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Abstract. We prove that if/: M2^ M2 is pseudo-Anosov and if g = / then there is a
closed subset X <= M2 and a continuous surjection n: X -* M that is homotopic to
inclusion such that / ° v = TT ° g\X.

0. Introduction
In this paper we consider A. B. Katok's notion of K-global shadowing (defined in
§ 1) as it applies to a pseudo-Anosov homeomorphism f:M2^M2 on a closed
surface. It is an equivalence relation which allows one to compare the orbits of/
with the orbits of any map g:M2^M2 that is homotopic to / We write
( / x) ~K (g, y), or ( / x) ~ (g, y) when K is unspecified.

Global shadowing in a pseudo-Anosov homotopy class generalizes two other well
known and useful equivalence relations:

(A) When x and y are fixed points of/" and g" respectively (n>0), then
( / x) ~ (g, y) if and only if (/", x) is Nielsen equivalent to (g", y).

(B) When K = e is sufficiently small and g is e-close to / in the C°-topology,
then ( / x) ~ (g, y) if and only if the /-orbit of x e-shadows (in the sense of [B]) the
pseudo-orbit of / defined by the g-orbit of y. Lewowicz [L] has considered e-
shadowing in the pseudo-Anosov context.

Thurston showed ([T]; Lemma 2.1 below) that from the point of view of Nielsen
equivalence, / has the minimal number of periodic points among all maps in its
homotopy class. Our first theorem shows that from the point of view of global
shadowing, / has the minimal number of orbits among all maps in its homotopy
class.

THEOREM 1. Letf :M2-*M2bea pseudo-Anosov homeomorphism on a closed surface,
and let g: M2 -» M2 be any map lhat is homotopic to f. Then

(i) (f,x1)~(f,x2)=$xi = x2;
(ii) for all x e M2, there exists y e M2 such that (f x) ~ (g, y); if x is f-periodic

with least period n, then y can be chosen to be g-periodic with least period n.

Our second theorem is a uniformization of theorem 1. When / is Anosov rather
than pseudo-Anosov, then theorem 2 reduces to the fact (proposition 2.1 of [F])
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that any m a p that is h o m o t o p i c to an A n o s o v d i f f eomorphi sm is semi-conjugate (by 
a m a p w h i c h is h o m o t o p i c to the ident i ty) to that A n o s o v d i f feomorphism. 

T H E O R E M 2. Let f: M2 -* M2 be a pseudo-Anosov homeomorphism of a closed surface 
and let g: M 2 - » M2 be any map that is homotopic to f. Then there exists a closed set 
y <= M 2 and a surjective map <p: Y-» M which is homotopic to the inclusion map such 
that f<p = <pg\Y. 

T h e o r e m 1 is in r e s p o n s e to a ques t ion o f A. B. Katok. I a m grateful to h im for 
br inging it to m y at tent ion. I w o u l d a l so l ike to thank P. B o y l a n d for several 
interest ing conversa t ions w h i c h p r o v o k e d t h e o r e m 2. 

This research w a s s u p p o r t e d in part by N S F Grant N o . M C S 8 1 2 0 7 9 0 . 

1. Notation and definitions 
For the remainder o f the paper , / : M2 -*• M2 wi l l b e a p s e u d o - A n o s o v h o m e o m o r p h ­
i sm o f a c l o s e d surface a n d g: M2-* M2 wi l l b e a m a p that is h o m o t o p i c to / The 
reader that is no t famil iar wi th p s e u d o - A n o s o v h o m e o m o r p h i s m s s h o u l d consul t 
[T] and [ F - L - P ] as required. W e will use o n l y the f o l l o w i n g propert ies o f / : M 2 -» M 2 . 

(1 .1) T h e per iod ic po in t s o f / are d e n s e . 
(1 .2) T h e ac t ion i n d u c e d b y / o n the free h o m o t o p y c lasses o f M has n o per iodic 

orbits. 
(1 .3) T h e fixed po in t i n d e x o f a fixed po in t x o f / " is never 0. 
(1 .4) There exist A > 1 and an equivariant metric D o n the universal cover M o f 

M s u c h that D = V D 2 + D 2 , where Ds: M x M - > [ 0 , o o ) and DU:M x M - » [ 0 , oo) are 
equivariant funct ions satisfying: 

Du(fxufx2) = \Du(x1,x2) and Ds(f~lxuf~lx2) = \Ds(xux2) 

for all x , , x 2 e M a n d all lifts / o f / 

Remark. T h e stable a n d unstab le fo l iat ions f o r / lift to stable a n d unstable fol iat ions 
f o r / . G i v e n X | , x 2 e M, Ds(xu x 2 ) is def ined to b e the m i n i m u m length , wi th respect 
to the transverse m e a s u r e o n the stable fo l ia t ion o f / o f an arc c o n n e c t i n g x , to x 2 . 
T h e funct ion Du is def ined similarly wi th respect t o the unstable fo l iat ion. 

W e fix o n c e a n d for all a lift / : M -» M o f / to the universal cover M o f M. A s 
g is h o m o t o p i c to / there is a un ique lift g: M -> M w h i c h is equivariant ly h o m o t o p i c 
t o / . 

Definition 1.5 (A . B. K a t o k ) . The / - o r b i t o f x is K-globally shadowed by the g-orbit 
o f y if there are lifts x o f x and y o f y s u c h that D(fk(x), gk(y)) K for all k e Z. 
W e write (fx) ~ K (g , y ) or ( / x ) ~ (g, y ) if the s h a d o w i n g constant K is unspeci f ied. 

Remark. T h e e q u i v a l e n c e c lasses ( / x ) ~ (g, y ) are not d e p e n d e n t o n the cho i ce o f 
equivariant metric in the def init ion o f g loba l s h a d o w i n g . W e use D b e c a u s e it is 
c o n v e n i e n t for c o m p u t a t i o n s . 

Definition 1.6. If x is a fixed po in t o f / " a n d x is a lift o f x, then f"{x) = sx for 
s o m e cover ing translat ion 5 o f M. Similarly, i f y is a fixed po in t o f g" and y is a 
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lift of y, then g"(y) = ty for some covering translation f. We say that (/", x) and
(g", y) are Nielsen equivalent if there exist x and y such that s = t.

The following lemma establishes relationship (A) stated in the introduction.

LEMMA 1.7. If x is a fixed point off and y is a fixed point of g", then (f, x) is
Nielsen equivalent to (g", y) if and only if (f x) ~ (g, y).
Proof, (only if) Suppose that f{x) = tx and g"(y) = ty. Then

D(fk(x), gk(y)) = D(fk'"(tx), gk'n(ty))

= D(t'fk-"(x), t'gk-"(y)) = D{fk-"{x), gk-"(y)),

since t' =fk~"tf~{k~n) = gk~"tg~ik~n) is a covering translation and D is equivariant.
Thus D(fk{x), gk{y)) takes on only finitely many values and is bounded.

(if) Suppose that /"(*) = s-x, g"(y) = t • y and that (f, x) ~K (g, y). Then

D{x,{s-'gn)ky) = D{{s-lf")kx, {s-lg")k9)^K allfceZ.

Since any bounded subset of M intersects only finitely many lifts of y, (s~ g")
fixes both y and 5"'gn(y) = s~l ty for some k > 0. This implies that (s'lg")k commutes
with the covering translation s~*t and hence by property (1.2) that s~lt =
identity. •

2. Proofs of theorems 1 and 2
We begin this section with a proof of a result of Thurston which, in conjunction
with lemma 1.7, implies that/-periodic orbits of least period n are globally shadowed
by g-periodic orbits of least period n. The heart of this paper (lemma 2.2) is the
observation that there is a uniform bound to the shadowing constants produced by
lemma 2.1.

LEMMA 2.1 [T]. (i) Ifxx andx2 are distinct fixed points off then (/", xj and (/", x2)
are not Nielsen equivalent.

(ii) If x is f-periodic with least period n, then there exists y which is g-periodic with
least period n and such that (/", x) is Nielsen equivalent to (gn, y).

Proof. Property (1.4) implies that no lift of any iterate of/ can fix two distinct
points. This immediately implies (i). The existence of y such that (g",y) is Nielsen
equivalent to (/", x) is now a consequence of property (1.3) and [Br; theorem 3, p.
94]. It suffices to show that y has least period n.

There exist lifts x and y and a covering translation ( such that t~lf"(x) = x and
t '§"(9) -y- If y has least period m, < n, then (by the uniqueness of lift of g" fixing
y) there is a covering translation f, such that r*g" = (ttg

m>)mi where m2 = n/m1> 1.
Since equivariantly homotopic lifts of/" are equal,

This implies that the entire f,/"1' orbit of x is fixed by f~'/n in contradiction to our
observation above that no lift of an iterate of/ can fix two distinct points. •
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LEMMA 2.2. There exists K = K(g) such that (f,x)~(g,y) if and only if
(f, x) ~K (g, y). Inparticular, ifxn-*x,yn->y, and {f xn)~(g,yn) then (f x)~(g,y).

Proof Let R=max[sup^M D(f (x),g(x)), supieKi D{f-\x), g"'(x))]. Note that
by equivariance of D and compactness of M, R <°o. Property (1.4) implies that

and

Let K=2(K + 1)/(A-1). If Du(x,^)>A:/2, then Dy(/x,gy)>l +A, (* j?).
Similarly, if Ds(x, y) > K/2, then Ds(f~\x), g'\y)) & 1 + Ds(x, y). It follows that

Suppose now that xn^*x,yn^y and that D(fkxm gkyn)s K for all k and n. Since
D(fkx,gky)^D(fkx, fkxn) + D(fkxn, g%) + D{gkyn, gky) for all n, and the first
and third terms in this sum tend to zero as n tends to infinity,

D(fkx, gky) < sup D(fkxn, gkyn) < K.

Thus (/, x) ~K (g,y) as desired. •

Proof of theorem 1. Part (i) follows immediately from property (1.4). Part (ii) follows
from lemmas 1.7, 2.1, and 2.2 and from property (1.1). •

Proof of theorem 2. Define Y = {y e M2: 3x e M2 such that (f, x) ~ (g, y)}. Theorem
1 implies that for each ^oe Y there is a unique xo6 M2 such that (/, x0) ~ (g, j 0 ) ;
define <p: Y^ M by (p(yo) = x0. Lemma 2.2 implies that Y is closed and <p is
continuous. By construction, <p: Y-+M is a bounded distance from the inclusion.
This implies that <p is homotopic to the inclusion. Finally, since (f, x) ~ (g, _y) implies
(f,f(x))~(g,g(y)),fy = <pg\Y. n
Remark 2.3. The proof of theorem 2 carries over to the case that M = T2 and / is
an Anosov diffeomorphism. Note that the usual e-shadowing arguments (e.g. [B])
apply to /:U2-»R2 with no restriction on the size of e. Since for each yeU2 the
g-orbit of y is an K-pseudo-orbit for /, it is always possible to find x e T2 such that
(/, x) ~ (g, y). Thus the set V c T 2 constructed in the proof of theorem 2 equals all
of T2 and g is semi-conjugate to / (cf. proposition 2.1 of [F]).

Remark 2.4. When dM ̂  0, D is an incomplete metric on int M. In terms of the
proofs, one thinks of D as a complete metric on M* which is obtained from M by
collapsing each component of dM to a point. The only change required in theorem
1 is that (i) should read: (/, x j ~ (/, x2)=»x1, x2 are in the same component of dM.
In theorem 2, change M to int M in the conclusions.
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