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Abstract. We prove that if f: M>~> M? is pseudo-Anosov and if g = f, then there is a
closed subset X = M? and a continuous surjection 7: X - M that is homotopic to
inclusion such that fo 7 =70 g|X.

0. Introduction

In this paper we consider A. B. Katok’s notion of K-global shadowing (defined in
§1) as it applies to a pseudo-Anosov homeomorphism f: M?>- M? on a closed
surface. It is an equivalence relation which allows one to compare the orbits of f
with the orbits of any map g:M?-> M? that is homotopic to f We write
(f. x) ~* (g, y), or (f, x)~ (g, y) when K is unspecified.

Global shadowing in a pseudo-Anosov homotopy class generalizes two other well
known and useful equivalence relations:

(A) When x and y are fixed points of f" and g” respectively (n>0), then
(f, x)~ (g, ) if and only if (f", x) is Nielsen equivalent to (g", y).

(B) When K =¢ is sufficiently small and g is e-close to f in the C°-topology,
then (f, x)~ (g, y) if and only if the f-orbit of x e-shadows (in the sense of [B]) the
pseudo-orbit of f defined by the g-orbit of y. Lewowicz [L] has considered e-
shadowing in the pseudo-Anosov context.

Thurston showed ([T]; Lemma 2.1 below) that from the point of view of Nielsen
equivalence, f has the minimal number of periodic points among all maps in its
homotopy class. Our first theorem shows that from the point of view of global
shadowing, f has the minimal number of orbits among all maps in its homotopy
class.

THEOREM 1. Letf: M*-> M? be a pseudo-Anosov homeomorphism on a closed surface,
and let g: M*-> M? be any map that is homotopic to f. Then

(i) (fx)~(f, x2)=>x,=x;;

(ii) for all xe M?, there exists ye M” such that (f,x)~(g, y); if x is f-periodic
with least period n, then y can be chosen to be g-periodic with least period n.

Our second theorem is a uniformization of theorem 1. When f is Anosov rather
than pseudo-Anosov, then theorem 2 reduces to the fact (proposition 2.1 of [F])
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that any map that is homotopic to an Anosov diffeomorphism is semi-conjugate (by
a map which is homotopic to the identity) to that Anosov diffeomorphism.

THEOREM 2. Let f: M?>~> M? be a pseudo-Anosov homeomorphism of a closed surface
and let g: M?> > M? be any map that is homotopic to f. Then there exists a closed set
Y « M? and a surjective map ¢: Y - M which is homotopic to the inclusion map such

that fo = ¢g| Y.

Theorem 1 is in response to a question of A. B. Katok. I am grateful to him for
bringing it to my attention. I would also like to thank P. Boyland for several
interesting conversations which provoked theorem 2.

This research was supported in part by NSF Grant No. MCS8120790.

1. Notation and definitions
For the remainder of the paper, f: M? > M~ will be a pseudo-Anosov homeomorph-
ism of a closed surface and g: M?>-> M? will be a map that is homotopic to f. The
reader that is not familiar with pseudo-Anosov homeomorphisms should consult
[T] and [F-L-P] as required. We will use only the following properties of f: M*>> M 2,

(1.1) The periodic points of f are dense.

(1.2) The action induced by f on the free homotopy classes of M has no periodic
orbits.

(1.3) The fixed point index of a fixed point x of f" is never 0.

(1.4) There exist A > 1 and an equivariant metric D on the universal cover M of
M such that D =V D2+ D2, where D,: M x M [0, ) and D,: M x M {0, ©) are
equivariant functions satisfying:

D, (f%, f&) = AD,(%, %) and D,(f7'%, f7'%,) = AD,(%, %)

for all X,, %,€ M and all lifts f of f
Rem~ark. The stable and unstable foliations for f lift to stable and unstable foliations
for f. Given %,, X,€ M, D,(%,, ,) is defined to be the minimum length, with respect
to the transverse measure on the stable foliation of f. of an arc connecting %, to %,.
The function D, is defined similarly with respect to the unstable foliation.

We fix once and for all a lift f~ :M-> M of f to the universal cover M of M. As
g is homotopic to f there is a unique lift §: M - M which is equivariantly homotopic
to f.
Definition 1.5 (A. B. Katok). The f-orbit of x is K-globally shadowed by the g-orbit
of y if there are lifts X of x and 7 of y such that D(f*(%), §(5))<K for all ke Z.
We write (f, x) ~* (g, y) or (f, x) ~ (g, y) if the shadowing constant K is unspecified.
Remark. The equivalence classes (f, x) ~ (g, y) are not dependent on the choice of
equivariant metric in the definition of global shadowing. We use D because it is
convenient for computations.

Definition 1.6. If x is a fixed point of f” and X is a lift of x, then f(%) = sx for
some covering translation s of M. Similarly, if y is a fixed point of g" and y is a
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lift of y, then g"(y) =1ty for some covering translation ¢ We say that (f", x) and
(g",y) are Nielsen equivalent if there exist X and y such that s=1t.

The following lemma establishes relationship (A) stated in the introduction.

LeEMMA 1.7. If x is a fixed point of f" and y is a fixed point of g", then (f", x) is
Nielsen equivalent to (g", y) if and only if (f,x)~ (g, y).
Proof. (only if) Suppose that f"(%) =% and §"(§) = ty. Then

D(f*(%), §“(5)) = D(f*(1%), g~ "(15))
= D(r'f* (%), 1§ (5)) = D(f* (%), & " (),

since ¢’ = f*~"tf ~~m = gk=nyg=(k=n) s 3 covering translation and D is equivariant.
Thus D(f*“(x), §“(§)) takes on only finitely many values and is bounded.
(if) Suppose that f"(X)=s- %, §"(§)=t- y and that (£, x) ~* (g, ). Then

D(% (s7'§")5) = D((sT' f")*%, (sT'g"))<K  allkeZ.

Since any bounded subset of M intersects only finitely many lifts of y, (s™'g")*
fixesboth y and s 'g"(5) = s~ 'ty for some k > 0. This implies that (s ' §")* commutes
with the covering translation s™'t and hence by property (1.2) that s 't=
identity. O

2. Proofs of theorems 1 and 2

We begin this section with a proof of a result of Thurston which, in conjunction
with lemma 1.7, implies that f-periodic orbits of least period n are globally shadowed
by g-periodic orbits of least period n. The heart of this paper (lemma 2.2) is the
observation that there is a uniform bound to the shadowing constants produced by
lemma 2.1.

Lemma 2.1[T). (i) If x, and x, are distinct fixed points of f" then (f", x;) and (f", x.)
are not Nielsen equivalent.

(i1) If x is f-periodic with least period n, then there exists y which is g-periodic with

least period n and such that (f", x) is Nielsen equivalent to (g", y).
Proof. Property (1.4) implies that no lift of any iterate of f can fix two distinct
points. This immediately implies (i). The existence of y such that (g", y) is Nielsen
equivalent to (f™, x) is now a consequence of property (1.3) and [Br; theorem 3, p.
94]. It suffices to show that y has least period n.

There exist lifts ¥ and y and a covering translation ¢ such that ¢™' F7(%) =% and
t7'g"(§) =y. If y has least period m, < n, then (by the uniqueness of lift of g” fixing
) there is a covering translation ¢, such that t~'g" = (t,§™)™ where m,=n/m,> 1.
Since equivariantly homotopic lifts of f" are equal,

= fym.

This implies that the entire 1, ™ orbit of % is fixed by t7'f" in contradiction to our
observation above that no lift of an iterate of f can fix two distinct points. 4
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LEMMA 2.2. There exists K= K(g) such that (f,x)~(g, y) if and only if
(f, x) ~* (g, y). Inparticular, if x,> X, y, > y, and (f, X,) ~ (g, ya) then (f, x) ~ (g, y).
Proof. Let R =max [supzey; D(f(%), §()), supzess D(f (%), §7'(¥))]. Note that
by equivariance of D and compactness of M, R <. Property (1.4) implies that
D,(f(%), §(7)=AD.(% 5)-R
and
D,(f (%), §(5)) = AD,(% 7) - R,
Let K=2(R+1)/(A=1). If D,(%7)>K/2, then D,(f% 5)>1+D.(% 7).
Similarly, if D,(X, y)> K/2, then D,(f (X), £ (7)) =1+ D,(%, 7). It follows that
if (f, x)~ (g, y) then (f,x) ~* (g, y). )
Suppose now that %, > X, J, - 5 and that D(f*%,, §,) < K for all k and n. Since
D(f*%, £5) = D(f*%, f*%,)+ D(f*%,, §"F»)+ D(§"y,, §*y) for all n, and the first
and third terms in this sum tend to zero as n tends to infinity,

D(f*%, §5)=sup D(f*%,, §5.) =K.

neZ
Thus (f, x) ~* (g, ¥) as desired. 0
Proof of theorem 1. Part (i) follows immediately from property (1.4). Part (ii) follows
from lemmas 1.7, 2.1, and 2.2 and from property (1.1). 0

Proof of theorem 2. Define Y ={ye M?: 3x e M?such that (f, x) ~ (g, y)}. Theorem
1 implies that for each y,€ Y there is a unique xo€ M? such that (£ x,) ~ (g, yo);
define ¢: Y—> M by ¢(ys)=x, Lemma 2.2 implies that Y is closed and ¢ is
continuous. By construction, ¢: Y > M is a bounded distance from the inclusion.
This implies that ¢ is homotopic to the inclusion. Finally, since (f, x) ~ (g, y) implies

(£ f(x)~ (g g(¥)), fo=ezglY. 0

Remark 2.3. The proof of theorem 2 carries over to the case that M = T and f is
an Anosov diffeomorphism. Note that the usual e-shadowing arguments (e.g. [B])
apply to f:R?-R? with no restriction on the size of . Since for each y<R? the
g-orbit of y is an R-pseudo-orbit for f, it is always possible to find x € T? such that
(f, x)~ (g, y). Thus the set Y < T? constructed in the proof of theorem 2 equals all
of T? and g is semi-conjugate to f (cf. proposition 2.1 of [F]).

Remark 2.4. When 9M #0, D is an incomplete metric on int M. In terms of the
proofs, one thinks of Dasa complete metric on M* which is obtained from M by
collapsing each component of aMtoa point. The only change required in theorem
1 is that (i) should read: (f, x,) ~ (f, x,)= x,, x, are in the same component of 3 M.
In theorem 2, change M to int M in the conclusions.
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