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Abstract
Radars used to observe meteor trails in the mesosphere deliver information on winds and temperature. Use
of these radars is becoming a standard method for determining mesospheric dynamics and temperatures
worldwide due to relatively low costs and ease of deployment. However, recent studies have revealed that
temperatures may be overestimated in conditions such as high geomagnetic activity. The effect is thought to
be most prevalent at high latitude, although this is not yet proven. Here, we demonstrate how temperatures
might be corrected for geomagnetic effects; the demonstration is for a particular geographic location
(Svalbard, 78°N, 16°E) because it is local geomagnetic disturbances that affects local temperature measure-
ments, therefore requiring co-located instruments. We see that summer temperatures require a correction
(reduction) of a few Kelvin, but winter estimates are more accurate.
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1. Introduction

Observations of ionization trails frommeteors using so-calledmeteor-wind radars (MWRs) have, of late,
become the de factomethod of determining winds and temperatures in the uppermesosphere. Currently,
research is being performed and publications are produced using such observations: for example,
Shepherd et al. (2020), Pancheva et al. (2020), and Pedatella et al. (2020) to name but a few, not to
mention studies in progress.While these studies havemost focus onmesospheric dynamics, radar echoes
also reveal diffusion coefficients for the ions in the meteor trails, and these are used to estimate
temperatures (e.g., Hocking, 1999; Hocking et al., 2004; Holdsworth et al., 2006; McKinley, 1961).
Results are thereafter used to investigate inter aliamiddle atmosphere temperature trends (e.g., Hall et al.,
2012; Holmen et al., 2015), and thus, the reliability of the temperature determinations is becoming
increasingly important.

Ambipolar diffusion determined by MWRs has been critically examined by Chilson et al. (1996),
Dyrud et al. (2001), Hall (2002), Hocking et al. (2004), Hall et al. (2005), Dyrland et al. (2010), and so
on. Recently, however, it was noticed that increases in diffusivity are associated with strong geomagnetic
activity (Hall & Johnsen, 2020). The implications of this include overestimation of temperatures
particularly in the auroral zones regions (i.e., high latitudes). Secular changes in geomagnetic activity
and evenmigration of the geomagnetic poles could easily inducemisleading identification of temperature
trends, but any research based on high latitude temperature observations fromMWRs could be affected.
Furthermore, the findings of Hall and Johnsen (2020) were based on the results from two high-latitude
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radars, and lower latitude effects were not dismissed. The derivation of temperatures from MWR echo
fading times via estimation of ambipolar diffusivity is well described in the literature (and the references
herein) and will not be explained in detail here. Instead, we focus on the effects of geomagnetic activity on
temperature estimates (note use of the term “estimates”) and howwemay correct for them, both for long-
term time-series and conceivably in quasi-real-time.

It must be stressed that this study is intended to highlight potential problems using MWR data and
thereafter drawing scientific conclusions from derived temperatures without taking geomagnetic activity
into account. We give an account of how temperatures may be corrected to alleviate the geomagnetic
effects, but do not attempt to present a comprehensive set of tools that result in reliable temperatures
under all circumstances.

2. Method and results

The Nippon/Norway Svalbard Meteor Radar (NSMR at 78°N, 16°E, since 2002) is used for provision of
temperature estimates, in particular, employing the pressure method of Holdsworth et al. (2006). A
comprehensive list of references is given above and thus the exact method of derivation is not described
here. It should be mentioned, however, that models for air pressure and composition of the meteor trail
are implicit. Because of these, the initial derivations of temperatures are normalized to satellite data
(AURA specifically, as explained in the references). Data between 2002 and 2019 are employed here and
analyzed to yield daily temperature estimates at 90 km altitude

In order to parameterize geomagnetic activity, we employ the auroral zone activity index as
introduced by Hall and Johnsen (2020), this being a local metric and, in this study, determined from
magnetometer observations in the vicinity of NSMR. Figure 1 shows both the geomagnetic and
temperature data on the same plot. These values are those used in the subsequent analyses.

Figure 1. Geomagnetic Activity Indices (blue) in nT and, from start of operations, derived neutral air temperatures at 90 km
(red) in Kelvin, both from Svalbard (78°N, 16°E).
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In Figure 2, the results of Hall and Johnsen (2020) are, in part, reproduced. Temperature estimates are
plotted as a function of auroral zone activity index as are linear least-squares fits with geomagnetic
activity as the independent variable; all years are utilized and June and December months are selected as
representative for winter and summer, respectively. It can be seen that the summer and winter slopes are
very similar, indeed, but that the intercepts (corresponding to no geomagnetic disturbance at all) reflect

Figure 2. Scatter plots of derived 90 km temperatures versus geomagnetic activity index employing data from the preceding
figure. Left panel: June; right panel: December. The plots show the same results as those of Hall & Johnsen, 2020. Lines show
least-squares fit regressions, taking geomagnetic activity indices as the independent variable. Dotted hyperbolae indicate the
95% confidence limits according to Working and Hotelling (1929).

Figure 3. Results of linear fits exemplified by the previous figure, here all available years and sorted by month. Upper panel
intercepts (zero activity index); lower panel: slopes. Error bars (1-sigma) are indicated by the vertical lines.
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the typical summer and winter upper mesosphere temperatures. The most striking difference is in the
spread—points being much more concentrated near the regression line in summer. The 95% confidence
limits are indicated (Working &Hotelling, 1929). Intercepts and slopes for Individual months are shown
in Figure 3. Again, the intercepts illustrate the seasonal variation of the upper mesosphere temperature
and with little uncertainty. In contrast, the slopes vary considerably with month and uncertainties are
considerable.

Here, we shall illustrate corrections to the original temperatures estimates based on the dependence on
auroral zone activity index. The presentation is merely a demonstration; different scientific requirements
may dictate choice of length of time series for performing preceding regression analyses. In this instance,
we employ the monthly mean coefficients (i.e., Figure 3) and correct the temperature time-series at one-
day resolution. Examining the entire time-series, we find the correction is small, but it is possible to
discern an overall reduction in temperatures. Rather than presenting these, and in order to better
illustrate the effect, Figure 4 shows December and July time-series from 2018 where differences between
individual days are evident. Both original and corrected values, the latter consistently slightly lower, are
shown together with the average difference over the respective month. In summer, the difference is
somewhat larger than in winter. If we place these results in the framework of observation of phenomena
related to low temperatures in the summer mesopause (e.g., noctilucent clouds, etc.), the difference
discerned in the latter part of July has significance, indicating the importance of making this correction.

3. Conclusion

It has been demonstrated that temperature estimates derived from meteor-radar data, wherein the
method involves estimating the diffusion coefficient of ions in the meteor trail can be falsely enhanced

Figure 4. Typical examples of temperatures corrected for geomagnetic effects. Upper panel: December 2018 and lower panel:
June 2018. Original temperature estimates are shown in red, and corrected values in blue. Themean corrections over all days
are indicated in the plot: 4 K in winter and ~7 K in summer.
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during conditions of high geomagnetic activity. The enhancement is however quite well-defined, and by
obtaining coefficients of linear fits of temperature estimated to the geomagnetic activity (which we
parameterize by the activity index presented by Hall & Johnsen, 2020) it is possible to apply a correction.
For the data presented here from Svalbard (78°N, 16°E) a typical summer overestimate can be around 7 K
whereas in winter only 4 K. The timescales used to obtain the dependence depend somewhat on the
scientific circumstances, and in principle corrected temperatures could be delivered daily assuming
magnetometer and radar installations are similarly located.
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