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Abstract

Minkowski established a lower bound for the determinant D of a Minkowski-reduced quadratic form
in terms of the product of its diagonal coefficients a,, (i = 1,. . . ,n). Oppenheim and Barnes found,
for n = 3 and n — 4 respectively, the precise minimum of D in terms of the ait; in each case the
minimum is a polynomial in thea,,. Here it is shown that no such result exists when n = 5; however a
polynomial in a , , , . . . , a 55 is determined which gives the minimum of D when a 55 is sufficiently large.

1980 Mathematics subject classification (Amer. Math. Soc): primary 10 E 25; secondary 10 E 20.

Introduction

A positive definite quadratic form/(x) = S^a^x,*, (au = aJt), of determinant
D = det(a,-_,.)» is Minkowski-reduced if, for all i — \,...,n and for all integral
x = (x{,...,xn),

(1.1) ifg.c.d.(x,, xi+i,...,xn) = 1, then/(x) >«,.,..

It is known that a finite number of inequalities (1.1) imply all the rest, so that
the set of reduced forms is a polyhedral cone in the {n(n + l)-dimensional space
of the coefficients a/7- (1 < / <./ < n). Indeed, for n < 5, Minkowski established
that it suffices to use, in (1.1), only those x with all x, equal to 0 or ±1 and when
n = 5, those with one coordinate 2 and the rest ±1.

The reduction conditions (1.1) with one or two coordinates non-zero yield

(1-2) au<a22< •••<ann
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and

(1.3) |2a o . |<a H ( K i < y < « ) ;

these show that, for any fixed au satisfying (1.2), all coefficients atj are bounded.
Minkowski showed that a constant \n exists for each n such that all reduced

forms satisfy the inequality

0-4) aua22---ann<\nD;

and the best possible value of \ n is known for n < 5. We set now, for typographi-
cal convenience,

(1.5) a n = a , a12 = b, a33 = c, a^- d, a55 = e,

where, by (1.2),

(1.6) 0<a<b<c*zd^e.

Oppenheim (1946) sharpened (1.4) for n - 3 (where X3 = 2), pointing out that for
all a, b, c

(1.7) min D = \(2abc + ab(c - b) + ac(b - a)).

Barnes (1978) extended this result to show that when n — 4, for all a, b, c, d,
(1.8)

min D = {{abed + acd(b - a) + abd(c - b) + abc(d - c) + \a2{b - cf),

immediately implying (1.4) with X4 = 4.
One might expect that results similar to (1.7) and (1.8) would hold in higher

dimensions. We show here however that, for n = 5, while a similar result holds
whenever e is sufficiently large, there is no single polynomial yielding the
minimum value of D for all a, b, c, d, e. More precisely, we prove:

THEOREM 1. Let /(x) = 2? aijxixi be a Minkowski-reduced quinary form whose
diagonal coefficients are given by (1.5). There exists a number e0 — eo(a, b,c, d)
such that for all e > e0

(1.9)

D > ^a{2bcde + 2bcd(e - d) + bc{Ae - d)(d - c) + bd(4e - c)(c - b)

+ cd(4e - d - b)(b - a) + ae(c - bf + b2{d - cf}.

Equality holds in (1.9), for example, for the form

, •. »Po(X) - aA + aX\X2 + 0*1*4 + bx2 + bx2X3 + bx2X4

+ j + cx3x4 + cx3xs + dx\ + dx4x5 + exj.
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THEOREM 2. If c > a + b and

^,(x) = ax\ + axxx3 + axlx4 + bx\ + bx2x3 + bx2x4

+ cx3 + OC3X4 + cx3x5 + dxj + dx4x5 + ex\,

then ^, is Minkowski-reduced and, for the values (a, b, c, d, e) = (1,2,3,3,3),

We note that Van der Waerden (1969) determined Xs = 8 in (1.4) and that (1.9)
is immediately seen to conform with the inequality abcde *£ 8Z>.

We use the notations of Barnes (1978). In particular, ty = tf)(a, b, c,...) is the
convex polytope defined as the intersection of the cone 9H of Minkowski-reduced
forms in i?" ( " + 1 ) / 2 with the hyperplanes au = a,a22- b,... (0 < a *£ b < • • •) ;
6D+ is similarly defined with respect to the cone ?)1L+ of 'properly reduced' forms
satisfying an+l> 0 (i = l,...,n — \). We recall that the minimum value of D is
attained only at a vertex of D̂ (or ty*).

To avoid fractional coefficients, we write throughout

flj = 2aIJ (i<j).

2. Proof of Theorem 1

It was shown in Barnes (1978) that, for quaternary M-reduced forms, the
minimum value of D given by (1.8) is attained, for all a, b, c, d, by 14 equivalent
forms, one of which is

(2 jx g\(Xl> *2> *3- *-») = ax\ + ax\X2 + a * l * 4 + bx2

+ bx2x3 + bx2x4 + cx\ + cx3x4 + dx\.

We begin the proof of Theorem 1 by considering quinary forms/for which g, is
the section by x5 — 0, that is (setting for convenience fi5 — f, i — 1, . . . ,4)

f(xu...,x5) = g , (x , , . . . , x 4 ) + / , J C , X 5 +f2x2x5

+/3X3X5 +f4x4x5 + ex\.
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LEMMA 2.1. / e <D1t+ //and only if the coefficients f\,f2>h, ft, satisfy the system of
linear inequalities

l / i l<f l . I/21<*. I/a I < C 0 ^ / 4 < r f ,

l / i - / 2 | < * .

(2 3) "/2+/4<

I/. - /2 + AI

PROOF. Since g, is M-reduced, it suffices to consider only inequalities (1.1) with
xs ¥= 0. The inequalities (2.3) are easily found as the non-redundant inequalities
derived from x5 — 1 and x, = 0 or ±1 (/ = 1,... ,4), together with the assump-
tion that / G 9lt+ , so that f4 = 2a45 > 0. All other inequalities (1.1), namely
those with some x, = 2 and the remaining Xj = ±1, are now found to be
redundant in virtue of (2.3). (For the inequalities

(2.4) f(±\,±l,±l,±\,2)>a44 = d

it is here not necessary to assume that e is large, but merely to observe that e > d.
All other inequalities are independent of e.)

On solving the system (2.3), we find that there are 31 extreme solutions (where
we do not distinguish between a solution and its negative), which fall into 6
equivalence classes under transformations of/which leave g, fixed. Evaluation of
D(f) now establishes that, for all a,b,...,e, the least determinant occurs for the
7 equivalent solutions

(/.> f2, h, h) = (0,0, c,d), {-a,-a + b,Q, -a + d),

(-a,-a + b,b- c,-a + b- c + d),

' ' (a, 6,0, d), (a,b,b- c,b- c + d),

(0,-b,-b,-b + d), (0,-b,-c,-c + d),

the value of £>(/) being given by the expression (1.9). Since clearly all vertices of
the polytope <>D must arise from extreme solutions of (2.3), we have

LEMMA 2.2. / / / is M-reduced and of the form (2.2), then the minimum value of
D(f) occurs when f— \p0, as defined in (1.10) (and by 6 other equivalent forms).
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PROOF OF THEOREM 1. We w r i t e / i n the form

f(xl,...,xs) = g(xu...,x4) +fl5xtx5 +f25x2x5

+ f + f + 2

Since the reduction conditions (1.1) for /include those for g (namely those with
x5 = 0), g is M-reduced.

We next require e to be so large that all inequalities (2.4) are redundant. Using
the facts that g is positive definite and that all \fj51< d, we have crudely

/ ( ± 1 , ± 1 , ± 1 , ± 1 , 2 ) > -%d+ 4e,

whence (2.4) is certainly satisfied if e s* 9d/4.
We have now ensured that the coefficient a55 — e does not appear explicitly in

any of the reduction conditions (1.1) for / , since these either have x5 = 0 or
xs — ±1 and an — a55 = e. Consider now the polytope <>D = ^(a, b, c, d, e) for /
in Rw; it has a finite number of vertices v, each of which has coordinates that are
linear functions of a, b, c, d only and which, by (1.2) and (1.3), all satisfy

We divide these vertices into two classes: class / contains those vertices for which
the corresponding form (2.6) has g -~ g{ (defined in (2.1)); class II contains the
remaining vertices.

Let now v be of class I. If now g — gu Lemma 2.2 shows immediately that
D(f)> D(\pQ). The same result holds if g is one of the other 13 forms equivalent
to g,; for it is straightforward to verify that the equivalence transformation taking
g into g, induces a linear transformation of/,,,/25,/35,/45 in (2.8) which takes the
defining inequalities involving these coefficients into the system (2.3); the result-
ing forms / are therefore equivalent to a form with g = gt and again we deduce
that />( / ) > D ( ^ ) .

Next let v be of class II, so that D(g) > i>(g,). Since there are only finitely
many such vertices, all of whose coordinates depend only on a, b, c, d, we can
assert that

D(g)-D(gi)>n(a,b,c,d)>0

for some polynomial function p. Expanding D(f) as a bordered determinant, we
have

= eD{g)--VBIJflifji

https://doi.org/10.1017/S1446788700024964 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024964


410 E. S. Barnes and D. W. Trenerry [6]

where 2? Bijxixj is the form adjoint to g, whence similarly

D(f)>eD(g)-p(a,b,c,d)

for some polynomial function v. Since trivially D(\p0) < eD(g,), we deduce that

and the proof of Theorem 1 is complete.

3. Proof of Theorem 2

The assertions of Theorem 2 are easily verified by direct computation; the
condition 'c 3* a + b' arises from the reduction condition

The form \pt was constructed by a method similar to that used for i|>0, namely by
minimizing D( f) over forms of the shape

f(xl,... ,x5) — axi + f]2x]x2 -T • • • +/|5X|X5 + g2\X2, x3, x4, x$),

where

g2(x2, x3, xA, xs) - bx\ + bx2x3 + bx2x4 + cx\

+ cx3x4 + cx3x5 + dx\ + dx4x5 + ex]

has minimum determinant for the section /(0, x2,.. .,x5). Although, for some
values of b, c, d, e, D(f) is then minimized w h e n / = \p0, Theorem 2 shows that
this is not always the case. It is probable that, when c > b, either \p0 or ^, has
minimal determinant if a is sufficiently small compared with b, c, d, e. Two other
forms with small determinant which arise from this construction are, when
c < a + b, those with (/12, /13, /14, /15) — (0, a, a, a + b — c) and (a + b —
c, a, a,0).

We conjecture that the minimum value of D(f) is always assumed at one of a
finite set of forms and so is the minimum of a finite number of polynomial
functions in a, b,...,e. However extensive computer searches have not produced
any form with determinant less than those of the forms given above.

We record our thanks to Dr. B. A. Murtagh of the University of New South
Wales for making available his non-linear optimization program MINOS, and to
Dr. M. J. Cohn for his program which enumerates the vertices of a polytope.
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