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1. Introduction 

We shall be concerned with the behaviour of the fractional iterates of 
analytic functions which have a fixpoint £ with multiplier 1 *. The general 
form of such a function is 

00 

(1) № = * + 2 ak(z-0", « m + 1 # 0 (m ^ 1) 

if C is finite, 

(1*) № = * + 1 akz~\ « m _ ! ^ 0 
k—m-l 

if f = 00. 
Given a formal power series of the form (1) or (1*) we can determine for 

every real or complex s a unique formal power series 

(2) № = z + 5 ai'> = sam+1 

t—m+l 

or 

(2*) /.(*)=*+ 1 4**-*. «£Li = ««-i 
from the formal identities 

(3) / % ( * ) = / . < > / ( * ) 

(where the notation fog(z) stands for /(g(.z))). 
If 5 == n is a non-negative integer then fn(z) is the «-the iterate of f(z), 

/„(*)=*. /„«(*) = / % . ( * ) ( » ^ 0 ) , 
and is the formal inverse of f{z), 

* f is a fixpoint of f(z), with multiplier ft, if /(£) = J and /'(C) = (i if £ is finite, /'(f) = 1//» 
if f = oo. 
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130 G. Szekeres [2] 

/o/_x(z) = / . , o / ( 2 ) = Z. 

Generally, the f,(z) form a family of (real or complex) fractional iterates 
of f(z), satisfying the equations 
(4) / , o /,(,) = / , o /.(*) = f,+t(z), № = f{x), 

for every s, t. (Baker [2], p. 268). 
Suppose now that the series (1) or (1*) converges 2; then so do all iterates 

fn(z) for integral n. For arbitrary complex s, f,{z) may or may not converge; 
for example if 

f{z) = e'-l = * + ! « » + • • • 

then f,(z) converges only for integral values of s (Baker [1], p. 160). On 
the other hand if 

f(z) = 2/(1+2) = z—z2+z* 
then each 

AW = z/(l+sz) = z-szt+s*!? 

converges 3; generally if 

(5) (*-£)«(*) = l+bl(z-C)+bt(x-C)M+ • • • 

is holomorphic at z — f (hence 

a_x(w) = £+w~1+b1wi-\-caw~3+ • • • 

is holomorphic at w = oo) then 

(6) f,(z) = a_1(a(z)+s) = z-s(z-£)*+a3(z-£)*+ • • • 

is holomorphic at z = f and the f,(z) form a family of fractional iterates 
at the fixpoint f. 

These examples raise the question, which of the two types of behaviour, 
exemplified by 2/(1+2) or e'— 1, is the more typical one for entire and 
rational functions. The main objective of the present paper is to find an 
answer to this question. Somewhat unexpectedly, we shall find that all 
entire transcendental functions behave like e'—l, and among rational 
and entire rational functions the bilinear and linear ones are the only 
exceptions. 

Theorem 1. Suppose that f(z) is a rational or entire function which has a 
fixpoint f (finite or infinite) with multiplier 1. Suppose furthermore that f(z) 
has a family of fractional iterates fs(z) with the property that for every real o, 

* For brevity we say that a series of the form (1) or (1*) converges if it converges for some 
finite non-zero value of z. 

* A more trivial example is f{z) = z+1, f,(z) = z+s. 
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[3] Fractional iteration of entire and rational functions 131 

fa(z) is holomorphic at z — f. Then f(z) is a bilinear function of the form 

(7) / ( * ) = M - ( * - 0 / ( i + « ( * - f l ) 
with 

/.(*) = £+(*-£)/( ! + « ( * - « ) . 
or a linear function 
(8) f[z) = z+a 
with f,(z) = z+jas. 

Otherwise stated, if f(z) is rational or entire and not of the form (7) 
or (8) then there is a positive integer j> with the property that (for real s) 
the formal fractional iterates (2), (2*) converge if and only if s is an in
tegral multiple of l/p *. For, by a theorem of Baker ([2], p. 285) the set 
of real о for which fa(z) converges is either the whole real line or a discrete 
lattice on the real line. 

Theorem 1 considerably extends the following result of Baker ([2], 
p. 292): If /(z) is a non-linear entire function of the form (1) then there 
can only be countably many s for which the fractional iterates (2) are entire 
functions. 

Whether Theorem 1 remains true for meromorphic functions (or more 
generally for single valued analytic functions) is an open question; I know 
of no counterexample s. For algebraic functions the theorem is certainly 
not valid. A counter-example is 

w, = /.(*) = г—sz4 
where 

zw\—да,(1+г2+5г)+г = 0. 
The f,(z) form a family of holomorphic iterates at z = 0 (they are in fact 
derived by (6) from e(z) = z+z- 1) and each member of the family is an 
algebraic function of degree 2. 

The proof of Theorem 1 will be based on a study of iteration orbits and 
continuation of fs(z) along such orbits. The possibility of such an approach 
was suggested to me several years ago by С. A. B. Smith who used a similar 
(but partly heuristic) argument to show that the fractional iterates of 
z+z2 cannot possibly converge at 0 for all values of se. 

* It is not known whether it is possible for the series (2) to converge when s is not real and /(г) is not of the form (7) or (8). ' Note added in proof. Since this paper was written, I. N. Baker has extended the validity of Theorem 1 to meromorphic functions. For single-valued function in general, the question is still open. ' Oral communication. 
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132 G. Szekeres 

In formulating the ideas of the proof I was greatly helped by numerical 
experiments on iteration orbits of various entire functions, carried out by 
K. W. Mills on the IBM 1620 computer at the University of Adelaide. 

2. Preliminaries. The case m = 1 

For the study of iteration orbits it is convenient to assume that the 
fixpoint is situated at oo. We can always displace a finite fixpoint £ to 
infinity by the transformation 

/*(,) = 0*f(z) = i/(/(z-i+C)-f). 

If f(z) has an expansion of the form (1) at f then f*{z) will have an ex
pansion 

00 
f*(Z)=Z+ J a**-*. *t-l = - « m - l 

at oo. By a subsequent transformation 
oo 

0**f*(z).= b-1f*(bz) = z+ 2 a**z-k, 
Jfc=m-1 

where 
bm = «*_! 

we can achieve that = 1. Hence g(z) = <Pf(z) = &**&*f(z) has the 
normal form 

g(z) = z+z~m+1+ 2 
k-—m 

where the asterisks have been dropped from a**. Note that if f,(z) is holo-
morphic at z = f and gt(z) = $f,[z), then 

g.(z)-z = s*—+*+ f a?1*-* 

is holomorphic at z = oo. Furthermore if the f,(z) form a family of fractional 
iterates of f(z) then the g,{z) form a family of fractional iterates of g(z). 
In fact has the form <£_1 o fo <j>(z) where <£(z) is a bilinear transfor
mation. Therefore it is sufficient to prove Theorem 1 in the following form: 

T h e o r e m 1*. Let g(z) be single valued and meromorphic over the extended 
complex plane with the possible exception of z = 0 where it may have an 
essential singularity; in the latter case we assume that g(z) ^= 0 for z ,£ 0. 
Suppose further that g(z) has a convergent expansion 

oo 

(9) g(z) = *+r~+i+ 2 «»2-* 
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[6] Fractional iteration of entire and rational functions 133 

at z = oo for some m > 0. Let the series 

(10) g,(z) = x+s;r-+i+ 1 4'>z-* 

6« determined from 
g°g,(z) = g,og(z) 

and suppose that g„(z) converges for every real a. Then g(z) = 2+1. 
For convenience we shall assume at first that m — 1, i.e. 

(11) g(z) = 2 + l + f akz~k, 
k-l 

(12) g,(z) = 2 + S + |4'>2-*. 
fc-1 

The necessary modifications when m > 1 are of a fairly trivial (though 
bothersome) character and will be indicated in the last section. 

Determine the formal series 

(13) b(z) = l - a i 2 - l + * f 6*2"* 
Jk=2 

from 

(14) bog(z) = b(z)lg'(z). 

Clearly b(z) = a'(z) where 
oo 

(15) a(z) = z—ax log z— 2 
is a formal solution of Abel's equation 
(16) a o g(z) = a(2) + l, a o g,(2) = a(z)+s. 

Our first aim is to prove that the series (13) for b(z) converges for large z. 
The necessary tools were developed by I. N. Baker in [2] and we shall rely 
heavily on his work. 

Given K > 0 and |?;| = 1 (TJ complex) we define the sets 

(17) (£(??, K) = {z |Re (zjt1) > K}, 

(18) 2%, K)= U E(r,ete,K), 
-irHsesni* 

(19) Sfo) = {s l̂ -is = o+ir, o ̂  0, — or ̂  t ^ a}. 

L e m m a 1. Suppose that the series (11) an<f (12) /or g(z) and g-i(z) converge 
for \z\ > R(> 0). Jfoyg is a Ka^> R such that for all K ^ Ka the fol
lowing is true: 
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134 G. Szekeres [6] 
1. ze 3>(1, K) implies g(z) e 2>(1, K) and lim,,^ gn(z) = oo. 

ze2>(— 1, K) implies g_t{z) e%{-\, K) and lim^̂ g_n(z) = oo. 
2. T^re «'s « function a(+)(z), holomorphic and schlicht in%(l,K), satisfying 

«<+'og(z) = a<+>(z) + l. 
r/zere j's « function a ( - ) (z), holomorphic and schlicht in %(—\,K), satisfying 
a'-'og-ifc) = « , - ) (z) —1. 

(20) 6<+»(z) = — a<+>(z) -> 1 uniformly as z oo t'« 2>(1, if). 
rfz 

(20*) 6'-)(z) = a(-»(z) -> 1 uniformly as z -> oo »'n S)(— «z 
3. 6<+'(z) <z»d 5(_)(z) are uniquely determined by conditions (20) a»d (20*). 

Statements 1 and 2 follow immediately from Baker's lemmas 2 and 3 
in [2]. To prove 3, we note that b(z) = b(+)(z) satisfies equation (14). Hence 
if b*(z) is a second function satisfying equation (14) in 5>(l,if) then 

(21) b*og{z)lbog(z) = 6*(z)/6(z). 

Suppose that for some ze%{\,K), b*(z) = Xb(z), then by (21) 
b* 0 gn(z) ~ Xbo gn(z) for every n 2j 0 hence 

lim d* o g„(z) = X lim 6 o ^(z) = X 
n-*oo «-»00 

by properties 1 and 2. Hence X = 1, 6*(z) = 6(z), provided that 6*(z) 
satisfies condition (20). The proof of uniqueness of 6(_,(z) is similar. 

Lemma 2. Suppose that a(z) is holomorphic and schlicht in <S{ij,K0) for 
some K0 > 0, \rj\ = 1, and 
(22) b(z) = a'(z) -+ 1 uniformly as z -> oo in ©(»/, K0). 
Then there is a Kx 2> K0+2 such that for every K ^ Kx and z„ e S(»?, X) 
/Ae equation 
(23) «(z.) = a(z0)+s 
A«s a unique solution z, e (5(»?, if) if \s\ g= 1 or se@(»j). 

Furthermore for given \s\ ^ 1 or se ©(»?), 
(24) lim (zs—z0) = s uniformly as z0 -> oo in ©(»?, K), 
while for given z0 e g(j?, if) a»<2 seSfi)) 
(25) limzB, = oo. 
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[7] Fractional iteration of entire and rational functions 135 
Proof. We may assume that i\ = 1; for otherwise write z = TJZ*, 

a(z) = r]a*(z*), s = t)s* and prove the statement for the starred quan
tities. Note that 

d d b(z) = — a(z) = — a*(z*) = b*(z*) -+ 1 as z* -+ oo in (S(l, K0). dz dz* 
Now given AT ^ 1, let Rx = Rt(N) = K0 be so large that |6(z)-l| < $N 

for z e @(1, K0), \z\ > Rt. Such an Rt exists, because of (22). By definition 
of the set ©(1) we have \z9+s+h\ > Rx for every z0 6 @(1, K0+2), 
\z0\ > Rt+2, \h\ ^ J and seg(l) or |s| ^ 1. 

Suppose that z0 6 ©(1, K+2), \z0\ > Rt+2, where i?^if0, and let 
|A| = \S\I2N. Then writing s = e+ri, Re (z0+s+A) > K+2+a~l\s\ > # 
if |s| ^ 1 or se<5(l), hence z0+s+A e E(l, I£) and 

«(z0+s+A)-a(z0) = \"+,+hb(^)dC= (s+A)(l+y), |y| < 1/52V, 

|a(z0+s+/»)-a(z0)-s| = (i_|y|)|A|-|syl > $-L |s| _ -L |s| = |s|/5AT, 

l«(«o+*)—*<«o)—*l ̂  |sy| < \S\I5N. 

Hence a(z,)—a(z0)—s = 0 has a solution z, with 

(26) \z,-z0-s\ < \S\I2N 

i.e. with z, K). This solution is unique because of the schlichtness 
of a(z) in 6(1, K0). By setting Kt = R1(l)+2, the first statement of the 
lemma is obtained. The validity of (24) and (25) follows from the fact 
that N in (26) can be chosen arbitrarily large. 

Inequality (26) gives, when applied to z„ instead of z0, |z„+1—z„—1|< l/5iV, 
where N can be taken as large as we please, provided that n is sufficiently 
large. Hence writing 

*n = •*»-!+ !+/>«, n = l , 2, ••• 

we obtain p„ 0 as n oo. Or, if z„ = a;B+?'yB, we get xjyn -*• 0 as 
« -»• oo. This gives 

Lemma 3. Let a(z), Kt be as in Lemma 2, \n\ = 1, s e ©(»7), z0 e ©fa, Kx) and 
rfxza = xff+iy„, o ^ 0 

wAere z„ »'s a solution of a(za) = a(z0)+o. Then 
lim y,/*, = 0. 

By applying Lemma 2 (with t] = 1) to Lemma 1 we find that for real 
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136 G. Szekeres [8] 
A Si — 1 there is a uniquely determined holomorphic function g£.+)(z) in 
%{\,KT) satisfying 

A<+>AGL+)(Z) = a<+»(z)+<r, 
lim (g£.+>(Z) — Z) = A when Z-*• CO in S^l,/^). 

In particular if z„ denotes g„(z) then 

lim {GL+)(ZN)-ZN) = <r 

n-»oo 

by property 1 of Lemma 1. But o G = GO G{+\ therefore 

lim{g„(^+'W)-gB(z)} = <r. 
n-+oo 

The same relation, namely 

KM{GN(G*(Z))-GN(Z)} = A ( ^ - L ) 
n-foo 

holds for any function G*(Z), holomorphic in %)(L,K), which satisfies the 
conditions 

lim (G*(Z)— Z) = A when z -> oo in f^) 

and GO G* = G* O G. Since for given z, Z* e % (1, iC0), s is uniquely determined 
from the equation s = a(+)(z*)— «(+)(z), 

Urn {GN(Z*)-GN(Z)} = A 
n-*oo 

implies Z* =G)?){Z). Hence we conclude: 

Lemma 4. SUPPOSE THAT g*(z) IS HOLOMORPHIC IN 2)(1, K) FOR SOME K ¿1 

AND G o G* = g* o G. SUPPOSE FURTHER THAT 

lim (g*(z) — z) = A (22 — 1) w>Ae» 2 -> co in £>(l,i£). 

rAe« g* = GL+). 
Similarly by applying Lemma 2 with RJ = — 1 to Lemma 1 we obtain 

a unique holomorphic G{sj(Z) in 1,-Ki) for A ^ — 1 satisfying 
«<->ogi->(z) = a<->(z)-(r, 

lim (g '̂fc)— Z) = —<r when 00 in %(—L,K1). 

As before, we find 

Lemma 4*. SUPPOSE THAT G*(Z) IS HOLOMORPHIC IN %(—L,K) FOR SOME 

K ^ K L T G O G* = g* o G, AND 

lim (g*(z)— Z) = —A(^ 1) when Z 00 in ®(—1, K). 

THEN G* = glfj. 
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[9] Fractional iteration of entire and rational functions 137 

As a corollary we obtain: if the series (12) for ga(z) (where — 1 5g a 52 1) 
converges for sufficiently large z then it is identical with g£+)(z) and g^(z). 
Hence we conclude: 

Lemma 5. / / the series (12) for g^z) (where —1 ;S a = 1) converges for 
sufficiently large z then the function represented by the series is holomorphic in 

where K is a suitable positive number, independent of a. 
This result is essentially contained in Baker's Theorem 7 in [2]. In particular 

if every series g<r(z), — 1 ̂  a U 1 converges then they represent a holo
morphic family of iterates of g(z) in (£>(K), identical with g{*](z) and g{~] (z) 
in S)(l, K) and %(— 1, K) respectively. Since the family ga(z) uniquely 
determines b(z), we conclude that the direct continuation of 6( + )(z) from 
^>(1,K) to $(— l,K) is identical with b<~}(z). Hence by property 2 of 
Lemma 1, b(z) is holomorphic at o and the series (13) for b(z) converges 
for large z. Thus we obtain 

Theorem 2. Suppose that each of the series (12) converges for large z when 
s = a, —1 <7 :g 1; then there exists an Rt > 0 such that the series (13) 
for b(z) and each of the series (12) for g,(z) (\s\ ^ 1) converges for \z\ > Rt. 

In particular (12) converges for every complex s. 
Henceforth we assume that each series (̂1-2) (hence also the series (13) 

for 6(2) = a'(z)) converges. We shall call the functions represented by these 
series the regular branches of g„(z), b(z). For every z0e%(—l, K0) where 
KQ is as in Lemma 1, we can define an iteration orbit through z0, 

(27) £(z0): z = ip(z0, 0) — 00 < 0 < 00 

as follows: 

where ga denotes the regular branch of the function. In particular 
yi(z0, 0) = 20. The definition is valid because if g(z) is not rational (hence 
g(z) is undefined for 2 = 0 ) then g(z) ^ 0 for 2 ^ 0 and hence y>(z0, o) ̂  0. 
Note that (28*) is valid for every real o. 

Suppose now that z0 = it0 where t0 is sufficiently large, then by Lemma 2, 
iAzo) e $(!. K0) n 2>(— 1, K0) for - l g j ^ l hence by Lemma 1 

$ ( # ) = 55(1, .K) u £(-!,#) 

(28) 

(28*) V>izo> <*) 

ga(zQ) for <r < 0, 

g(y(z0, a— 1)) for <r>0, 

gF F + N(20) E ®(1, K0), ga_n e 3 ) ( - l . X„) 
for « = 1, 2, • • •, and yfo, o-) e $(#„) = 2>(1, #„) u 3)(— 1, # 0 ) for every 
real <x. Thus 2(z0) has the following properties: 
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(29) v(zo.a)eS>(l,K0),Vfa,-o)e'X)(-l,Kt) for a ^ a0 

where er0 is a sufficiently large non-negative number (actually in the present 
case we can take <r0 = 0), 

(30) y>(z0> a0+d) = ga{z0, o0) O^d^l 

where g„ is the regular branch of the function. 
A path of the form (27), (28), (28*) with properties (29) and (30) will be 

called a regular iteration orbit. It follows from (14) that b(z) has a holo-
morphic continuation from K0) into ®(— 1, K0) along —2(z0), and 
in fact the continuation results in the regular branch of b(z). For 

by (16), (28) and (28*), hence 

along £(z0), from which the statement follows by (28). We show that 

(31) b(z) ^ 0 

(31*) 0, g'(̂ )̂ <x> 

for ze2{z0). For simplicity let us write yt(a) for y(zo> <0- Suppose that 
g(f(o)) = y>(o-\-l) = oo for some or; then y(a+2) = g(y(<7+l)) = °°. 
V»(<t+«) = oo for n = 1, 2, 3, • • •, contrary to (29). Hence also g'(v(a)) ^ 0 0 • 
But by (14) b(y>{a+l)) =b{g(v(a))) =b(y>(a))lg'(y>(a)), therefore 
b(y>(o+l)) = 0 imphes b(y>{a)) = 0 i.e. i(v(er—»)) = 0, n = 0, 1, 2, • • •, 
contrary to (29) and property 2 of Lemma 1. This proves (31). Finally if we 
had g'{y>(a)) = 0 then by (14) and (31) we had b(y>(o+l)) = oo and 
b(ip(a+n)) = oo for n = 1, 2, • • •, contrary to property 2 of Lemma 1. 
Hence (31*) is true. 

Denote by S0 the iteration orbit S(z0) where za = it0 is fixed and chosen 
as above. £0 is a simple closed Jordan curve of the extended complex 
plane. For y>(a) = y>(o'), a < a' implies 

V(»+*) = g»(y>(o)) = g„(y(</)) = ?(»+"'). 
6V-<r(vM) = y>(n) for n = 1, 2, • • • 

which is impossible since g^-^z) is holomorphic (and not a constant) at 
oo and %p(n) ->- oo. Hence £0 is simple, and also closed since y>{—n) -*• oo, 
yi(n) -> oo, when n -> oo. 

Let ©0 denote the domain bounded from below by £„. ©„ consists of all 
points 
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[ I I ] Fractional iteration of entire and rational functions 139 

V>(S) = G,{ZO)< S ~ O+TI, — 00 < (T < 00, T > 0 . 

In fact by (31), A(Y>(S))~A(Z0) establishes a one to one conformal mapping 
of ©0 onto the upper half s-plane R > 0 through the equation 

A o Y(S) = A o y(0)+s. 
In particular every path 

ST : Z = y(<H-t») = gv+T<(z0), -oo < o- < oo 
where t > 0, is a regular iteration orbit of G(Z). 

From Lemma 3 (with I\ = — 1) it follows that if A0 is a sufficiently 
large positive number then IP(—A) e 6(»?o> KI) f° r

 A > AO where RJ0 = e5ff</*. 
Similarly y(<r) e (£(??!, ifj) for A > A0 where R\X = e-"'/4. 

By Lemma 2 (with = ??0), 

G-VT-,T(*O) = v(-ffo-*'T) e % . •K'i) 

and hence 

(32) v("+«) 6 ® ( - l , /Co) for a = <r0, t ̂  0. 
Similarly 
(32*) Y>{<R+IR) e ®(1, iC0) for A ^ cr0, t ^ 0. 

We can now extend the definition of the iteration orbits ST for t < 0 
as follows: 

2T : Z = XP(A+IR), — oo < A < oo, 

V(<7+*V) = o V h t ( z o )
 f o r ff = — °o 

y(cr+«-) = g(^(o-—1+*'t)) for a ̂  — <r0. 

By the same proof which showed that S0 is a regular iteration orbit it is 
seen that if RT is sufficiently large then ST is a regular iteration orbit for 
t < — t x , and the points Z E flr, t < —-tx fill out a simply connected domain 
©* which is bounded from above by S_Tj. 

Let % denote the set of all real R with the following property t e % if 
and only if ST< is a regular iteration orbit for every t ' = t . In particular 
t e 2 for every X ^ 0. It follows by the same argument as for S0 that if 
T 0 eJ and & u denotes the set of points Z eST, t > t 0 then a(z)—a(z0) = s 
is a one to one conformal mapping of ©T o onto the half plane 

s = A+RI, — oo < <r < oo, t > t 0 . 

In particular & u is a simply connected domain, bounded from below by 
the simple Jordan curve SU. 

The linear set % is open. For suppose that t 0 e % and let <r„ > 0 be as 
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before, i.e. y(a+ira) e 5)(1, KQ) for a 2: a0. b(z) is uniquely determined and 
holomorphic on ST(|. Therefore for every a, — a0 = a ̂  a0, we can determine 
a positive number p(a) such that b(z) is holomorphic and b(z) ^0 for 
2—(o-+tT0) < p(a), and hence there is a positive number <(<r) > 0 such 
that the equation 

has a unique solution z = y>(a+ir) for r0—t(o) :S t = t 0 . 
In particular there is a £0 > 0 such that y> (a+tr) exists for — oo < a < oo, 

t0—t 0 ^ t ^ t 0 . For these t, 2r is a regular iteration orbit since by the 
monodromy theorem, continuation of b(z) along flT from z(a0-\-ir) to 
z(—o-q+j't) leads to the regular branch of b(z) in tb(—l,K0). 

We now show that £ is a closed set. For suppose that £T is regular for 
every t > t 0 . Let n > 2<r0+l, <t0 ̂  5̂  er0+l, so that — o-j+w 2> o-0. 
Then for 

5 = <r0+l—o-j, O ^ ^ g l , y>(—o-0— l+»+<5+«r0) = tp(—ffi+»+*T0) 
= £»(?>(—<*i+«o)) 
= lim g,

n(v(-^i+«)) 
t->t0+ 

= lim y ( — c ^ + w + j t ) 
t->t0+ 

= limg,(v(—ff0— 1 + » + « ) ) 
T-»T0+ 

= f*(v(—ffo— 1+»+*'t0), 
and STo is regular. 

Thus £ is both open and closed, hence identical with the whole real line 
and every £T, — oo < r < oo, is a regular iteration orbit. 

If is as before, i.e. S_Ti bounds from above the domain ©*T i consisting 
of all points z e £ _ T , t > xlt we find that ©_T i vj ©*T i u 2_T] is the whole 
complex plane and therefore = limT__00 ©T is the whole complex 
plane. Thus b(z) is finite and holomorphic over the whole plane and hence 
a constant. By property 2 of Lemma l, b(z) = 1, a(z) = z, g(z) = 2+1. 

4. The case m > 1 

We shall briefly consider now the case when m > 1 in (9). To apply 
the results of § 2 it is convenient to transform g(z) into 

(33) **(*•) = - ( * ( * ) ) - , z* = - z < » , 

g*{z*) has an algebraic expansion 
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00 

(9*) g*(z*) = z* + l + 2a*z*-*/m 

at infinity and is meromorphic on the Riemann surface of z*1/"* with the 
possible exception of the branchpoint z* = 0 where g*(zm) may have an 
essential singularity. 

A simple calculation gives the formal series 
00 

(10*) g*{z*) = z*+s+ 2 aJ(s)z*-*/m, 

(11*) b*(z*) = l - a * z * - V m + ^ b * z * - k l m . 

1=2 

Lemma 1 remains valid for the various branches of g*(z*), and we obtain 
from Lemma 4, applied to the corresponding branches of g*(z*): 

THEOREM 2*. Suppose that each of the series (10*) converges for large z* 

when s = a, — l ^ a ^ l ; then there exists an R 1 > 0 such that the series 

(11*) for 6*(z*) and each of the series (10*) for g*(z*) (\s\ f'- 1) converges 

for |z*| > R t . 

If z*, <r0 are as in (27) and (31) (with z*(<r), g* replacing z(a), g a ) , we 
can define, by (32), (32*), an iteration orbit £* for every real r provided 
that z*(or+tV) ^ 0 or oo for any a. If S* passes through one of the branch
points 0 or oo, definition (32*) becomes ambiguous and some care is needed. 
It is best to transform the iteration orbits back to the z-plane where 
z = (mz*yim. 

Let 2T denote the image of £* in the z-plane, with the specification that 
for a —<r0, z(<T+»r) e©0 for every real r where 

60 = {z = r e i 6 \ r > 0, n\lm < 6 < 3ji/2w}. 

Then for t 2; 0, flT is a regular iteration orbit situated in the sector 

{z = re"\ r > 0, 0 < 6 < njm) 

and satisfying 

(29*) limz{o+ir) = oo, lim z(—CT+j't) = oo. 
CT-.00 (7-.O0 

Similarly for r ^ — r 1 , £T is a regular iteration orbit situated in the sector 

{z = r e i 6 \ r > 0, n\m < 8 < eU\m) 

and satisfying (29*). The argument of § 3 applies to the £T (which, in the 
z-plane, are uniquely determined for every t ) , and we obtain the result that 
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ô(z) = z™-̂ * ( - zA = zm~1+ 2 Mm~*_1 

is holomorphic in the whole complex plane. Hence 
l «n-i 

a(z) = — zm + 2 CjfcZ"*-* 
w *=1 

is a polynomial of degree m. Therefore w = g(z) where 
(34) a(w) = a(z) + l 

is an algebraic function of degree ^ m and hence single valued only if it 
is rational. But for m > 1 the equation (34) cannot have a rational 
K , = é'(z) —P(z)l<l(z) f° r solution as this would require l/m(p(z))m to vanish 
at all zeros of q(z). Therefore the conditions of Theorem 1* cannot be 
satisfied when m > 1. 
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