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Notes

99.12 Primitive integer triangles

In a previous article [1], a method was developed for finding all integer
triangles containing an angle whose cosine  was known.  Some of these
triangles turned out to be primitive, in the sense that the gcd of their sides
was 1, whereas others did not.  It was asserted, without proof, that in both
the particular cases where the given angle was  or  (  or

), the method always gave rise to primitive triangles.  In this note,
we find all values of  where this is indeed the case.

k

90° 120° k = 0
k = −1

2
k

We start off by revisiting definitions and quoting results proved in [1].
Definition 1:  Let , where  is the cosine of the given angle.
The set  is called a -pair if  are both rational with ,
and .

κ = 2 (1 − k) k
{α, β} κ α, β α > 0 β > 0

αβ = κ

Theorem 1:  Given any -pair , write , , where , ,

,  are positive integers with .  

κ α, β α =
α1

α2
β =

β1

β2
α1 α2

β1 β2 gcd (α1, α2) = gcd (β1, β2) = 1
Define  to be the triangle with sidesT{α,β}

a = α2 (β1 + 2β2) ,  b = β2 (α1 + 2α2) , c = α1 β2 + α2β1 + α1β1.
Then

(i)  is an integer triangle.T{α,β}

(ii) The cosine of the angle opposite the side  is .c k
(iii)  is primitive if, and only if, .T{α,β} d = gcd(α1 + 2α2, β1 + 2β2) = 1

Before we can arrive at our main result, which appears in Theorem 2,
we must first of all prove some preliminary lemmas.  In all that follows, we

assume that , where  are integers with ,

and .

k =
m
n

n, m n > 0 −n < m < n

gcd (m, n) = 1

Lemma 1:   for all -pairs .d | (n + m) κ {α, β}

Proof:  We begin by noting that .

Rewriting , ,  in terms of , we obtain
 and

, from which
it follows that

n + m
n

= 1 + k =
(a + b + c)(a + b − c)

2ab
a b c α1, α2, β1, β2

a + b + c = (α1 + 2α2)(β1 + 2β2) a + b − c = 2a + 2b − (a + b + c)
= 2α2 (β1 + 2β2) + 2β2 (α1 + 2α2) − (α1 + 2α2) (β1 + 2β2)

n + m
n

=
2α2 (β1 + 2β2) + 2β2 (α1 + 2α2) − (α1 + 2α2) (β1 + 2β2)

2α2β2
.

If we now put  and  and then cross
multiply, we see that .  We
know, however, that  (see [1, Lemma 3]).

α1 + 2α2 = α3d β1 + 2β2 = β3d
2α2β2 (n + m) = dn (2α2β3 + 2β2α3 − dα3β3)

gcd (d, α2) = gcd (d, β2) = 1
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Thus if  is odd, we must have .  If  is even, then
 is also even.  Thus we can divide both sides of the

above equation by 2 and conclude again that .

d d | (n + m) d
2α2β3 + 2β2α3 − dα3β3

d | (n + m)

Lemma 2:  Let ,  be such that .  Then there exists a -pair
 for which .

n m n + m > 1 κ
{α, β} d = n + m

Proof:  First of all, assume that  is even.  We putn + m

α1 = 2, ,β1 =
(n − m) (n + m − 1)

s
,α2 = n + m − 1 ,β2 =

n
s

where .s = gcd ((n − m) (n + m − 1) , n)
Then .  and .α > 0 β > 0 gcd (α1, α2) = gcd (β1, β2) = 1

Since , it follows that  is a -pair.
α1

α2
×

β1

β2
=

2 (n − m)
n

= κ {α, β} κ

Furthermore,  and .α1 + 2α2 = 2(n + m) β1 + 2β2 =
(n + m)(n − m + 1)

s
If , we note that , since otherwise  and

 would have a factor in common.  This is impossible since .
Thus  and  is an integer multiple of .  The fact
that  is odd means that  is an odd multiple of ,
which gives us our result.

s > 1 gcd (s, n + m) = 1 n + m
n gcd (n, m) = 1

s | (n − m + 1) β1 + 2β2 n + m
(n − m + 1) β1 + 2β2 n + m

If, on the other hand,  is odd, then we putn + m

α1 = 1, ,β1 =
(n − m) (n + m − 1)

s

,α2 =
n + m − 1

2
,β2 =

n
s

where .s = gcd ((n − m) (n + m − 1) , n)
It is now left as an exercise to the reader to show that, in this case, it is

also true that  is a -pair for which .{α, β} κ d = m + n
In order to illustrate the above lemma, we consider two examples.  In

the first example, we let  and .  This implies that ,
, , ,

and  and it follows that , which equals
.

n = 15 m = 11 α1 = 2
α2 = 25 (n − m) (n + m − 1) = 100 s = gcd (100, 15) = 5 β1 = 20

β2 = 3 d = gcd (52,  26) = 26
15 + 11

In the second example, we let  and .  In this case
, , , ,
 and .

n = 16 m = −7
α1 = 1 α2 = 4 (n − m) (n + m − 1) = 184 s = gcd (184, 16) = 8
β1 = 23 β2 = 2

It follows that  which equals .d = gcd (9,  27) = 9 16 + (−7)

We are now able to prove our main result.
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Theorem 2:  is primitive for all possible -pairs  if, and only if,

 for some positive integer .

T{α,β} κ {α, β}
k =

1 − n
n

n

Proof:  As a simple corollary to Lemma 1, we see that if  then
is also equal to 1.  On the other hand, Lemma 2 tells us that if ,
there always exists a -pair  for which .  The fact that

 now gives us our result.

m + n = 1 d
m + n > 1

κ {α, β} d = n + m
k =

m
n

Finally, we note that the conditions
are essential for ensuring the validity of the above theorem.  In order to

show that this is the case, we let , .  Then

and the corresponding integer triangle  has sides ,  and
.

gcd (α1, α2) = gcd (β1, β2) = 1

α =
1
1

β =
2 (n − m)

n
αβ = κ

T{α,β} 4n − 2m 3n
5n − 4m

This is in itself an interesting triangle since its sides form an arithmetic
progression with first term  and common difference , thus
providing us with a straightforward method for calculating the sides.

3n n − 2m

However, although , we note that
when  is odd but 2 when  is even and thus, even if , it does
not necessarily follow that  is primitive.  If we let , , it
follows from above that  has sides 6, 10, 14.  This is an integer triangle
containing an angle of  but is not primitive.

gcd (α1, α2) = 1 gcd (β1, β2) = 1
n n m + n = 1

T{α,β} n = 2 m = −1
T{α,β}

120°
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99.13 Solving the quintic in radicals

Introduction
It is well known that the general quintic equation cannot be solved in a

finite sequence of radicals.  This was proved by Abel and Galois in the 19th
century and brought to a close that particular line of research.  The
important word above is ‘finite’.  If we remove that word then the above
statement is false, as we shall show in this Note.

 The general quintic equation can be transformed into  by
means of a transformation that only uses square and cube roots.  This was
proved by the Swedish professor of history E. S. Bring in the 18th century
and independently by the English mathematician G. B. Jerrard in the 19th.
There are two cases to consider which depend on the sign of .

x5 + ax + b = 0

a
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