THE EXISTENCE OF PARAMETRIC SURFACE INTEGRALS.

J. H. MICHAEL

(received 2 September 1959, revised 13 May 1960)

1. Introduction

In [2] we studied parametric *n*-surfaces (f, M^n) , where M^n was a compact, oriented, topological *n*-manifold and f a continuous mapping of M^n into the real euclidean *k*-space R^k $(k \ge n)$. A definition of bounded variation was given and, for each surface with bounded variation and each projection P from R^k to R^n , a signed measure:

$$\mu(Pf) = \mu_+(Pf) - \mu_-(Pf)$$

was constructed. This measure was used to define a linear type of surface integral:

(1)'
$$\int_{(f,A)} g(x) dP(x),$$

over a "measurable" subset A of M^n , as the Lebesgue-Stieltjes integral:

$$\int_A gfd(Pf).$$

In [2] we were only able to prove (except for the special case k = n) that the integral (1)' existed for a continuous g, by placing restrictions (in addition to bounded variation) on the surface (f, M^n) . For example, when k = n + 1, it was assumed that the subset $f(M^n)$ of R^{n+1} had zero Lebesgue measure.

It is the purpose of this paper to remove this restriction for a special class of surfaces. It will be shown (Theorem 3.7) that, if n = 2, M^n is the euclidean 2-sphere

$$S^2 = \{x; x \in \mathbb{R}^3 \text{ and } ||x|| = 1\}$$

and (f, S^2) is a surface in \mathbb{R}^k $(k \ge 2)$ such that, for each projection P from \mathbb{R}^k to \mathbb{R}^2 , Pf has bounded variation on S^2 , then any bounded, Borel-measurable, real-valued function g on $f(S^2)$ is integrable over (f, S^2) with respect to each projection P. The proof of this theorem depends strongly on some of the results of [1].

The *n*-dimensional surface integral studied in [2] is a linear type of integral, hence when n = 2 it reduces to

(1)
$$\int \int_{(f,M^2)} g(x_1, x_2, \cdots, x_k) dx_i dx_j$$

so that (when n = 2) it is at best a special case of the general surface integral

(2)
$$\int \int_{S} F(x_1, x_2, x_3, dx_2, dx_3, dx_1, dx_3, dx_1 dx_2),$$

which has been defined by Cesari ([1], Appendix B) for every surface S = (A, T), where A is an admissible subset of R^2 , T is a continuous mapping of A into R^3 whose projections into the coordinate planes have bounded variation and F is a continuous function on $T(A) \times R^3$ with the property that $F(x, \lambda u) = \lambda F(x, u)$ for all $\lambda > 0$. The Cesari integral has been extended by J. Cecconi to surfaces (S^2, T) , where T is a continuous mapping of the euclidean 2-sphere S^2 into R^3 , whose projections have bounded variation. The question as to whether the integral (1) is equivalent to a special case of (2) has not yet been answered.

2. Notation

Unless otherwise stated, all concepts relating to parametric surfaces will be as defined in [2]. The real euclidean *n*-space is denoted by \mathbb{R}^n . If $x \in \mathbb{R}^n$, then x_j denotes the *j*-th co-ordinate of x; $(x)_j$ is thus a mapping from \mathbb{R}^n to \mathbb{R}^1 . As in [2], P_j denotes the projection

$$P_{j}(x_{1}, \dots, x_{n+1}) \equiv (x_{1}, \dots, x_{j-1}, x_{j+1}, \dots, x_{n+1})$$

of \mathbb{R}^{n+1} into \mathbb{R}^n and, for $k \geq n$, the symbol \mathscr{P}_n^k is used to denote the collection of all projections P of \mathbb{R}^k into \mathbb{R}^n with the form

$$P(x_1, \cdots, x_k) \equiv (x_1, \cdots, x_{j_1-1}, x_{j_1+1}, \cdots, x_{j_2-1}, x_{j_2+1}, \cdots, x_{j_{k-n}}, x_{j_{k-n}+1}, \cdots, x_k).$$

The interior, frontier (or boundary), closure and complement of a subset A of a topological space are denoted by Int (A), Fr (A), A and $\sim A$, respectively. \varnothing denotes the empty set. Lebesgue measure is denoted by m.

If f is a continuous mapping of a compact Hausdorff space X into a Hausdorff space Y, following Cesari [1], we define a maximal continuum of constancy of f in X, to be a subset C of X such that f(C) is a single point of Y and C is a component of $f^{-1}{f(C)}$.

The collection of all maximal continua of constancy for f in X will be denoted by $\Gamma(f, X)$. The members of this collection are mutually disjoint and their union is X. Each member of the collection is closed, hence compact.

3. The existence of the surface integral

Let f be a continuous mapping of S^2 into R^k , where $k \ge 2$. Then (f, S^2) is

a 2-surface. For each P of \mathscr{P}_2^k and each point y of \mathbb{R}^2 , it is evident that each member of $\Gamma(f, S^2)$ is either contained in a component of $(Pf)^{-1}(y)$ or does not intersect $(Pf)^{-1}(y)$. For each P of \mathscr{P}_2^k , let $Y^{(P)}$ denote the subset of \mathbb{R}^2 consisting of all those points y for which the components of $(Pf)^{-1}(y)$ are members of $\Gamma(f, S^2)$.

3.1. THEOREM. If for all $P \in \mathscr{P}_2^k$, Pf has bounded variation on S^2 , then for all $P \in \mathscr{P}_2^k$, $R^2 \sim Y^{(P)}$ has zero measure.

PROOF. (i) When k = 2. In this case the theorem is trivial.

(ii) When k = 3. \mathscr{P}_2^3 consists of the three projections P_1 , P_2 , P_3 . Consider the unit square

$$A = \{(u, v); 0 \le u \le 1, 0 \le v \le 1\}.$$

Let χ be a continuous mapping of A onto S^2 such that χ |Int (A) is a homeomorphism and χ {Fr (A)} is a single point of S^2 . Let T_1 , T_2 , T_3 be continuous mappings from A to R^2 defined by

 $T_i = P_i f \chi.$

By II 1.10 of [2], the function $e(T_i, S^2, y)$ is measurable on R^2 with respect to y and its integral is finite. But it follows from II 1.8 of [2] and 12.1 of [1], that $e(T_i, S^2, y)$ is \geq the function $N(y; T_i, A)$, hence $N(y; T_i, A)$ has a finite integral so that by 12.3 of [1], each T_i has bounded variation in the sense of [1]. Hence, by 16.9 (iii) of [1], there exists for each i = 1, 2, 3 a subset X_i of R^2 such that $R^2 \sim X_i$ has zero measure and, for all $y \in X_i$, the components of $T_i^{-1}(y)$ are members of $\Gamma(f\chi, A)$. Now

$$\Gamma(f, S^2) = \{\chi(C); C \in \Gamma(f\chi, A)\}$$

and for each $y \in \mathbb{R}^2$, the components of $(P_i f)^{-1}(y)$ are the sets $\chi(D)$, where D is a component of $T_i^{-1}(y)$. Hence for all $y \in X_i$ the components of $(P_i f)^{-1}(y)$ are elements of $\Gamma(f, S^2)$.

Thus

$$X_i \subseteq Y^{(P_i)}$$

so that $R^2 \sim Y^{(P_i)}$ has zero measure.

(iii) When k > 3. Let P be an arbitrary fixed member of \mathscr{P}_2^k . We have to show that

$$(1) R^2 \sim Y^{(P)}$$

has zero measure.

Let \mathcal{Q} denote the collection of all those members Q of \mathscr{P}_3^k for which there exists a projection R of \mathscr{P}_2^3 with

$$(2) P = RQ.$$

For each $Q \in \mathcal{Q}$, let

422 (3)

 $Z^{(Q)}$

denote the subset of R^2 consisting of all those points y for which the components of $(Pf)^{-1}(y)$ are members of $\Gamma(Qf, S^2)$.

Since \mathcal{Q} is a finite, non-empty collection, the validity of (1) now follows immediately from Lemmas 3.2 and 3.3, which appear below.

3.2 LEMMA.

(4)
$$\bigcap_{\mathbf{Q} \in \mathscr{Q}} Z^{(\mathbf{Q})} \subseteq Y^{(\mathbf{P})}$$

PROOF. Let y be an arbitrary point of the left hand side of (4) and C an arbitrary component of $(Pf)^{-1}(y)$. It will be sufficient to prove that

(5)
$$C \in \Gamma(f, S^2)$$

Suppose that $C \notin \Gamma(f, S^2)$. Then f(C) is not a single point of \mathbb{R}^k , hence there exist two points a, b of S^2 such that

(6)
$$f(a) \neq f(b)$$

Let $i_1 < i_2$ be positive integers such that

$$P(x_1, x_2, \cdots, x_k) \equiv (x_{i_1}, x_{i_2}).$$

Since Pf(C) = y, it follows that

$${f(a)}_i = {f(b)}_i$$

for $i = i_1, i_2$, hence by (6) there exists an $i_3 \neq i_1, i_2$ such that

(7)
$$\{f(a)\}_{i_s} \neq \{f(b)\}_{i_s}.$$

Let Q^* be the projection of \mathscr{P}_3^k defined by

(8)
$$Q^*(x_1, \cdots, x_k) \equiv (x_{j_1}, x_{j_2}, x_{j_3})$$

where j_1, j_2, j_3 are the numbers i_1, i_2, i_3 arranged in ascending order of magnitude. Then

(9)

Q* e 2

and by (7) and (8),

$$Q^*f(a) \neq Q^*f(b),$$

so that $Q^*f(C)$ is not a single point of R^3 . Therefore

(10) $C \notin \Gamma(Q^*f, S^2).$

But since y lies in the left-hand side of (4) it follows from (3) and (9), that $C \in \Gamma(Q^*f, S^2)$.

This contradicts (10), hence the lemma is proved.

3.3 LEMMA. For all $Q \in \mathcal{Q}$,

$$R^2 \sim Z^{(Q)}$$

has zero measure.

PROOF. Let Q' be an arbitrary fixed member of \mathcal{Q} . $(Q'f, S^2)$ is evidently a 2-surface in \mathbb{R}^3 and each of

$$P_i Q' f \quad i = 1, 2, 3$$

has bounded variation on S^2 . Therefore, if W_i (i = 1, 2, 3) denotes the subspace of R^2 consisting of all points y for which the components of $(P_iQ'f)^{-1}(y)$ are members of $\Gamma(Q'f, S^2)$, it follows from (ii) that

has zero measure.

But by (2),

$$P = P_i Q^i$$

for one value of *i*—say i_0 . Take an arbitrary point y of W_{i_0} . Then

$$(P_{i_0}Q'f)^{-1}(y) = (Pf)^{-1}(y),$$

so that the components of $(Pf)^{-1}(y)$ are members of $\Gamma(Q'f, S^2)$; hence, by (3), $y \in Z^{(Q')}$.

Thus

$$W_{i_0} \subseteq Z^{(Q')},$$

so that, by (11), $R^2 \sim Z^{(Q')}$ has zero measure.

3.4 THEOREM. If K is a compact subset of a metric space R, C is a component of K and D is a closed subset of K that does not intersect C, then there exists a closed subset H of R such that

$$C \subseteq \text{Int} (H)$$
$$H \cap D = \emptyset$$
$$K = Fr(H) \qquad \emptyset$$

and

 $K \cap \operatorname{Fr}(H) = \emptyset$.

(The interior and frontier are taken in R).

PROOF. There is no component of K that intersects both C and D. Also C is closed. Therefore, by [3] (9.3) p. 15, there exist closed subsets F, G of K such that

$$(1) C \subseteq F, D \subseteq G,$$

(2)
$$F \cap G = \emptyset$$

and

$$K = F \cup G.$$

Since a metric space is normal, there exist open sets U, V of R such that (4) $F \subseteq U, \quad G \subseteq V$ $U \cap V = \emptyset$.

 $H = \overline{U}.$

[6]

and

(5)

Put

(6)

By (1), (4) and (6),

 $C \subseteq Int (H).$

 $H \cap D = \emptyset$.

 $F \subseteq \text{Int}(H)$

 $G\subseteq R\sim H$,

It follows from (5) and (6), that

(7) $H \cap V = \emptyset$, hence by (1) and (4),

By (4) and (6)

and by (4) and (7)

hence by (3)

 $K \subseteq \text{Int} (H) \cup (R \sim H)$

so that

 $K \cap \operatorname{Fr}(H) = \varnothing$.

3.5. THEOREM, If. for all $P \in \mathscr{P}_2^k$, Pf has bounded variation on S^2 , and if U is an open set of \mathbb{R}^k , then for each $P \in \mathscr{P}_2^k$, $f^{-1}(U)$ is measurable $\mu_+(Pf)$ and $\mu_-(Pf)$.

PROOF. Let P be an arbitrary fixed member of \mathscr{P}_2^k . We have to show that

(1)
$$f^{-1}(U)$$

is measurable $\mu_+(Pf)$ and $\mu_-(Pf)$. Throughout the proof we will denote these two measures simply by μ_+ and μ_- .

For each positive integer r, denote by \mathscr{I}_r the collection of those open squares of \mathbb{R}^2 which have the form

{
$$(x, y)$$
; $s2^{-r} < x < (s + 1)2^{-r}$, $t2^{-r} < y < (t + 1)2^{-r}$ }
s, $t = 0, \pm 1, \pm 2, \cdots$

Let

(2)
$$Z = \{R^2 \sim Y^{(P)}\} \cup \bigcup_{r=1}^{\infty} \bigcup_{I \in \mathscr{I}_r} \operatorname{Fr}(I)$$

By 3.1

$$m(Z) = 0$$

Denote by \mathscr{D}_r the collection of those (open) sets of S^2 each of which is a component of a set $(Pf)^{-1}(I)$, $I \in \mathscr{I}_r$, and each of which is contained in $f^{-1}(U)$. Put

(4)
$$\mathscr{D} = \bigcup_{r=1}^{\infty} \mathscr{D}_r$$

Since S^2 is separable, each \mathscr{D}_r is countable, so that \mathscr{D} is also countable. Furthermore, for each $D \in \mathscr{D}$, there exists an r and an $I \in \mathscr{I}_r$ such that $Pf\{\operatorname{Fr}(D)\} \subseteq \operatorname{Fr}(I)$. Hence D is a member of the ring $\mathscr{R}(Pf)$ defined in [2] II 1.2. Thus, each $D \in \mathscr{D}$ is measurable μ_+ and μ_- , so that the subset

of S^2 is measurable μ_+ and μ_- . Evidently

(6)
$$A \subseteq f^{-1}(U).$$

We will now prove that

(7)
$$f^{-1}(U) \subseteq A \cup (Pf)^{-1}(Z)$$

To prove this, let a be an arbitrary point of $f^{-1}(U)$ that is not in $(Pf)^{-1}(Z)$. Then

(8)
$$f(a) \in U$$

and

(9)
$$Pf(a) \notin Z$$
.

By (2) and (9), $Pf(a) \in Y^{(P)}$ so that the components of

(10)
$$(Pf)^{-1}Pf(a)$$

are members of $\Gamma(f, S^2)$. Let C be the component of $(Pf)^{-1}Pf(a)$ that contains a.

Then f(C) = f(a); hence C does not intersect the closed set $f^{-1}(R^2 \sim U)$. Consequently C is a component of

$$K = [(Pf)^{-1}{Pf(a)}] \cup f^{-1}(R^2 \sim U).$$

By putting $D = f^{-1}(R^2 \sim U)$ and applying Theorem 3.4, one can see that there exists a closed subset H of S^2 such that

(11)
$$C \subseteq \text{Int}(H),$$

 $H \cap f^{-1}(R^2 \sim U) = \emptyset$

and

$$\operatorname{Fr}(H) \cap [(Pf)^{-1}\{Pf(a)\} \cup f^{-1}(R^2 \sim U)] = \varnothing.$$

Then

$$(12) H \subseteq f^{-1}(U)$$

and

(13) $Pf(a) \notin Pf\{Fr(H)\}.$

By (13), there exists a positive integer r' such, that $2^{-r+\frac{1}{2}}$ is less than the distance between Pf(a) and $Pf\{Fr(H)\}$. By (9), there exists an $I \in \mathscr{I}_r$, with $Pf(a) \in I$ and

(14)
$$I \cap Pf{Fr(H)} = \emptyset.$$

Let *E* be the component of $(Pf)^{-1}(I)$ containing *a*. Then *E* does not intersect Fr (*H*), hence $E \subseteq H$, so that by (12),

(15)
$$E \subseteq f^{-1}(U).$$

By (15), $E \in \mathcal{D}$, hence by (5), $a \in A$. Thus (7) is true.

It follows from (3) and [2] II 1.16 that

$$\mu_{+}\{(Pf)^{-1}(Z)\} = \mu_{-}\{(Pf)^{-1}(Z)\} = 0,$$

so that by (5), (6) and (7), $f^{-1}(U)$ is measurable μ_+ and μ_- . This completes the proof.

3.6. THEOREM. If, for all $P \in \mathscr{P}_2^k$, Pf has bounded variation on S^2 , and if U is a Borel set of \mathbb{R}^k , then for each $P \in \mathscr{P}_2^k$, $f^{-1}(U)$ is measurable $\mu_+(Pf)$ and $\mu_-(Pf)$.

PROOF. Let P' be a fixed projection of \mathscr{P}_2^k . Denote by \mathscr{R} , the σ -ring consisting of all those subsets of S^2 that are measurable $\mu_+(P'f)$ and $\mu_-(P'f)$. Let \mathscr{S} be the collection of all those subsets A of R^k , such that $f^{-1}(A) \in \mathscr{R}$. \mathscr{S} is a σ -ring; because, if $A_1, A_2, \dots \in \mathscr{S}$, then

$$f^{-1}\{\bigcup_i A_i\} = \bigcup_i f^{-1}(A_i) \in \mathscr{R},$$

and if $A, B \in \mathscr{S}$ with $B \subseteq A$, then

$$f^{-1}(A \sim B) = f^{-1}(A) \sim f^{-1}(B) \in \mathscr{R}.$$

It follows from 3.5, that every open set of \mathbb{R}^k is a member of \mathscr{S} ; hence the Borel set U is in \mathscr{S} ; i.e. $f^{-1}(U) \in \mathscr{R}$. Thus $f^{-1}(U)$ is measurable $\mu_+(P'f)$ and $\mu_-(P'f)$.

3.7. THEOREM. If, for all $P \in \mathscr{P}_2^k$, Pf has bounded variation on S^2 and if g is a bounded, Borel-measurable, real-valued function on $f(S^2)$, then for each $P \in \mathscr{P}_2^k$, the surface integral

(1)
$$\int_{(t,S^2)} g(x) dP(x)$$

exists.

PROOF. In [2] II 2.2 the surface integral (1) is defined to be the Lebesgue-

Stieltjes integral

$$\int_{S^2} gfd\mu(Pf) = \int_{S^2} gfd\mu_+(Pf) - \int_{S^2} gfd\mu(Pf)$$

and it follows immediately from 3.6, that this latter integral exists.

References

- [1] Cesari, L., Surface Area, Annals of Mathematics Studies, 35 (1956).
- Michael, J. H., Integration over Parametric Surfaces, Proc. Lond. Math. Soc., Ser. 3, 7 (1957), 616-640.
- [3] Whyburn, G. T., Analytic Topology, American Math. Soc. Colloquium Publications, 28.

University of Adelaide, South Australia