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BY 
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ABSTRACT. It is shown that techniques of Browder and Ishikawa 
for approximating fixed points of nonexpansive mappings extend in 
a more restricted sense to the locally nonexpansive case. 

1. Introduction. In this note we call attention to the fact that two fundamen
tal techniques for approximating fixed points of nonexpansive mappings 
(Theorem 1 of Browder [1] and Theorem 1 of Ishikawa [5]) extend under 
suitable additional assumptions to the locally nonexpansive case. To obtain 
these extensions we basically use ideas developed elsewhere, in conjunction 
with a condition which is known to assure existence of fixed points for locally 
nonexpansive mappings in uniformly convex spaces (see Kirk [6]). While this 
condition precludes domains with empty interior, aside from boundedness (in 
Theorem 1) we place no further restrictions on our domains. 

To fix our terminology and notation, let X be a Banach space and D a subset 
of X. A mapping T:D —» X is said to be locally nonexpansive on D if each 
point xeD has a neighborhood U such that | |T(w)- T(u) | |< | |u-u| | for all u, 
veU. Throughout the paper we use D and dD to denote respectively the 
closure and the boundary of D, and for w, u e X w e use S[u, v] to denote the 
segment {tu + (l-t)v:te[0,1]}. 

We remark that if D is open and T:D~* X has a Gateaux derivative Vx at 
each point xeD with | |T£| |^1, then it is a simple matter to show that the 
restriction of T to any convex neighborhood of x is nonexpansive; thus T is 
locally nonexpansive on D. 

Our basic observations are the following: 

THEOREM 1. Let H be a Hilbert space, D a bounded open subset of H, and 
T:D —>- H a continuous mapping which is locally nonexpansive on D. Suppose 
z is a point of D for which 

\\z-T(z)\\<\\x-T(x)\\ for all xedD. 
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Then there is a unique continuous path t »-> xt e D, t e [0, 1), satisfying 

(1) xt = fT(x,) + ( l - f ) z . 

Moreover, lim,,^- xt = xeD, where x is a fixed point of T. 

THEOREM 2. Let X be an arbitrary Banach space, D an open subset of X, and 
T:D —> X a continuous mapping which is locally nonexpansive on D and for 
which T(D) is precompact. Suppose x1 is a point of D for which 

(2) l l ^ - T U ^ I H I x - T O O l l for all xedD, 

and let {tn}<^R satisfy 

X rn=oc and 0 < f n < b < l , n = l , 2 , 
n = l 

Then the sequence {xn} defined by 

Xn + 1 = (1 - *n)*n + tnT(xn), M = 1, 2, . . . , 

lies in D and converges to a fixed point of T in D. 
While the existence part of Theorem 2 appears to be new, the existence part 

of Theorem 1 is a very special case of Theorem 1 of [6]. 

2. Proof of Theorem 1. In proving Theorem 1 we shall utilize two proposi
tions which are valid in much more general settings. These will then enable us 
to complete the proof following a general line of argument due to Halpern [4]. 
Our first proposition is implicit in [8]. 

PROPOSITION 1. Let X be a Banach space, D a bounded open subset of X with 
OeD, and T:D —> Xa continuous mapping which is locally nonexpansive on D. 
Suppose 

| |T(0)| |<| |x-T(x)| | for all xedD. 

Then there is a unique continuous path t *-* xt, t e[0, 1), satisfying tT(xt) = xt. 
Moreover for this path, \\xt — T(xt)\\ I 0 as t j 1. 

Proof. Since T is continuous there exists 8 e (0, 1) such that tT(B) c B for 
some ball B^D centered at the origin and for all te(0,8). Since tT is a 
contraction mapping on B, it follows that for such t there exist unique points 
xteB such that tT(xt) = xt. By Lemma 1 of [8] there is a largest number 
re (0 , 1] for which there exists a unique continuous path t*-+xt, te[0, r) with 
tT(xt) = xt (x0 = 0). If r<\, then Lemma 2(iv) of [8] implies rT(x) = xeD, 
where x = limf^r- xt. Moreover, Proposition 1 of [6] (also see [7]) implies x£D. 
But by Lemma 2(h) of [8] the map t •-» ||xr - T(xt)|| is nonincreasing for t e [0, r); 
hence 

||Jc-T(Jc)||<||T(0)||<||x-T(x)|| 
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for all xedD, yielding x<£dD. This contradiction implies r = l . Therefore the 
path {xt} is defined for all t e [0, 1), and since D is bounded the observation 

xt-T(xt) = (l-r1)xt^>0 as f - * r 

completes the proof. 

The following rather well-known fact (cf. [2], [3]) is needed for our second 
proposition. 

LEMMA 1. Let Xbe a uniformly convex Banach space and B a bounded subset 
of X. Then for each e > 0 there exists a (largest) number £ = £(e, B)e(0 , e] such 
that if u, veB,xeX,ke [0,1], and m = Aw + (1 - k)v satisfy 

\\x- w| |< | |m- M| |+£ and \\x-v\\<\\m- u | |+£ 

then | |x-m||=^e. 

PROPOSITION 2. If in addition to the assumptions of Proposition 1 the space X 
is uniformly convex, then the segments S[x0 xs] lie in D for all s, te(0,1) 
sufficiently near 1. 

Proof (cf. [6]). Select p > 0, p < inf {||JC - T(x)\\ : x e dD}. Since ||xf - T(xt)|| -> 0 
as f—>1~ there exists Fe(0, 1) such that te[l, 1) implies | |x f-T(x t) | |<£(p). 
Now fix fe[f, 1) and let 

H = { s € [ f , l ) : S [ x n x J c D } . 

If s eH and m = (1-À)x f + Àxs, À G (0,1), then since T is nonexpansive on 
«3LXt, X S J , 

| |T(m)-x f | |< | |T(m)-T(x t) | | + ||T(xr)-x ti! 

< | |m-x r | | + ||x f-T(x f)|| 

< | |m-x t | | + ^(p). 

Similarly, 

| |T(m)-x s | |< | |m-x s | | + £(p). 

By the preceding lemma, \\m — T(ra)j|<p, and in particular meD. Since D is 
open and ||xs - T(xs)|| < ||xf - T(xf)|| for s > f (Proposition 1) it easily follows that 
H is open in [t, 1). To see that H is also closed in [t, 1), let {st} c H and suppose 
sf —» s0e[f, 1). Since S[xt, x s ] c D for each i and since each point m06S[x„ xSo] 
is the limit of a sequence {m^ with m^eSEx,, xs.] (hence Hm; — T(mj)||<p), it 
follows that | |m 0 -T(m 0 ) | |<p; thus m 0 e D and s0eH. Therefore H = [t, 1) 
proving S[xf, xs]<=D for all s, te[ï, 1). 

Proof of Theorem 1. For simplicity (and without loss of generality) we take 
z = 0. Existence of a path f»->xt, re[0,1) , with the desired properties is 
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assured by Proposition 1, so we need only show that {jcf} converges to a fixed 
point of T as t—> 1". By Proposition 2 there exists Fe(0,1) such that 
S[xt,xs]<=D for all s, te(1,1). Fix such s, t with s<t. Since ||T(jct)- T(xs)||< 
||xt - xs\\, it is possible to follow precisely the proof of Theorem 1 of Halpern [4] 
to conclude that 

IklMWMk-x.N2. 
Thus {||xt||}f<f<1 is monotonie, hence convergent, and it follows that | |x,-x s | |

2< 
||x t||

2-||xs||
2-> 0 as 5, f -* l~ . Therefore xt ->xeD as r—>1" and continuity 

implies JC = T(x) (hence xeD). 

3. Proof of Theorem 2. Here we merely observe that Ishikawa's proof of 
Theorem 1 of [5] is really sufficient. This will be evident from the following: 

LEMMA 2. Let X be a Banach space, D an open subset of X, and T:D —» Xa 
continuous mapping which is locally nonexpansive on D. Suppose for z eD, 

| | Z - T ( Z ) | | < | | J C - T ( J C ) | | for all xedD. 

Then (1) S[z, T(z)]c=D, and 
(2) ifmeS[z,T(z)l then \\m- T(m) | |< | | z - T(z)||. 

Proof. Let K = {me S[z, T(z)] : S[z, m] c D}. Suppose {mj c K satisfies 
mt^> m as i —» oo. Then ||T(z)— ^(m^ll^llz — mf|| for each i, and by continuity, 
| |T(z) -T(m) | |< | | z -m| | . Therefore 

||m - T(m)|| < \\m - T(z)\\ + ||T(z) - T(m)|| 

< | |m-T( z ) | | + | | z -m | | 

= | |z-T(z) | | . 

Thus ||m — T(m)||<||x — T(x)|| for all xedD, proving tneD, hence fheK. This 
proves K is closed in S[z, T(z)]. Since K is obviously open in S[z, T(z)] 
(because D is open), this proves (1). The above inequalities (with m replacing 
m) prove (2). 

We proceed now with Ishikawa's Lemma 2. 

LEMMA 3. Under the assumptions of Theorem 2 (and with boundedness 
replacing precompactness of T(D)) the sequence {xn} lies in D and xn - T(xn) —> 
0 as n —» oo. 

Proof. The fact that {xn} lies in D (and hence can be defined inductively by 
(2)) follows from Lemma 2(1). The proof of Lemma 2 of [5] now carries over. 
Nonexpansiveness of T is invoked there only in the opening step and in (6). In 
each of these instances the desired inequality follows from our Lemma 2(2). 

Proof of Theorem 2. Since the sequence {jcn} lies in the compact set 
{xj} Uconv(T(D)), some subsequence {xn.} of {xn} converges to a point ueD. 
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By Lemma 3, xn. - T(xn.) ->• 0 as i -» oo and by continuity of T on D, T(xn.) —• 
l{u). It follows that T(w) = u. Also ||JC - T(x)\\ > 0 for x e dD, so ueD. There
fore for i0 sufficiently large all the points xn., i > i0, lie in a ball 23 centered at w 
with JB cz D. Using the fact that T is nonexpansive on B, if xn e B for some 
n > i0 we have 

||xn+1 - u\\ = ||(1 - tn)xn + fnT(xn) - u|| 

= \\(l-tn)(xn-u) + tn(T(xn)-T(u))\\ 

< Y — fill 

This together with xn. —» M implies xn —» w as n —> oo. 

Added in proof: S. Reich has extended the gZobaZ version of Theorem 1 to 
Banach spaces having a Gateaux differentiable norm and possessing a weakly 
sequentially continuous duality map (see J. Math. Anal. Appl. 44 (1973), 
57-70). In a forthcoming paper (Strong convergence theorems for resolvents of 
accretive operators in Banach spaces, J. Math. Anal. Appl. (to appear)), he 
shows also that this result holds in all uniformly smooth Banach spaces. In 
connection with theorem 2, Reich has shown [J. Math. Anal. Appl. 67 (1979), 
274-276] that if C is a closed convex subset of a uniformly convex Banach 
space X with a Fréchet differentiable norm, if T : C —» C is nonexpansive and 
has a fixed point, and if {cn} <=[(), 1] satisfies £n=i c n ( l - c n ) = oo, then the 
sequence defined by: xteC, xn+1 = cnT(xn) + (l + cn)xn, converges weakly to a 
fixed point of T. 
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