}$ et $||\varphi_k||_2 \leq K$ où K est une constante. D'après la proposition 2.2.1, σ_i possède la propriété d'extension linéaire bornée de $l^{1/k}(\mathbb{N})$ dans $A^{1/k}(\lambda_1)$, d'où le corollaire.

La proposition suivante achèvera la preuve du théorème principal dans le cas de **D**.

PROPOSITION 2.2.2. Soit σ une suite fortement d'interpolation $A^{p'}(\lambda_1)$ pour $\rho' > 1$. Alors σ est fortement d'interpolation $A^p(\lambda_1)$ pour $\rho = \rho'/k$, $k \in \mathbb{N} - \{0\}$.

Preuve. Puisque σ est fortement d'interpolation $A^{p'}(\lambda_1)$, σ est séparée (c'est facile à voir) et donc grâce au lemme 2.1.1 on obtient que pour tout r > 0, T_r est continu de $A^r(\lambda_1)$ dans $l^r(\mathbf{N})$.

Soit alors $\omega = \{\omega_i, i \in \mathbf{N}\}$ un élément de $l^{p'/k}(\mathbf{N})$ et considérons une suite $a = \{a_i, i \in \mathbf{N}\}$ telle que pour tout $i \in \mathbf{N}$, $a_i^k = \omega_i$; a appartient à $l^{p'}(\mathbf{N})$ et il existe donc $f \in A^{p'}(\lambda_1)$ vérifiant:

$$\forall i \in \mathbb{N}, (1 - |z_i|^2)^{2/p'} f(z_i) = a_i;$$

d'où en élevant à la puissance k,

$$\forall i \in \mathbb{N}, (1 - |z_i|^2)^{2k/p'} f^k(z_i) = \omega_i;$$

et posant $g = f^k$ on a bien:

$$g \in A^{p'/k}(\lambda_1)$$
 et $T_{n'/k}g = \omega$.

Fin de la preuve du théorème principal. Soit $0 ; il existe <math>m \in \mathbb{N}$ tel que mp = p' > 1. Soit σ une suite séparée dans \mathbb{D} ; dans le § 3 on a montré que σ est une réunion finie de suites fortement d'interpolation $A^{p'}(\lambda_1)$, et grâce à la proposition 4.2, on peut en déduire que chacune de ces suites est fortement d'interpolation $A^p(\lambda_1)$.

Remarque 2.2.2. Dans le cas 0 on ne sait pas prouver qu'il y a toujours extension linéaire bornée mais on a une extension non linéaire bornée ainsi:

Soit $m \in \mathbb{N}$ telle que mp = p' > 1, m fixé et considérons $\omega = \{\omega_k, k \in \mathbb{N}\} \in l^p(\mathbb{N})$. À ω associons $\tilde{\omega}$ une des suites de $l^{p'}(\mathbb{N})$ telles que $\tilde{\omega} = \{\tilde{\omega}_k, k \in \mathbb{N}\}$ avec $\forall k \in \mathbb{N}$, $\tilde{\omega}_k^m = \omega_k$. Appelons R cet opérateur. Soit alors $U_{p'}$ l'extension linéaire bornée de $l^{p'}$ dans $A^{p'}(\lambda_1)$ et R' l'opérateur de $A^{p'}$ dans A^p ainsi définit; $\forall f \in A^{p'}$, $R'f = f^m \in A^p$. Posons enfin $\tilde{U}_p = R'U_{p'}R$; on voit que \tilde{U}_p est une extension non linéaire mais bornée sur les boules de centre 0 de $l^p(\mathbb{N})$ dans $A^p(\lambda_1)$. Cette remarque vaut aussi pour les chapitres III et IV.

2.3. Comparaison avec les suites de zeros de fonctions de $A^p(\lambda_1)$. On va montrer que les résultats obtenus sont les meilleurs possibles dans le sens suivant: pour p > 0 donné, il existe une suite séparée dans \mathbf{D} qui n'est même

pas un zéro pour la classe $A^p(\lambda_1)$, donc qui ne peut être d'interpolation $A^p(\lambda_1)$. Nécessairement une telle suite est une réunion d'au moins deux suites d'interpolation $A^p(\lambda_1)$.

On va utiliser le théorème suivant dû à C. Horowitz [9].

THEOREME 2.3.1. [9]. Soit f dans $A^p(\lambda_1)$, $0 , <math>f(0) \ne 0$ et soit $\{z_k, k \in \mathbb{N}\}\$ la suite des zéros ordonnés par modules croissants de f alors:

(3.1)
$$\prod_{k=1}^{N} \frac{1}{|z_k|} = O(N^{1/p}).$$

On va montrer les théorèmes suivants:

THEOREME 2.3.2. Pour tout p > 0, il existe deux suites σ_1 et σ_2 fortement d'interpolation $A^p(\lambda_1)$ et telles que la réunion $\sigma_1 \cup \sigma_2$ est séparée et n'est pas une suite d'interpolation $A^p(\lambda_1)$.

THEOREME 2.3.3. Pour tout p > 0, il existe q > p et une suite σ qui est fortement d'interpolation $A^p(\lambda_1)$ mais qui n'est pas d'interpolation $A^q(\lambda_1)$.

Ces deux théorèmes soulignent la différence avec le cas des classes $H^p(\sigma_1)$.

Preuve du théorème 2.3.2. Soit $\gamma > 1$ et soit $\nu \in \mathbb{N}$; considérons la suite $\sigma(\gamma, \nu)$ suivante:

$$\forall m \in \mathbf{N}, m \ge \nu + 1; \quad \forall l \in \mathbf{N}, 1 \le l \le E[\gamma^{m-\nu}],$$

$$z_{m, l} = (1 - \gamma^{-m})e^{i2\pi\gamma^{-m}l\gamma\nu}$$

où E[x] est la partie entière de x.

Appliquons le critère de Horowitz à cette suite: si $N = \sum_{k=\nu+1} E[\gamma^{k-\nu}]$, N est équivalent, quand $m \to \infty$ à $\gamma(1-\gamma^{m-\nu})/(1-\gamma)$ d'où:

(3.2) $\log N \sim m \log \gamma$

guand m tend vers $+\infty$.

$$I = \prod_{k=\nu+1}^{m} \prod_{l=1}^{E(\gamma^{k-\nu})} \frac{1}{1-\gamma^{-k}} = \prod_{k=\nu+1}^{m} \frac{1}{[1-\gamma^{-k}]^{E[\gamma^{k-\nu}]}} \; ;$$

d'où

$$\log I = -\sum_{k=\nu+1} E[\gamma^{k-\nu}] \log (1 - \gamma^{-k})$$

et

(3.3) $\log I \sim m \gamma^{-\nu}$

quand $m \to \infty$.

On déduit des relations (3.2) et (3.3) et du théorème 2.3.1 de C. Horowitz que, pour que $\{z_{m,l}; m, l\}$ soit contenu dans un ensemble de zéros d'une fonction de $A^p(\lambda_1)$ nécessairement on a:

$$(1/p) \log N \ge \log I$$
.

Soit:

$$(3.4) p \leq \frac{m \log \gamma}{m \gamma^{-\nu}} = \gamma^{\nu} \log \gamma.$$

Soit alors $p_0 > 0$ donné et $1 < \gamma < e^{p_0}$. La suite $\sigma(\gamma, 0)$ construite ci-dessus ne peut être une suite d'interpolation $A^{p_0}(\lambda_1)$; en effet toute suite d'interpolation $A^{p_0}(\lambda_1)$ est incluse dans un ensemble de zéros d'une fonction de $A^{p_0}(\lambda_1)$, à savoir une fonction f interpolant l'élément $(1, 0, 0, \ldots, 0, \ldots)$ de $l^{p_0}(\mathbf{N})$. A cause de (3.4) et du choix de γ , $\sigma(\gamma, 0)$ ne vérifie pas (3.1) et donc ne peut être incluse dans un ensemble de zéros d'une fonction de $A^p(\lambda_1)$ et n'est pas d'interpolation $A^p(\lambda_1)$.

Toutefois la suite $\sigma(\gamma, 0)$ est séparée et donc d'après le théorème principal, $\sigma(\gamma, 0) = \bigcup_{i=1}^{M} \sigma_i$ où σ_i est fortement d'interpolation $A^{p_0}(\lambda_1)$ et M un entier, on en déduit le théorème 2.3.2.

Preuve du théorème 2.3.3. Soit p > 0 donné, dans la preuve du théorème principal, on a montré que que pour γ et ν assez grands $\sigma(\gamma, \nu)$ est fortement d'interpolation $A^p(\lambda_1)$; il suffit alors de considérer $q > \gamma^{\nu} \log \gamma$ pour que $\sigma(\gamma, \nu)$ ne soit pas d'interpolation $A^q(\lambda_1)$ à cause de (3.4) et du raisonnement ci-dessus.

2.4. Applications aux espaces de Hardy. Comme corollaire du 2.3 on va montrer les théorèmes suivants.

Theoreme 2.4.1. a) Pour tout p > 0, il existe deux suites s_1 et s_2 fortement d'interpolation $H^p(\sigma_2)$ et telles que la réunion $s_1 \cup s_2$ est séparée mais n'est pas une suite d'interpolation $H^p(\sigma_2)$.

b) Pour tout p > 0, il existe q > p et une suite s qui est fortement d'interpolation $H^p(\sigma_2)$ mais qui n'est pas d'interpolation $N^q(\sigma_2)$.

Preuve. a) On considère les suites s_1 et s_2 du théorème comme étant dans le plan w=0 de la boule $\{|z|^2+|w|^2<1\}$ de \mathbb{C}^2 , on utilise alors le lemme 2.2 de subordination pour conclure; pour montrer le b) on procède de la même façon.

Soit m_2 la mesure de Lebesgue sur \mathbf{T}^2 , on définit les classes de Hardy de la manière usuelle:

$$H^{p}(m_{2}) = \begin{cases} f \text{ analytique dans } \mathbf{D}^{2} \text{ telle que} \end{cases}$$

$$\sup_{r<1} \int_{\varphi \in \mathbf{T}^2} |f(r\varphi)|^p dm_2 = ||f||_p^p < H \}, \quad p > 0$$

et

$$H^{\infty}(\mathbf{D}^2) = \{f \text{ analytique et bornée dans } \mathbf{D}^2\}.$$

THEOREME 2.4.2. a) Pour tout $p \ge 1$, il existe deux suites s_1 et s_2 fortement

d'interpolation $H^p(m_2)$ et telles que la réunion $s_1 \cup s_2$ est séparée mais n'est pas d'interpolation $H^p(m_2)$.

b) Pour tout $p \ge 1$, il existe q < p et une suite s qui est fortement d'interpolation $H^p(m_2)$ mais qui n'est pas d'interpolation $H^q(m_2)$.

Preuve. a) Soit $s_1' = \{z_k, k \in \mathbb{N}\}$ et $s_2' = \{w_k, k \in \mathbb{N}\}$ les suites du théorème 2.3.2; on considère dans \mathbb{D}^2 les suites suivantes:

$$s_1 = \{(z_k, z_k), k \in \mathbf{N}\}\ \text{et}\ s_2 = \{(w_k, w_k), k \in \mathbf{N}\}.$$

C. Horowitz et D. M. Oberlin [10] ont montré que pour $p \ge 1$, l'opérateur T définit sur $H^p(\mathbf{D}^2)$ ainsi:

$$\forall f \in H^p(\mathbf{D}^2), Tf(z) = f(z, z)$$

est continu et surjectif sur $A^p(\mathbf{D})$; il est alors clair que les suites s_1 et s_2 , portée par la diagonale de \mathbf{D}^2 , vérifient le a) du théorème.

b) On procède de la même façon pour b) en plaçant sur la diagonale de \mathbf{D}^2 la suite s du théorème 2.3.3 et en utilisant le théorème de C. Horowitz et D. Oberlin.

CHAPITRE III

Classes de Bergman du polydisque de Cⁿ.

On fera les démonstrations dans le cas de \mathbf{D}^2 , le cas général s'en déduisant aisément.

On note $\mathbf{z}=(z, w)$, $\mathbf{n}=(n_1, n_2) \in \mathbf{N}^2$ et $\mathbf{z_n}=(z_{n_1}, w_{n_2})$, la mesure de Lebesgue de \mathbf{C}^2 restreinte et normalisée à \mathbf{D}^2 sera encore notée λ_2 .

On note $A^p(\lambda_2)$ les classes de Bergman.

$$A^{p}(\lambda_{2}) = \begin{cases} f \text{ analytique dans } \mathbf{D}^{2} \text{ telle que} \end{cases}$$

$$\int_{\mathbf{D}^2} |f|^p d\lambda_2 = ||f||_p^p < +\infty \bigg\}, \quad p > 0$$

$$A^{\infty}(\lambda_2) = \left\{ f \text{ analytique et bornée dans } \mathbf{D}^2, \, ||f||_{\infty} = \sup_{\mathbf{z} \in \mathbf{D}^2} |f(\mathbf{z})| \right\}.$$

Si
$$\mathbf{z} = (z, w) \in \mathbf{D}^2$$
 et si $\alpha \in \mathbf{R}$ on note $((1 - |\mathbf{z}|^2))^{\alpha} = (1 - |z|^2)^{\alpha}(1 - |w|^2)^{\alpha}$.

3.1. On va généraliser les lemmes 1.2.3 et 2.1.1 au cas du polydisque.

LEMME 3.1.1. Pour p supérieur à un, le dual de $A^p(\lambda_2)$ est isomorphe à $A^q(\lambda_2)$, avec 1/p + 1/q = 1.

Preuve. Comme dans **D**, il suffit de montrer que l'on a une projection bornée de $L^p(\lambda_2)$ sur $A^p(\lambda_2)$, p > 1.

La mesure λ_2 étant le produit de la mesure λ_1 sur **D** par elle même, on vérifie directement par itération que l'intégrale avec le noyau de Cauchy Bergman réalise bien une projection bornée de $L^p(\lambda_2)$ sur $A^p(\lambda_2)$, la constante étant B_p^2 .

Lemme 3.1.2. Soit $\sigma = \{\mathbf{z}_n, n \in \mathbf{N}\}$ une suitee séparée dans \mathbf{D}^2 ; il existe une constante C positive telle que

(1.1)
$$\forall p > 0, \forall f \in A^p(\lambda_2), \quad \sum_n ((1 - |\mathbf{z}_n|^2))^2 |f(\mathbf{z}_n)|^p \leq C||f||_p^p.$$

Puisque la suite est séparée il existe $\delta > 0$ tel que les polydisques

$$D_{\mathbf{z}_n}=\{\,(arphi,\,\eta)\in\mathbf{D}^2,\, ext{telle que }|arphi-z_n|<\delta(1-|z_n|^2),\ |\eta-w_n|<\delta(1-|w_n|^2\}$$

sont disjoints. On recopie alors la preuve du lemme 2.1.1.

Le but de ce chapitre est de montrer le

THEOREME 3.1.1. Soit σ une suite séparée dans \mathbf{D}^n . Pour p > 1, σ est une union finie de suites strictement d'interpolation $A^p(\lambda_2)$; pour p > 0, σ est une union finie de suites σ_i fortement d'interpolation $A^p(\lambda_n)$, et de plus, si p = 1/k avec $k \in \mathbf{N}$, σ_i possède la propriété d'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\lambda_n)$.

3.2. Reduction du problème. Soit encore ν dans N et posons, comme au chapitre II,

$$\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, k < 2^{n-\nu}, \quad D_{n,k} = \{z = re^{i\varphi}, 1 - 2^{-n} \le r < 1 - 2^{-n-1} \text{ et } k2^{-n+\nu}2\pi \le \varphi < (k+1)2\pi 2^{-n+\nu}\}.$$

Si
$$\mathbf{n} = (n_1, n_2)$$
 et $\mathbf{k} = (k_1, k_2)$ on pose

$$D_{\mathbf{n},\mathbf{k}} = D_{n_1,k_1} \times D_{n_2,k_2}.$$

Soit σ une suite séparée dans \mathbf{D}^2 . Dans chaque cellule $D_{\mathbf{n},\mathbf{k}}$ il existe un nombre de points de σ uniformement majoré par un entier M; on peut donc écrire $\sigma = \bigcup_{i=0}^{M} \sigma_i$ avec pour $i \geq 1$, Card $(\sigma_i \cap D_{n,k}) \leq 1$ et σ_0 constituée des points (z, w) de σ tels que $|z| \leq 1 - 2^{-\nu}$ et $|w| \leq 1 - 2^{-\nu}$, σ_0 n'ayant qu'un nombre fini de points est strictement d'interpolation $A^p(\lambda_2)$ pour $p \geq 1$ et fortement d'interpolation $A^p(\lambda_2)$ avec la propriété d'extension linéaire pour 0 .

On procède alors comme au chapitre II et on a

$$\sigma_i = \bigcup_{\substack{j=1,\ldots,4^2\\k=1,\ldots,\nu}} \sigma_{i,j,k}.$$

On pose, pour i, j, k fixés,

$$s = \sigma_{i,j,k} = \{z_{\mathbf{m},\mathbf{l}}, \mathbf{m} = (m_1, m_2), \mathbf{l} = (l_1, l_2)\}$$

où $z_{m,1}$ est l'unique point, s'il existe, de s dans $D_{m,1}$.

On a les propriétés suivantes:

(2.1)
$$z_{\mathbf{m},\mathbf{l}} \text{ et } z_{\mathbf{m},\mathbf{k}} \text{ dans } s \Rightarrow l_1 \equiv k_1 \pmod{2}, \ l_2 \equiv k_2 \pmod{2}$$

$$z_{\mathbf{m},\mathbf{l}} \text{ et } z_{\mathbf{n},\mathbf{l}} \text{ dans } s \Rightarrow m_1 \equiv n_1 \pmod{\nu}, \ m_2 \equiv n_2 \pmod{\nu}.$$

On pose encore:

$$\Lambda = \{ (\mathbf{m}, \mathbf{l}) \in \mathbf{N}^2 \times \mathbf{N}^2, \text{ telle que } \exists \ z_{\mathbf{m}, \mathbf{l}} \in s \}$$

$$\Lambda_{\mathbf{m}} = \{ \mathbf{l} \in \mathbf{N}^2 \text{ telle que } \exists \ z_{\mathbf{m}, \mathbf{l}} \in s \}.$$

3.3. Preuve du théorème. Soit p > 1. Soit $a = \{a_{\mathbf{m},\mathbf{l}}, (\mathbf{m},\mathbf{l}) \in \Lambda\} \in l^q(\Lambda)$ et posons $e_{\mathbf{z}}^{(q)}(\varphi) = e_{z}^{(q)}(\varphi)e_{w}^{(q)}(\eta)$ où $\mathbf{z} = (z, w) \in \mathbf{D}^2$ et $\varphi = (\varphi, \eta) \in \mathbf{D}^2$. Posons encore

$$f(\varphi) = \sum_{(\mathbf{m}, \mathbf{l}) \in \Lambda} a_{\mathbf{m}, \mathbf{l}} e_{z_{\mathbf{m}, \mathbf{l}}}^{(q)}(\varphi);$$

comme au chapitre II et grâce au lemme 3.1.2 on a

$$(3.1) ||f||_{q}^{q} \le B_{q}^{2}\beta^{2}(q)C||a||_{p}^{q}.$$

De même, si on pose $b = \{b_{\mathbf{m},\mathbf{l}}, (\mathbf{m},\mathbf{l}) \in \Lambda\} \in l^p(\Lambda)$ on a

$$g = \sum_{(\mathbf{m},\mathbf{l}) \in \Lambda} b_{\mathbf{m},\mathbf{l}} e_{z_{\mathbf{m}},\mathbf{l}}$$

et

$$(3.2) ||g||_{p}^{p} \le B_{p}^{2}\beta(p)C||b||_{p}^{p}.$$

Reprenant exactement les arguments du chapitre II, il nous faut alors montrer que l'opérateur matriciel

$$Q_{p}'(\mathbf{n},\mathbf{l};\mathbf{m},\mathbf{k}) = \frac{((1-|z_{\mathbf{m},\mathbf{l}}|^{2}))^{2/p}((1-|z_{\mathbf{m},\mathbf{l}}|^{2}))^{2/q}}{|((1-\bar{z}_{\mathbf{n},\mathbf{l}}z_{\mathbf{m},\mathbf{l}}))^{2}|} \quad (\mathbf{n},\mathbf{l}) \neq (\mathbf{m},\mathbf{k})$$

et $Q_{p'}(\mathbf{m}, \mathbf{k}; \mathbf{m}, \mathbf{k}) = 0$, avec $((1 - \bar{\mathbf{z}} \cdot \mathbf{z'}))^2 = (1 - \bar{z}z')^2(1 - \bar{w}w')^2$ où $\mathbf{z} = (z, w)$ et $\mathbf{z'} = (z', w')$, peut-être rendu de norme inférieure à un par un choix convenable de ν . Cela sera conséquence de la

Proposition 3.3.1. Pour tout θ , $(2/q-1) < \theta < 2/q$, il existe une constante positive $K_{\theta,\nu}^p$ telle que

$$(3.3) \quad \sum_{(\mathbf{n},\mathbf{l})\in\Lambda} Q_{p}'(n,l;m,k)((1-|z_{n,l}|^{2}))^{\theta} \leq \widetilde{K}_{\theta,\nu}^{p}((1-|z_{\mathbf{m},\mathbf{k}}|^{2}))^{\theta},$$

et \widetilde{K}_{θ} , tend vers zéros quand ν tend vers l'infini.

Preuve de la proposition. On a:

$$\sum_{\substack{(\mathbf{n},\mathbf{l})\in\Lambda\\(\mathbf{n},\mathbf{l})\neq(\mathbf{m},\mathbf{k})}} Q_{p}'(\mathbf{n},\mathbf{l};\mathbf{m},\mathbf{k}) ((1-|z_{\mathbf{n},\mathbf{l}}|^{2}))^{\theta} = \sum_{\substack{(\mathbf{n},\mathbf{l})\in\Lambda\\(n_{1},\,l_{1})\neq(m_{2},\,k_{2})}} + \sum_{\substack{(\mathbf{n},\mathbf{l})\in\Lambda\\(n_{2},\,l_{2})\neq(m_{2},\,k_{2})}}$$

Voyons le premier terme:

$$\sum_{\substack{(\mathbf{n},\mathbf{l})\in\Lambda\\(n_{1},\,l_{1})\neq(m_{1},\,k_{1})}} Q_{p}'((1-|z_{\mathbf{n},\mathbf{l}}|^{2}))^{\theta} = \sum_{\substack{(\mathbf{n},\mathbf{l})\in\Lambda\\(n_{1},\,l_{1})\neq(m_{1},\,k_{1})}} Q_{p}(n_{1},\,l_{1};\,m_{1},\,k_{1}) \times (1-|z_{n_{1},\,l_{1}}|^{2})^{\theta} \tilde{Q}_{p}(n_{2},\,l_{2};\,m_{2},\,k_{2})(1-|z_{n_{2},\,l_{2}}|^{2})^{\theta}$$

où Q_p et \tilde{Q}_p sont les opérateurs définis au chapitre II. Le 2e membre s'écrit comme un produit, et, utilisant la proposition 2.1.1 il vient

$$\sum_{\substack{(\mathbf{n},\mathbf{l})\in\Lambda\\(n_1,l_1)\neq(m_1,k_1)}} Q_{p}'((1-|z_{\mathbf{n},\mathbf{l}}|^2))^{\theta} \leq (1+K_{\theta,\nu}^{p})K_{\theta,\nu}^{p}((1-|z_{\mathbf{m},\mathbf{k}}|^2))^{\theta}.$$

Exactement de la même manière on a:

$$\sum_{\substack{(\mathbf{n},\mathbf{l})\in\Lambda\\(n_2,\,|z|)\neq(m_2,\,k_2)}} Q_p'((1-|z_{\mathbf{n},\mathbf{l}}|^2))^{\theta} \leq (1+K_{\theta,\nu}^{p})K_{\theta,\nu}^{p}((1-|z_{\mathbf{m},\mathbf{k}}|^2))^{\theta}$$

d'où la proposition 3.3.1 en posant $\tilde{K}_{\theta,\nu}^{p} = 2(1 + K_{\theta,\nu}^{p})K_{\theta,\nu}^{p}$.

On achève alors la preuve du théorème 3.1.1 à partir de cette proposition comme au chapitre II; le cas $p \leq 1$ se traite exactement comme au chapitre II également.

CHAPITRE IV

Espaces de Bergman de la boule B_n de C^n .

4.1. Pseudo metrique sur $S_n = \partial \mathbf{B}_n$. Introduisons la pseudo-distance d définie par:

$$\zeta \in S_n \mathbf{n} \in S_n, \quad d(\zeta, \mathbf{n}) = |1 - \overline{\zeta} \cdot \mathbf{n}|;$$

d est invariante sous l'action de SU(n). Etudions quelques unes de ses propriétés:

$$(1.1) \quad \exists K_1 > 0, \forall (\zeta, \eta, \xi) \in S_n^3, d(\zeta, \eta) \leq K_1[d(\xi, \zeta) + d(\xi, \eta)].$$

Pour h > 0, posons $R(\zeta, h) = \{ \eta \in S_n, d(\eta, \zeta) < h \}$ où $\mathbf{1} = (1, 0, \dots, 0)$; on a alors

$$(1.2) \quad \exists K_2 > 0, \exists K_3 > 0, \forall h > 0, K_2 h^n \leq \sigma_n(R(\zeta, h)) \leq K_3 h^n.$$

Soit $t \in \mathbb{N}$, considérons la couronne $(1 = (1, 0, \dots, 0))$:

$$C_{th}(\mathbf{1}) = \{ \boldsymbol{\zeta} \in S_n, th \leq d(\mathbf{1}, \boldsymbol{\zeta}) < (t+1)h \};$$

on a alors

$$(1.3) \quad \exists K_4 > 0, \exists K_5 > 0, ((t+1)h < 1) \quad \Rightarrow \quad (K_4 t^{n-1} h^n \le \sigma_n(C_{th}(\mathbf{1})) \\ \le K_5 t^{n-1} h^n).$$

Les relations (1.1) et (1.2) peuvent se trouver dans [6]. La relation (1.3) se démontre ainsi: si $\zeta = (\zeta^1, \ldots, \zeta^n)$, $d(\mathbf{1}, \zeta) = |1 - \zeta_1|$, on pose $\Delta = \{z \in \mathbf{D}, th \leq |1 - z| < (t + 1)h\}$.

Il vient grâce au lemme (1.2.1) de subordination:

$$\sigma_n(C_{th}(\mathbf{1})) = \alpha_n \int_{\Lambda} (1 - |z|^2)^{n-2} d\lambda_1(z),$$

où α_n est une constante absolue; on remarque alors que Δ est l'intersection du disque \mathbf{D} et de la couronne centrée en 1 de rayons (th; (t+1)h). On en déduit aisément (1.3).

Il existe une constante $K_6 > 0$, telle que pour tout h > 0, il existe un entier N_h , un réseau $\mathscr{F}_h = \{\zeta_k, k \in \mathbb{N}_h\}$ de points de S_n vérifiant:

$$(1.4) R(\zeta_k, h) \cap R(\zeta_l, h) = \emptyset \text{si } k \neq l.$$

$$(1.5) \quad \bigcup_{k \in \mathbb{N}} R(\zeta_k, K_6 h) = S_n. \quad (\text{Voir } [\mathbf{6}]).$$

Enfin de (1.1) on tire aisément la relation:

$$(1.6) \qquad \forall (\zeta, \eta, \zeta', \eta') \in S_n^4, \quad d(\zeta, \eta) \geqq \frac{1}{K_1^2} d(\zeta', \eta') - \frac{d(\eta, \eta')}{K_1} - d(\zeta, \zeta').$$

On a alors

LEMME 4.1.1. Il existe un entier $\gamma > 0$ tel que pour tout h > 0, il existe M réseaux $\mathcal{F}_h^{(i)}$, $i = 1, \ldots, M$, $M \leq \gamma$ vérifiant que S_n est l'union des $R(\zeta, h/4K_1^2)$ quand ζ parcourt $\bigcup \mathcal{F}_h^{(i)}$, $i = 1, \ldots, M$,

Preuve. Soit $\mathscr{F}_h^{(0)}$ un réseau vérifiant les relations (1.4) et (1.5); soit ζ_0 un point de $\mathscr{F}_h^{(0)}$ et soit $R(\zeta_0, K_6h)$ la boule de centre ζ_0 et de rayon K_6h . Utilisant le théorème de $[\mathbf{6}]$, il existe une suite $\{\zeta_{0,1}, i=1,\ldots,M\}$ de points de $R(\zeta_0, K_6h)$ telle que, si on pose $h'=h/4K_1^2$ on ait:

a)
$$R(\zeta_{0,i}, h'/K^6) \cap R(\zeta_{0,j}, h'/K_6) = \emptyset$$

$$b) \bigcup_{i=1}^{M} R(\boldsymbol{\zeta}_{0,i}, h') \supset R(\boldsymbol{\zeta}_{0}, K_{6}h).$$

Soit alors ζ un point de $\bigcup_{i=1}^{M} R(\zeta_{0,1}, h'/K_6)$; soit i l'indice tel que $\zeta \in R(\zeta_{0,1}, h'/K_6)$. On a d'après (1.1):

$$d(\zeta_0, \zeta) \leq K_1[d(\zeta_0, \zeta_{0,i}) + d(\zeta_{0,i}, \zeta)]$$

d'où:

$$d(\zeta_0, \zeta) \leq K_1[K_6h + (h'/K_6)]$$

donc

$$\bigcup_{i=1}^{M} R(\boldsymbol{\zeta}_{0,i},h'/K_{6}) \subseteq R(\boldsymbol{\zeta}_{0},K_{1}(K_{6}h+(h'/K_{6}))).$$

D'après (1.2) et la propriété a),

$$K_2 \sum_{i=1}^{M} \frac{1}{K_6^n} h'^n \leq K_3 K_1^n \left(K_6 h + \frac{h'}{K_6} \right)^n;$$

d'où

$$M \leq \frac{K_3}{K_2} K_1^{3n} 4^n K_6^n \left(K_6 + \frac{1}{4K_1^2 K_6} \right)^n.$$

En notant γ la partie entière de $[(K_3/K_2)K_1^{3n}4^nK_6^n(K_6+(1/4K_1^2K_6))^n]$, on a $M \leq \gamma$ et γ ne dépend pas de h.

Clairement si \mathscr{F}_h est un réseau jouissant des propriétés (1.4) et (1.5) et si $u \in SU(n)$, alors $u\mathscr{F}_h = \{u\zeta_k, k \in \mathbb{N}\}$ est encore un réseau possédant les propriétés (1.4) et (1.5) puisque la pseudo métrique est invariante par SU(n). Soit alors u_i , $i=1,\ldots,M$ l'élément de SU(n) vérifiant $u_i\zeta_0=\zeta_{0,i}$, $i=1,\ldots,M$ et posons $\mathscr{F}_h{}^{(i)}=u_i\mathscr{F}_h{}^{(0)}$; alors la suite $\mathscr{F}_h{}^{(i)}$, $i=1,\ldots,M$ répond à la question parce que chaque u_i transforme une pseudo boule en pseudo boule de même rayon.

4.2. Etude d'une convolution sur SU(n). Soit pour $t_0 \in \mathbb{N}$, h < 0 et $a \ge 0$ la fonction suivante

$$K_{h, t_0, a}(\xi) = \frac{h \chi_{t_0, h}(\xi)}{[|1 - \mathbf{1} \cdot \xi|^2 + a^2 h^2]^{(n+1)/2}}$$

οù

$$\chi_{t_0h}(\xi) = \begin{cases} 1 & \text{si } \xi \in R(\mathbf{1}, 1)/R(\mathbf{1}, t_0h) \\ 0 & \text{sinon.} \end{cases}$$

Posons

$$\varphi(t_0, a) = \frac{K_5}{a} \int_{t_0/a}^{+\infty} \frac{y^{n-1}dy}{[y^2 + 1]^{(n+1)/2}} \quad \text{si } a > 0$$

et $\varphi(t_0, 0) = K_5 \sum_{t \ge t_0} 1/t^2 \text{ si } a = 0$. On a alors:

LEMME 4.2.1. La fonction $K_{h,t_0,a}$ appartient à $L^1(\sigma_n)$ et vérifie $||K_{h,t_0,a}|| \le \varphi(t_0,a)$; la convolution avec $K_{h,t_0,a}$ est donc un opérateur borné de $L^p(\sigma_n)$ dans $L^p(\sigma_n)$ de norme inférieure à $\varphi(t_0,a)$.

Si $\psi(\xi) \in L^p(S_n)$ on note:

$$\forall \mathbf{\eta} \in S_n, (K_{h, t_0, a} * \psi)(\mathbf{\eta}) = \int_{S_n} \frac{\chi_{]t_0h, 1[}(|1 - \bar{\mathbf{\eta}} \cdot \boldsymbol{\xi}|) d\sigma(\boldsymbol{\xi})}{[|1 - \eta \cdot \boldsymbol{\xi}|^2 + a^2h^2]^{(n+1)/2}}$$

où $\chi_{1i_0h,1[}(x)$ est la fonction indicatrice de $]t_0h$, 1[; cette expression s'interprète aisément comme une convolution sur SU(n).

Preuve. On a

$$\int_{S_n} K_{h, t_0, a}(\xi) d\sigma_n(\xi) = \alpha_n \int_{\mathbf{D} \cap \{|1-z| > t_0h\}} \frac{h(1-|z|^2)^{n-2} d\lambda_1(z)}{[|1-z|^2 + a^2h^2]^{(n+1)/2}}$$

grâce au lemme de subordination, d'où

$$\begin{aligned} ||K_{h, t_{0}, a}||_{1} &\leq \alpha_{n} h \sum_{t \geq t_{0}} \int_{\pi \bigcap \{th \leq |1-z| < (t+1)h\}} \frac{(1-|z|^{2})^{n-2}}{[|1-z|^{2}+a^{2}h^{2}]^{(n+1)/2}} d\lambda_{1}(z) \\ ||K_{h, t_{0}, a}||_{1} &\leq h \sum_{t \geq t_{0}} \frac{1}{[t^{2}+a^{2}]^{(n+1)/2} h^{n+1}} \sigma_{n}(C_{th}(\mathbf{1})) \\ ||K_{h, t_{0}, a}||_{1} &\leq K_{5} \sum_{t \geq t_{0}} \frac{t^{n-1}}{[t^{2}+a^{2}]^{(n+1)/2}} \text{ grâce à (1.3)} \end{aligned}$$

d'où en comparant la série et l'intégrale $||K_{h,t_0,a}||_1 \leq \varphi(t_0, a)$. On remarque bien que $\varphi(t_0, a)$ ne dépend pas de h.

Puisque σ_n est une mesure invariante par SU(n), la convolution avec $K_{h,t_0,a}$ est bien bornée de L^p dans L^p avec comme norme $\varphi(t_0,a)$.

On aura aussi besoin du lemme suivant.

Lemme 4.2.2. Soit $\sigma = \{\mathbf{z}_k, k \in \mathbf{N}\}$ une suite séparée dans \mathbf{B}_n ; alors il existe une constante positive C telle que:

$$\forall p > 0, \ \forall f \in A^p(\lambda_n), \quad \sum_{k \in \mathbb{N}} |f(\mathbf{z}_k)|^p (1 - |z_k|^2)^{n+1} \leq C||f||_p^p.$$

Preuve. A **z** dans \mathbf{B}_n , $\mathbf{z} \neq \mathbf{0}$, on associe la droite complexe $R_{\mathbf{z}}$ déterminée par $\mathbf{0}$ et \mathbf{z} , et l'espace $T_{\mathbf{z}}$ orthogonal à $R_{\mathbf{z}}$ en \mathbf{z} dans \mathbf{C}^n . $T_{\mathbf{z}}$ est de dimension complexe n-1. Pour δ , $0 < \delta < \frac{1}{2}$, on associe à \mathbf{z} le polydisque $D_{\mathbf{z}} = D_{\mathbf{z}}^1 \times D_{\mathbf{z}}^2$ où

$$D_{\mathbf{z}}^{1} = \{ \varphi \in R_{\mathbf{z}}, \, |\mathbf{z} - \varphi| < \delta(1 - |\mathbf{z}|^{2}) \}$$

$$D_{\mathbf{z}}^{2} = \{ \varphi \in T_{\mathbf{z}}, \, |\mathbf{z} - \varphi| < \delta\sqrt{1 - |\mathbf{z}|^{2}} \};$$

on a $\lambda_n(D_{\mathbf{z}}) = \delta^{2n} (1 - |\mathbf{z}|^2)^{n+1}$.

Soit maintenant $\sigma = \{\mathbf{z}_k, k \in \mathbf{N}\}$; il existe δ , $0 < \delta < \frac{1}{2}$, tel que les polydisques $D_{\mathbf{z}_k}$ soient disjoints. Reprenant alors exactement la preuve du lemme 2.1.1 on montre le lemme 4.2.2.

4.3. Reduction du problème. On considere $\nu \in \mathbb{N}$, $m \in \mathbb{N}$, $m \ge \nu$ et le système de réseaux $\mathscr{F}_{2^{\nu}-m}^{(i)}$ $i=1,\ldots,M$, introduit au paragraphe 1; on définit alors les cellules de la manière suivante:

$$D_{m,\zeta_{k}}^{(i)} = \left\{ \zeta \in \mathbf{B}_{n}, \ \zeta = r\eta, 1 - 2^{-m} \leq r < 1 - 2^{-m-1}, \eta \in R\left(\zeta_{k}^{(i)}, \frac{2^{\nu-m}}{4K_{1}^{2}}\right) \right\}.$$

Soit σ une suite séparée dans \mathbf{B}_n ; il existe donc un entier N tel que:

$$\forall i = 1, \ldots, M, \forall m \geq \nu, \forall k \in \mathbb{N}, \text{ card } (\sigma \cap D_{m, \zeta_k}(i)) \leq N.$$

Soit σ_i , $i = 1, \ldots, M$, définie par:

$$\sigma_i = \bigcup_{m,k} (\sigma \cap D_{m,\zeta_k}(i)).$$

Alors $\sigma = \bigcup_{i=1}^{M} \sigma_i$ et il existe $\sigma_{i,j}, j = 1, \ldots, N$, telle que card $(\sigma_{i,j} \cap D_{m,\zeta_k}(i)) \le 1$ et $\bigcup_{j=1}^{N} \sigma_{i,j} = \sigma_i$.

Si
$$C_m^{(i)} = \bigcup_{k \in \mathbb{N}} D_{m, \zeta_k}^{(i)}$$
 posons pour $k = 1, \ldots, \nu$

$$\sigma_{i,j,k} = \bigcup_{m \equiv k \pmod{\nu}} (\sigma_{i,j} \cap C_m^{(i)}).$$

On a alors

$$\sigma = \bigcup \sigma_{i,j,k}, \quad i = 1,\ldots,M, j = 1,\ldots,N, k = 1,\ldots,\nu$$

On étudiera $s = \sigma_{i,j,k}$ pour i, j, k fixés. Il existe au plus un point de s dans $D_{m,\xi_i}(i) = D_{m,l}$; on notera $\mathbf{z}_{m,l}$ ce point et on pose

$$\Lambda_m = \{l \in \mathbf{N}, s \cap D_{m,l} \neq \emptyset\} \quad \text{et } s_m = \{z_{m,k}, k \in \Lambda_m\}.$$

L'indice i étant fixé dans cette étude, soit $\zeta_{m,l}$ l'élément $\zeta_{l}^{(i)}$ du réseau $\mathscr{F}_{2^{\nu-m}}^{(i)}$ et soit $\mathbf{z}_{m,l} = r_{m,l} \mathbf{\eta}_{m,l}$. On a alors:

$$(3.1) \quad \forall m \geq \nu, \forall l \in \Lambda_m, \quad 1 - 2^{-m} \leq r_{m,l} < 1 - 2^{-m-1}$$

$$(3.2) (\mathbf{z}_{m,l} \in s, \mathbf{z}_{m,l} \in s) \Rightarrow m \equiv m' \pmod{\nu}$$

(3.3)
$$d(\zeta_{m, l}, \eta_{m, l}) \leq \frac{2^{-\nu - m}}{4K_1^2}$$

$$(3.4) l \neq k \Rightarrow d(\mathbf{\eta}_{m,l}, \mathbf{\eta}_{m,k}) \ge \frac{2^{-\nu - m}}{2K_1^2}$$

d'après la relation (1.6).

LEMME 4.3.1. On a:

$$(3.5) \qquad \sum_{l \in \Lambda_m} \frac{1}{\left|1 - \overline{\mathbf{z}}_{m, l} \cdot \mathbf{z}_{m', k}\right|^{n+1}} \le K_7 \frac{2^{m(n+1)}}{\left[1 - 2^{-(m'-m)}\right]}$$

 $sim \neq m'et$

(3.6)
$$\sum_{\substack{l \in \Lambda_m \\ l \neq k}} \frac{1}{|1 - \bar{\mathbf{z}}_{m, l} \cdot \mathbf{z}_{m, k}|^{n+1}} \le K_8 \psi(\nu) 2^{m(n+1)}$$

ou $\psi(v)$ tend vers 0 quand v tend vers l'infini.

Preuve. Avec les notations ci-dessus on a, il existe $K_9 > 0$ et $K_{10} > 0$ telles que:

$$(3.7) |1 - \bar{\mathbf{z}}_{m,l} \cdot \mathbf{z}_{m',k}|^2 \ge K_9[(2^{-m} + 2^{-m'})^2 + |1 - \bar{\eta}_{m,l} \cdot \eta_{m',k}|^2]$$

dès que $d(\eta_{m-l}, \eta_{m',k}) < 1$ et

$$(3.8) \quad |1 - \bar{\mathbf{z}}_{m,l} \cdot \mathbf{z}_{m',k}|^2 \ge K_{10} \quad \text{dès que } d(\eta_{m,l}, \eta_{m',k}) \ge 1.$$

La somme (3.5) peut donc s'écrire:

$$\sum_{l \in \Lambda_m} \frac{1}{|1 - \bar{\mathbf{z}}_{m, l} \cdot \mathbf{z}_{m', k}|^{n+1}} = I_1 + I_2$$

avec

$$I_1 = \sum_{\substack{l \in \Lambda_m \\ q(\mathbf{l}_{m,l}, \mathbf{l}, \mathbf{l}_{m',k}) \le 1}} \frac{1}{\left|1 - \bar{\mathbf{z}}_{m,l} \cdot \mathbf{z}_{m',k}\right|^{n+1}}$$

et

$$I_2 = \sum_{\substack{l \in \Lambda_m \ k\left(\mathbf{\eta}_m, l \,, \mathbf{\eta}_{m', k}
ight) \geq 1}} rac{1}{\left|1 - \left|ar{\mathbf{z}}_{m, \, l} \cdot \mathbf{z}_{m', k}
ight|^{n+1}} \;.$$

Voyons I_1 . On a grâce â (3.7)

$$I_{1} \leq \frac{1}{K_{9}} \sum_{\substack{l \in \Lambda_{m} \\ d(\mathbf{\bar{\eta}}_{m,l}, \mathbf{\bar{\eta}}_{m',k}) \leq 1}} \frac{1}{\left[(2^{-m} + 2^{-m'})^{2} + |1 - \overline{\mathbf{\bar{\eta}}}_{m,l} \mathbf{\bar{\eta}}_{m',k}|^{2} \right]}.$$

Posons

$$f(\zeta) = \sum_{\substack{l \in \Lambda_m \\ d(\mathbf{\eta}_m, l; \mathbf{\eta}_m, k) < 1}} \chi_{B_m, l}(\zeta) \quad \text{et} \quad g(\mathbf{\eta}) = \chi_{B_{m'}, k}(\mathbf{\eta})$$

avec $B_{m,l} = R(\zeta_{m,l}, \ 2^{-m}/4K_1^2)$, $B_{m',k} = R(\zeta_{m',k}, \ 2^{-m'}/4K_1^2)$ et χ_E la fonction indicatrice de E. On a $||f||_{\infty} = 1$ et $||g||_1 \le K_3 2^{-m'(n+1)}$. Posons encore $h = 2^{-m}$, $t_0 = 0$, et $a = 1 + 2^{-(m'-m)}$ et appliquons le lemme 4.2.1; on a

$$|\langle K_{h,0,a} * f, g \rangle| \leq \varphi(0,a) ||f||_{\infty} ||g||_{1}$$

ce qui donne aisément, grâce aux relations (3.1) (3.2) (3.3) (3.4),

$$(3.9) I_1 \le K_{11} \frac{2^{m(n+1)}}{[1+2^{-(m'-m)}]} \text{si } m \ne m'.$$

Si m = m', on choisit t_0 = partie entière de $2^{\nu}/2K_1^2$ et a = 0 et il vient:

$$(3.10) \quad I_1 \le K_{12}\varphi(t_0)2^{m(n+1)} = K_{12}\psi(\nu)2^{m(n+1)}$$

avec $\psi(\nu) = \varphi(t_0) \to 0$ quand $\nu \to +\infty$.

Voyons I_2 : On a $I_2 \leq |\Lambda_m| \leq 2^{(m-\nu)n}$ grâce à (3.8) donc

$$I \le K_7 \frac{2^{m(n+1)}}{[1+2^{-(m^7-m)}]} \quad \text{si } m \ne m'.$$

$$I \le K_8 \psi(\nu) 2^{m(n+1)} \quad \text{si } m = m'.$$

Reprenant alors exactement les arguments utilisés dans le cas du disque on montre la

Proposition 4.3.1. Pour p > 1, pour tout θ , $(n + 1/q) - 1 < \theta < (n + 1)/q$, il existe une constante positive $K_{\theta, \nu}^p$ telle que:

$$\sum Q_{p}(m, l; m', k) (1 - |z_{m, l}|^{2})^{\theta} \leq K_{\theta, \nu}^{p} (1 - |\mathbf{z}_{m', k}|^{2})^{\theta}$$

et $K_{\nu,\theta}^p$ tend vers 0 quand ν tend vers l'infini, ou l'on a posé

$$Q_{p}(m, l; m', k) = \frac{(1 - |\mathbf{z}_{m, l}|^{2})^{(n+1)/p} (1 - |\mathbf{z}_{m', k}|^{2})^{(n+1)/q}}{|1 - \bar{\mathbf{z}}_{m, l} \cdot \mathbf{z}_{m', k}|^{n+1}}$$

avec $(m, l) \neq (m', k)$ et 0 sinon.

De cette proposition et utilisant le lemme puis des arguments identiques à ceux du chapitre II on tire le

Theoreme 4.3.1. Soit σ une suite séparée dans \mathbf{B}_n . Pour p > 1, σ est une union finie de suites strictement d'interpolation $A^p(\lambda_n)$. Pour p > 0, σ est une

union finie de suites σ_i fortement d'interpolation $A^p(\lambda_n)$. De plus, si p est inverse d'entiers, σ_i possède la propriété d'extension linéaire bornée de $l^p(\mathbf{N})$ dans $A^p(\lambda_n)$.

BIBLIOGRAPHIE

- D. et E. Amar, Sur les théorèmes de Schwarz-Pick et Nevanlinna dans Cⁿ, Preprint 167, Analyse Harmonique, Orsay (1975).
- E. Amar, Méthodes hilbertiennes et interpolation, Preprint 152, Analyse Harmonique, Orsay (1975).
- 3. Interpolation dans le polydisque de Cⁿ, Preprint 207, Analyse Harmonique, Orsay (1976).
- 4. —— Suites d'interpolation harmonique, Preprint 217, Analyse Harmonique, Orsay (1976).
- L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958).
- R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242 (Springer-Verlag, 1971).
- F. Forelli et W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974).
- 8. T. W. Gamelin, Uniform algebras (Prentice Hall, 1969).
- 9. C. Horowitz, Zeros of functions in the Bergman spaces, Bull. Amer. Math. Soc. 80 (1974).
- C. Horowitz et D. Oberlin, Restriction of H^p functions to the diagonal of Uⁿ, Indiana Univ. Math. J. 24 (1975).
- 11. V. Kabaila, Interpolation sequences for the H^p classes in the case p < 1. Litovsk. Mat. Sb. 3 (1963).
- 12. A. Koranyi et S. Vagi, Intégrales singulières sur certains espaces homogènes. C.R.A.S. 268 (1969).
- 13. A. L. Shields et D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, T.A.M.S. 162 (1971).
- H. Shapiro et A. L. Shields, On some interpolations problems for analytic functions, Amer. J. Math. 83 (1961).

Université de Paris-Sud, Orsay, France