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BEST APPROXIMATION THEOREMS FOR
COMPOSITES OF UPPER SEMICONTINUOUS MAPS

SEHIE PARK

Let (E,T) be a Hausdorff topological vector space and (X,w) a weakly compact
convex subset of E with the relative weak topology to. Recently, there have
appeared best approximation and fixed point theorems for convex-valued upper
semicontinuous maps F : (X,w) —» 2^B'T' whenever (E,T) is locally convex. In
this paper, these results are extended to a very broad class of multifunctions con-
taining composites of acyclic maps in a topological vector space having sufficiently
many linear functionals. Moreover, we also obtain best approximation theorems
for classes of multifunctions defined on approximatively compact convex subsets
of locally convex Hausdorff topological vector spaces or closed convex subsets of
Banach spaces with the Oshman property.

1. INTRODUCTION

There have appeared many generalisations and applications of the best approxima-
tion theorems due to Ky Fan [6]. Recently, Ding and Tan [5, Theorems 4-6] obtained
another generalisations for convex-valued upper semicontinuous multifunctions defined
on a weakly compact convex subset of a locally convex Hausdorff topological vector
space. These new results extend well known theorems due to Browder [2], Fan [6],
Reich [16, 17, 18, 19], Ha [8], Park [11, 12], and many others.

In this paper, we show that those results can be extended to a very broad class of
multifunctions containing composites of acyclic maps in a topological vector sapce hav-
ing sufficiently many linear functionals. Our arguments are based on recent results due
to the author [13, 14], and our new results on best approximations in the present paper
are stated for multifunctions whose domains and ranges may have different topologies.

Moreover, we also obtain best approximation theorems for classes of multifunc-
tions defined on approximatively compact convex subsets of a locally convex Hausdorff
topological vector space or closed convex subsets of a Banach space with the Oshman
property.
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2. PRELIMINARIES

A multifunction or set-valued map (simply, map) F : X —> 2Y is a function with
nonempty set-values Fx C Y for each x £ X. The set {(x,y) : y £ Fx} is called either
the graph of F or, simply, J1. So (x,y) £ F if and only if y £ Fa;.

For topological spaces X and Y", a map F : X —* 2Y is upper semicontinuous

(u.s.c.) if, for each closed set B CY, F - ^ B ) = {x € X : .Fa: fl 5 ^ 0} is closed in
X; and compact if F(X) = U{-^x : z € -^} *s contained in a compact subset of Y. A
nonempty topological space is acyclic if all of its reduced Cech homology groups over
the rationals vanish.

A convex space C is a nonempty convex set with any topology that induces the
Euclidean topology on the convex hulls of its finite subsets. Such convex hulls are called
poly topes. See [9].

Given a class X of maps, X(X, Y) denotes the set of all maps F : X —> 2 y

belonging to X, and Xc the set of all finite composites of maps in X.

A class 21 of maps is one satisfying the following:

(i) 21 contains the class C of (single-valued) continuous functions;
(ii) each F £ 2lc is u.s.c. and compact-valued; and

(iii) for any polytope P, each F £ Qlc(P,P) has a fixed point.

Examples of 21 are C, the Kakutani maps K (with convex values), the acyclic maps

V (with acyclic values), the approachable maps A in topological vector spaces [3],

admissible maps in the sense of Gorniewicz [7], permissible maps in Dzedzej [4], and

others. Moreover, we define

F £ Ql°{X,Y) <F=> for any c-compact subset K of X, there is a T £ Qle(K,Y)

such that Fa: C Fx for each x £ K.

F £ 2l£(X, Y) <£=> for any compact subset K of X, there is a T £ Qlc(K, Y) such

that Tx C Fx for each x £ K.

A class 2l£ is said to be admissible. Note that 21 C 2lc C 2£ C 2l£. Examples of

2lf are K^ due to Lassonde [10] and V|T due to Park, Singh, and Watson [15]. Note

that K£ includes classes K, K, and T in [10].

Let E = (E, T) be a topological vector space, E* its topological dual, and S(E) =

S(E,T) the family of all continuous seminorms on (E,T). Let w denote the weak

topology of E. We say that E* separates points of E if for each x £ E with x ^ 0,

there exists a <j> £ E* such that <j>(x) ^ 0; that is, if x ^ 0, then p(x) > 0 for some

p £ S(E,w) C S(E,T) by taking p(x) = \(f>(x)\ for all x £ E.

The following are due to the author :

LEMMA 1. [13, Theorem 4] Let X be a nonempty convex subset of a locally

convex Hausdorff topological vector space E, and F £ 2l^(Jf, X). If F is compact,
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then F has a fixed point.

LEMMA 2 . [14, Theorem 3] Let X be a compact convex space, Y a Hausdorff

space, and F £ 2l£(-X\ Y). Let <f>: X X.Y —> R be a continuous function such that for

each y £ Y", x i—> (j>(x,y) is quasiconvex on X. Then there exists an (2:0,2/0) G F such

that

<l>{xo,yo) ^ 4>{x,yo) for all x£X.

Let C be a nonempty subset of a Hausdorff topological vector space E and p £
S(E). For each y £ E, define dp(y,C) = inf{p(y - x) : x e C} and the set of best

approximations to y £ E from C by Qp(y) = {x £ C : p(y — x) = dp(y, C)}. We use
d instead of dp if p is a norm. The multifunction Qp thus defined is called the metric

•projection onto C if QP{y) 7̂  0 for each y £ E.

In ( J E , T ) , let Bd, Int, and denote the boundary, interior, and closure,

respectively, with respect to T .

The inward and outward sets of X C E at a: £ E, Ix{x) a n t l O x ( i ) , are defined
as follows:

Ix{x) = {x + r(u-x):u€X, r> 0},

Ox(x) = {x + r(u-x):ueX, r < 0}.

For a topological space X, a real function / : X —> R is lower semicontinuous

(l.s.c.) if {x £ A" : / z > r} is open for each r £ R.

The following is well known:

LEMMA 3 . Let X and Y be topological spaces, h : X x Y —> R l.s.c, and

F : X —» 2Y a compact-valued u.s.c. multifunction. Then x i-» ini{h(x,y) : y £ Fx} is

l.s.c. on X.

3. F O R COMPACT CONVEX SPACES

We begin with the following best approximation theorem:

THEOREM 1 . Let C be a compact convex space, E a Hausdorff topological vector

space containing C as a subset, and F £ 2l£(C, E). Let p : E —• R be a quasiconvex
function such that

(*) {.xiV) l~~* p(x ~ If) *s continuous for (x,y) £ C X E.

Then there exists an (zo>2/o) 6 F such that

p{x0 - 3/0) ^ p{z - Jfo) for ail z £ C

PROOF: Since C is compact, we may assume that F £ 2lc(C
r, JB) . Let <f> : C x E —>

R be defined by 0(a;, y) = p(x — y) for x £ C and y £ E. Then ^ is continuous such
that for each y £ Y, x i-» ^(z,2/) is quasiconvex on C. Therefore, by Lemma 2, the
conclusion follows. D
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EXAMPLES. 1. If C has the relative topology with respect to E and p : E —* R is a
quasiconvex continuous function, then clearly (x,y) i—> p(x — y) is continuous on CxE.
Moreover, for x G E, let Cx = co(C U {x}) and

nc(x; p) = {y G E : p(x - y) ^ p(z - y) for all 2 £ Cz}.

Then the conclusion becomes as follows: there exists an xo G C such that F(xo) H

nc(a;o;p) 7̂  0- Therefore, Lassonde [9, Proposition 3.3.6] is a particular case of Theo-

rem 1 for K and for locally convex Hausdorff topological vector spaces.

2. Let (C,T) and (C,w) denote the set C with the relative topology and the

relative weak topology, respectively. Let p £ S(E,w). Then (x,y) t—» p(x — y) is

continuous on (C, w) x (E,T) and on (C,T) X (E,W).

THEOREM 2 . Let C be a compact convex space, E a Hausdorff topological vector

space containing C as a subset, and F £ 2l"(C, E). Then, tor each p £ S(E,w)

satisfying (*), there exists an (xo,2/o) £ F satisfying

p{*o -3/o) = dp(yo,Ic{xo))-

Moreover, xo £ BdC wizenever p(xo — 3/0) > 0.

PROOF: By Theorem 1, we have an (xo,yo) £ F such that

p{xo - 2/o) < p(yo — z) for all z £ C

This implies

p(zo - 2/o) ^ p(3/o - *) for all z £ ic(zo)-

In fact, for z £ Jc(£o)\C, there exist u £ C and r > 1 such that z = Xo + r[u — XQ).

Suppose that p(x0 — j/o) > p(l/o — 2) • Since

-2+ i--Uo = n
T \ V)

we have

p{yo - «) < -p(yo - •z) + f 1 — )p{xo - yo) < p{x0 - 2/0),

a contradiction. Moreover, since p £ S(E,w) C S(E,T) and p is continuous on (E,T),

we have

yo) ^p(yo - « ) for all z £ J

Since xo G Jc7(so)> this implies

-yo) = dp(yQ,Ic(xo))-

Further, if x0 G IntC, then Ic{xo) = E. Since j / 0 G E, this implies dp(j/O)^c(a!o)) =

p(a!o — 2/0) = 0. This completes our proof. D
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REMARKS. 1. Note that, in Theorem 2, the topologies of C and E are related only by
(*). Therefore, it is sufficient to assume that

(i) as a convex space, C has any topology finer than the relative weak topol-
ogy with respect to E, and

(ii) E has any topology finer than its weak topology.

2. As in our previous work [14], for F G *&Z{C,E), define F' : C -> 2E by

F'x = 2x - Fx for x G C. If F' G 2l£(C,-E), then there exists an (xo,yo) G F such

that

p(x0 - l /o) = dp(yo,Oc(x0j).

Note that if JF belongs to K or V, so does F'.

PARTICULAR FORMS. (1) Sehgal, Singh, and Smithson [21, Corollary 1] is a particular

case of Theorem 2 for a locally convex Hausdorff topological vector space (E, T ) and

for a single-valued map F — f G C((C,W),(E,T)).

(2) For a single-valued map / G C((C,T),(E,T)), Theorem 2 improves Reich [17,

Theorem 1.6] for locally convex Hausdorff topological vector spaces and Fan [6, Theo-

rem 2] for normed vector spaces.

From Theorem 2 we deduce the following form of Park [14, Theorem 4] with a
different proof.

THEOREM 3 . Let C be a compact convex space, E a topological vector space

containing C as a subset, and F G 2l£(C, E). Suppose that E* separates points of E

and that for each p G S(E,w), the condition (*) holds. Then we have either

(1) F has a Sxed point; or

(2) there exist a p G S(E,w), an x0 G BdC, and a y0 G Fx0 satisfying

0 <p{x0 -y0) = dp(yQ,lc(x0)).

PROOF: We may assume that F G 2lc(C, E). By Theorem 2, for each p G S(E, w),
there exists an (xo,yo) G F such that p(xo — yo) = dp(rjo,Ic(,xo)) • Suppose that (2)
does not hold. Then, for each p G S(E,w), there exists an (x,y) G F such that
?(s — y) — 0; that is;

By putting X = C, Y = (E,T), and h(x,y) — p(x —y) in Lemma 3, we know that
x t-> dp(x,Fx) is l.s.c. Therefore, F\p] is closed in C. Moreover, for a finite subset

{Pi,P2, ••• ,pn} of S(E,w), we have p = £ p< G S(E,w) and F\p] =
i

https://doi.org/10.1017/S000497270001409X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001409X


268 S. Park [6]

f) F\pi]. Therefore, {F\p\ : p G S(E,w)} is a family of closed subsets of C with

the finite intersection property. Since C is compact, there exists a u G H ^ I P ] : P £
S(E,w)}.

Suppose that u £ Fu. Then the origin 0 does not belong to the compact set
K — u — Fu of (E,T). Let z G K. Since E* separates points of (E,w), there exists
a <f> G E* = (E,w)* such that <j>{z) ^ 0. By putting pz(x) = \<f>(x)\ for x G E, we
know that pz G S(E,w) C S(E,r) and pr(z) > 0. Since pz G S(E,T) is continuous
on if, there exists an open neighbourhood Uz of z in if such that pz(j/) > 0 for
every y £ Uz. Let {f/zi,-'- >^2*} ^ e a finite subcover of the cover {UZ}Z£K of if

and let pu = ^pZ{ £ S(E,w). Since pu\n is continuous, it attains its infimum on

K. Since the infimum can not be zero, we have dPu(u,Fu) > 0. This contradicts

u £ C\{F\p] : p £ S(E,w)} 7̂  0. This completes our proof. D

REMARK. AS for Theorem 2, if F' £ %*{C,E), then the inward set in the conclusion
(2) of Theorem 3 can be replaced by the outward set.

PARTICULAR FORMS. Theorem 3 extends Ding and Tan [5, Theorem 4], where {E,r)

is locally convex and F £ K((C,W),(E,T)), which in turn extends earlier works of
Fan [6, Theorem 1], Browder [2, Corollaries 1 and 1'], Reich [16, Lemma 1.6], Ha [8,
Theorem 3], and Park [12, Theorem 3].

THEOREM 4 . Under the hypothesis of Theorem 3, F has a fixed point x0 £ C if

one of the following conditions holds:

For each x £ Bd C\Fx,

(0) for each y G Fx and each p £ S(E,w), p(x — y) > 0 implies

(i) for each y G Fx, there exists a number A (real or complex, depending on

whether E is real or complex) such that

|A| < 1 and Xx + (1 - X)y G ?c(x)-

(ii) FxClc(x).
(iii) for each y G Fx, there exists a number A (as in (i)) such that

|A| < 1 and Ax + (1 - X)y G C.

(iv) Fx C IFc{x) = {x + c(u - x) : u G C, Re c > 1/2}.
(v) FxCC.

(vi) F(C)CC.
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PROOF: (0) Clear from Theorem 3.

(i) For any p £ S(E,w) satisfying p(x — y) > 0, put z = Xx + (1 — X)y in

(0). Then we have

p(y -z)= p(Xy - Xx) = |A|p(as - y) < p(x - y)

since |A| < 1.
(ii) If Fx C Ic(x), then for each y £ Fa , we can choose A = 0 in (i).

(iii) Since C C Ic[x), we clearly have (iii) = > (i).
(iv) It is well-known that (iv) «=>• (iii).
(v) If Fx C C, then for each y £ .Fa;, we can choose A = 0 in (iii).

(vi) Clearly, we have (vi) ==$• (v).

D
REMARK. If F' £ Ql^(C,E), then the inward sets in (0), (i), (ii), and (iv) can be
replaced by the corresponding outward sets.

PARTICULAR FORMS. (1) Ding and Tan [5, Theorems 5 and 6] are Theorem 4(0) and
(i), respectively, for a locally convex Hausdorff topological vector space (E,r) and
F £ K((C,w), (E,T)) , which in turn extend earlier works of Fan [6, Theorem 3], Reich
[16, Theorem 1.7], [18, Theorem 3.1], [19, Theorem 2], Ha [8, Theorem 4], and Park
[12, Theorem 4].

(2) Roux and Singh [20, Theorems 5 and 6] are particular cases of Theorem 4(iii)
for F = f G €{{C,r), {E,w)) and F = / 6 C((C,W),(E,T)).

(3) Arino, Gautier, and Penot [1, Theorem 1] is a particular form of Theorem 4(v)
for a weakly sequentially continuous funciton F = f : (C,w) —> (C,w), where (E,T) is
a metrisable locally convex Hausdorff topological vector space.

(4) For other well-known particular forms of Theorem 4, see Park [14].

Theorem 4(vi) can be restated as follows:

COROLLARY 1. Let C be a compact convex space, E = (E,T) a topological
vector space on which E* separates points such that E contains C as a subset and,
for each p £ S(E,w), (x,y) i—> p(x — y) is continuous tor (x,y) £ C x E. Then any
F £ 21J (C , (C ,T) ) has a fixed point.

From Corollary 1, we have the following:

COROLLARY 2 . Let C be a compact convex subset of a topological vector space
E on which E* separates points. Then any F £ 2l"(C, C) has a fixed point.

Note that, even for 21 = K, Corollary 2 includes historically well-known fixed point
theorems of Brouwer (1912), Schauder (1927,1930), Tychonoff (1935), Kakutani (1941),
Bohnenblust and Karlin (1950), Fan (1952, 1964), Glicksberg (1952), Granas and Liu
(1986), and many others. See Park [14].
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4. FOR APPROXIMATIVELY COMPACT SETS AND OTHERS

In this section, we consider best approximation theorems for the admissible maps
defined on approximatively compact convex subsets of a locally convex Hausdorff topo-
logical vector space or closed convex subsets of a Banach space with the Oshman prop-
erty. Consequently, we improve some results in [15].

In the sequel, we assume that the class 21 contains K.

Let C be a subset of a Hausdorff topological vector space E and p £ S(E). Then
C is called approximatively compact (with respect to p) if, for each y £ E, every net
{xa : a £ A} in C such that p(y — xa) —* dp(y,C) has a subnet that converges to an
element of C. It is well-known that the metric projection Qp : E —> 2C belongs to
K(E,C) whenever C is approximatively p-compact and convex.

THEOREM 5 . Let C be a nonempty approximatively compact, convex subset of
a locally convex Hausdorff topological vector space E, and F £ Ql"(C, E). If F is
compact, then for each p £ S(E), there exsits an (xo,yo) £ F such that

P{xo - 1/0) = dp(yo,lc(xo))-

Moreover, x0 g BdC whenever p(x0 — yo) > 0.

PROOF: Since Qp £ M(E,C), by assumption, we have Qp € %l(E,C). Since
F £ 2l|T(C,E) and 2ljT is closed under composition (see [10, Proposition 2(1)], we have
QPF £ QljT(C, C). Note that F is compact and that Qp is a compact-valued u.s.c. map.
Hence, QpF is compact. Therefore, by Lemma 1, QpF has a fixed point xo £ (QPF)XQ ;
that is, there exists a y0 £ Fx0 such that

zo £ QPyo = {x £ C : p(x - yQ) = dp(y0,C)}.

Actually, this implies the conclusion as for Theorem 2. 0

PARTICULAR FORMS. For F £ Vjr(C, E), Theorem 5 is due to Park, Singh, and Watson
[15, Theorem 3], which includes Reich [18, Corollary 2.2].

From Theorem 5, we obtain the following fixed point theorem for normed vector
spaces.

COROLLARY 3 . Let C be an approximatively compact convex subset of a
normed vector space E, and F £ QL°(C,E) compact. Suppose that

(0) for each x £ Bd C\Fx and y £ Fx, we have

\\x ~ 2/11 > \\z ~ y\\ for some z £ Ic{x).
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Then F has a fixed point.

PROOF: By Theorem 5, there exists an (zo,2/o) G F such that ||xo ~2/o|| ^
\\z — yo\\ for all z £ Ic{x0). If xQ ^ y0, then x0 £ Bd C and (0) leads a contra-
diction. This completes our proof. u

PARTICULAR FORMS. For F £ V%{C,E), Corollary 3 reduces to [15, Corollary 2].
Instead of the condition (0), we can adopt any of (i)-(vi) in Theorem 4.

REMARK. AS for Theorems 2-4, if F' £ 2£(C,.E), then the inward sets in Theorem 5
and Corollary 3 can be replaced by the corresponding outward sets.

Recall that a reflexive Banach space has the Oshman property if the metric projec-
tion on every closed convex subset belongs to K.

THEOREM 6 . Let G be a closed convex subset of a Banach space E with the

Oshman property, and F £ 2l£(C, £ ) . If F is compact, then there exists an (xo,yo) G F

such that

PROOF: Let Q : E -* 2C be the metric projection. Then Q £ K(E,C) C 2l(J5,C)
and QF e 2l£(C,C). Note that QF is compact. Let K = co QF(C) be the compact
convex set in C. Then QF £ 2l*(-K", K). By Corollary 2, QF has a fixed point x0 &C;

that is, XQ £ (QF)xo. Hence there exists a j/o £ Fxo satisfying xo £ Qyo = {x £ C :
ll1 — a/o 11 = d(yo,C)}. This implies the conclusion as for Theorem 2. D

PARTICULAR FORMS. For F e V°{C,E), Theorem 6 is due to [15, Theorem 4], which

includes Reich [18, Proposition 2.3].

COROLLARY 4 . Let C be a closed convex subset of a Banach space E with

the Oshman property, and F £ 21"(C, E) compact. Suppose that the condition (0) of

Corollary 3 holds. Then F has a fixed point.

The proof is like that of Corollary 3.

PARTICULAR FORMS. For F £ V°(C,E), Corollary 4 is due to [15, Corollary 3], which

includes Reich [18, Proposition 3.2 and Theorem 3.3(b)], [19, Theorems 6 and 7].
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