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1. Introduction

In [2] we studied parametric w-surfaces (/, Mn), where Mn was a compact,
oriented, topological M-manifold and / a continuous mapping of M" into the
real euclidean &-space Rk (k ^ n). A definition of bounded variation was
given and, for each surface with bounded variation and each projection P
from Rk to R", a signed measure:

l*(Pf) = t*+(Pf) ~ P

was constructed. This measure was used to define a linear type of surface
integral:

over a "measurable" subset A of M", as the Lebesgue-Stieltjes integral:

In [2] we were only able to prove (except for the special case k = n) that
the integral (1)' existed for a continuous g, by placing restrictions (in addi-
tion to bounded variation) on the surface (f,Mn). For example, when
k = n -+- 1, it was assumed that the subset f(Mn) of Rn+1 had zero Lebesgue
measure.

It is the purpose of this paper to remove this restriction for a special class
of surfaces. It will be shown (Theorem 3.7) that, if n = 2, M" is the euclidean
2-sphere

S2 = {x]xe R3 and ||z|| = 1}

and (/, S2) is a surface in Rk (k S; 2) such that, for each projection P from
Rk to R2, Pf has bounded variation on S2, then any bounded, Borel-measur-
able, real-valued function g on f(S2) is integrable over (/, S2) with respect to
each projection P. The proof of this theorem depends strongly on some of
the results of [1].
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The M-dimensional surface integral studied in [2] is a linear type of inte-
gral, hence when n = 2 it reduces to

so that (when n = 2) it is at best a special case of the general surface integral

(2) JJ F(xv x2, x3, dx2, dx3, dxx, dx3, dx1dx2),

which has been defined by Cesari ([1], Appendix B) for every surface
S = (A, T), where A is an admissible subset of R2, T is a continuous mapping
of A into R3 whose projections into the coordinate planes have bounded
variation and F is a continuous function on T(A) x R3 with the property
that F(x, Xu) = XF(x, u) for all X > 0. The Cesari integral has been extended
by J. Cecconi to surfaces (S2, 2"), where T is a continuous mapping of the
euclidean 2-sphere S2 into R3, whose projections have.bounded variation.
The question as to whether the integral (1) is equivalent to a special case of
(2) has not yet been answered.

2. Notation
Unless otherwise stated, all concepts relating to parametric surfaces will

be as defined in [2]. The real euclidean n-space is denoted by Rn. If x e Rn,
then x} denotes the j-th. co-ordinate of x; (x),- is thus a mapping from Rn

to R1. As in [2], P, denotes the projection

*i(xl> ' ' '> Xn+l) — \xl> ' ' '• xl-l> xi+l< ' ' '• xn+l)

of Rn+1 into Rn and, for k ^ n, the symbol ^ * is used to denote the collection
of all projections P of Rk into Rn with the form

P(xv • • •, xk) = (xx, • • •, xii_1, Xji+1, • • •, xit_v Xji+1, • • •, 2^_n, xjk_n+v ' ' '< xk)-

The interior, frontier (or boundary), closure and complement of a subset A
of a topological space are denoted by Int (A), Fr (A), A and ~ A, respec-
tively. 0 denotes the empty set. Lebesgue measure is denoted by m.

If / is a continuous mapping of a compact Hausdorff space X into a
Hausdorff space Y, following Cesari [1], we define a maximal continuum of
constancy of / in X, to be a subset C of X such that/(C) is a single point of
Y and C is a component of/^{/(C)}.

The collection of all maximal continua of constancy for / in X will be
denoted by r(f,X). The members of this collection are mutually disjoint
and their union is X. Each member of the collection is closed, hence compact.

3. The existence of the surface integral
Let / be a continuous mapping of S2 into Rk, where k S: 2. Then (/, S2) is
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a 2-surface. For each P of @\ and each point y of R2, it is evident that each
member of F(f, S2) is either contained in a component of (P/)"1^) or does
not intersect {Pf)~1{y). For each P of 0\, let Y<p» denote the subset of R2

consisting of all those points y for which the components of (P/)"1^) are
members of r(f,S2).

3.1. THEOREM. If for all P e&X, Pf has bounded variation on S2, then for
all P e 0>%, R2 ~ Y(P) has zero measure.

PROOF, (i) When k = 2. In this case the theorem is trivial,
(ii) When k = 3. 0\ consists of the three projections Plt P 2 , P3. Consider

the unit square

A = {(«, v); 0 £ u ^ 1, 0 ^ v ^ 1}.

Let x be a continuous mapping of A onto S2 such that %|Int (yl) is a homeo-
morphism and #{Fr (A)} is a single point of S2. Let Tx, T2, T3 be continuous
mappings from A to R2 defined by

Tt = PJX-

By II 1.10 of [2], the function e(Tt, S2, y) is measurable on R2 with respect
to y and its integral is finite. But it follows from II 1.8 of [2] and 12.1 of [1],
that e(Tt, S2, y) is ^ the function N(y; Tit A), hence N(y; Tit A) has a
finite integral so that by 12.3 of [1], each Ti has bounded variation in the
sense of [1]. Hence, by 16.9 (iii) of [1], there exists for each i = 1, 2, 3 a
subset Xf of R2 such that R2 ~ Xt has zero measure and, for all y e Xit

the components of T~1(y) are members of F(fx, A). Now

and for each y e R2, the components of (Pif)~
1{y) are the sets x(P)> where

D is a component cf T~1(y). Hence for all y « Xt the components of (-P,/)"1^)
are elements of F(f, S2).
Thus

so that i?2 ~ Y(P'» has zero measure.
(iii) When k > 3. Let P be an arbitrary fixed member of @>\. We have

to show that

(1) Rz

has zero measure.
Let 2. denote the collection of all those members Q of 8P\ for which there

exists a projection R of 3\ with

(2) P = RQ.

For each Q e 2, let
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(3)

denote the subset of R2 consisting of all those points y for which the com-
ponents of {Pf)~x{y) are members of F(Qf, S2).

Since J is a finite, non-empty collection, the validity of (1) now follows
immediately from Lemmas 3.2 and 3.3, which appear below.

3.2 LEMMA.

(4) D Z«2» C
Q *£

PROOF. Let y be an arbitrary point of the left hand side of (4) and C an
arbitrary component of (Pf)~x{y)- It will be sufficient to prove that

(5) CeF{f,S2).

Suppose that C 4 F(f, S2). Then/(C) is not a single point of Rk, hence there
exist two points a, b of S2 such that

(6) /(«) */(&).

Let ix < i2 be positive integers such that

P(xltx2, •• -,xk) = (xh,xh).

Since Pf(C) = y, it follows that

for i = ix, i2, hence by (6) there exists an i3 ^ i1, i2 such that

(7) {/(«)},. ^ {f(b)h.-
Let Q* be the projection of 0% defined by

(8) Q*(xi> • • •> xk) = {xh, xh, xh),

where j x , j 2 , j3 are the numbers ix, i2, i3 arranged in ascending order of
magnitude. Then
(9) Q* e J
and by (7) and (8),

<?*/(«) ^ Q*M,
so that Q*f(C) is not a single point of R3. Therefore

(10) C4r{Q*f,S2).
But since y lies in the left-hand side of (4) it follows from (3) and (9), that

Cer(Q*f,S2).
This contradicts (10), hence the lemma is proved.

3.3 LEMMA. For all Q e 1,

has zero measure.
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PROOF. Let Q' be an arbitrary fixed member of 2.. (Q'f, S2) is evidently
a 2-surface in R3 and each of

PtQ'f i = 1, 2, 3

has bounded variation on S2. Therefore, if W{ (i = 1, 2, 3) denotes the sub-
space of R2 consisting of all points y for which the components of (P, Q'/)"1 (y)
are members of r(Q'f, S2), it follows from (ii) that

(11) R2~W(

has zero measure.

But by (2),

P = PtQ'
for one value of i—say i0. Take an arbitrary point y of Wh. Then

so that the components of (P/)-1(y) are members of F(Q'f, S2); hence, by
(3), yt

Thus

so that, by (11), R2 ~ Z{Q>) has zero measure.

3.4 THEOREM. IfK is a compact subset of a metric space R, C is a component
of K and D is a closed subset of K that does not intersect C, then there exists a
closed subset H of R such that

C g Int (H)
H nD = 0

and
X F ( 5 ) = 0 .

(The interior and frontier are taken in R).

PROOF. There is no component of K that intersects both C and D. Also C
is closed. Therefore, by [3] (9.3) p. 15, there exist closed subsets F, G of K
such that

(1) CQF, DQG,

(2) F n G = 0

and

(3) K = FKJG.

Since a metric space is normal, there exist open sets U, V of R such that

(4) FQU, GQV
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and

(5) U nV = 0.

Put

(6) H = U.

By (1), (4) and (6),

C g Int (H).

It follows from (5) and (6), that

(7) H nV = 0,

hence by (1) and (4),
H nD = 0 .

By (4) and (6)
F Q Int (H)

and by (4) and (7)
G £ R ~ H,

hence by (3)
K Q Int (H) u (R~H)

so that
K n Fr (H) = 0 .

3.5. THEOREM, // . for all P e ^ , Pf has bounded variation on S2, and if
U is an open set of Rk, then for each P e 3?%, j~xiJJ) is measurable /a+(P/) and

PROOF. Let P be an arbitrary fixed member of <P\. We have to show that

(1) f

is measurable /u+(Pf) and /u_(Pf). Throughout the proof we will denote these
two measures simply by /LC+ and /i_.

For each positive integer r, denote by ST the collection of those open
squares of R2 which have the form

{(*, y); s2~r < x < (s + l)2-r, t2-r < y < (t + 1)2~'}

s,t = 0, ± 1, ± 2, • • -.
Let

(2) Z = { 7 ? 2 ~ y < p » } u U U Fr(7).

By 3.1

(3) m(Z) = 0
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Denote by 3ir the collection of those (open) sets of S2 each of which is a
component of a set [Pf)~x(J.), I e^r, and each of which is contained in
/-!(£/). Put

(4) ®=\)9T
r = l

Since S2 is separable, each 3>T is countable, so that Q) is also countable.
Furthermore, for each D e @), there exists an r and an / e Jr such that
P/{Fr (£>)} Q Fr (/). Hence D is a member of the ring 0i{Pf) defined in [2]
II 1.2. Thus, each D e 3l is measurable /*+ and /x_, so that the subset

(5) A = \JD

of S2 is measurable fi+ and /u_. Evidently

(6) A

We will now prove that

(7) f-i(U)QA

To prove this, let a be an arbitrary point of/"1 (U) that is not in (Pf)~1(Z).
Then

(8) /(«) e ?7

and

(9) P/(«) y Z.

By (2) and (9), Pf(a) e Y<p» so that the components of

(10)

are members of F(f, S2). Let C be the component of (Pf)~lPf{a) that con-
tains a.

Then/(C) = / ( a ) ; hence C does not intersect the closed set/~1(i?2'~ U).
Consequently C is a component of

K = [(Pf^iPfia)}] u/-1^2— £/).
By putting D = f-l(R2~ U) and applying Theorem 3.4, one can see that
there exists a closed subset H of S2 such that

(11) CCInt(tf),
^n/- 1 ( /? 2 ~C7) = 0

and

Fr (H) n [(P/)-1^/^)} u/~1(f l 2~ */)] = 0 .
Then

(12) HQf-1
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and

(13) Pf(a)4Pf{Fr(H)}.

By (13), there exists a positive integer r' such, that 2~r+* is less than the
distance between Pf(a) and Pf{Fr(H)}. By (9), there exists an I e Jr, with
Pf{a) e I and

(14) 7nP/{Fr(ff)} = 0 .

Let E be the component of (P/)^1(7) containing a. Then E does not intersect
Fr (H), hence EQH, so that by (12),

(15) EQtHU).

By (15), ££JS>, hence by (5), a e A
Thus (7) is true.

It follows from (3) and [2] II 1.16 that

so that by (5), (6) and (7),/~1(f7) is measurable fx+ and fi_. This completes
the proof.

3.6. THEOREM. // , for all P e 2?%, Pf has bounded variation on S2, and if
U is a Borel set of Rk, then for each P e &\, f^lJJ) is measurable fi+(Pf) and

PROOF. Let P' be a fixed projection of @\. Denote by 3$, the tr-ring
consisting of all those subsets of S2 that are measurable fi+(P'f) and fi_{P'f).
Let 1? be the collection of all those subsets A of Rk, such tha t / " 1 ^ ) e 0t.
y is a ff-ring; because, if Ax, A2, • • • e Sf, then

/-HU^J^U
t i

and if A, B e Sf with B Q A, then

f-\A ~ B) -tHA

It follows from 3.5, that every open set of Rk is a member of Sf; hence the
Borel set U is in Sf; i.e. /^( t / ) e 0t. Thusf^iU) is measurable (i+{P'f) and

3.7. THEOREM. // , for all P e &%, Pf has bounded variation on S2 and if
g is a bounded, Borel-measurable, real-valued function on f(S2), then for each
P e ^2 > the surface integral

(1)

exists.

PROOF. In [2] II 2.2 the surface integral (1) is defined to be the Lebesgue-
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Stieltjes integral

and it follows immediately from 3.6, that this latter integral exists.
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