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Abstract

We give a multidirectional mean value inequality with second order information. This result extends
the classical Clarke-Ledyaev's inequality to the second order. As application, we give the uniqueness of
viscosity solution of second order Hamilton-Jacobi equations in finite dimensions.
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1. Introduction

In 1994, Clarke and Ledyaev proved a multidirectional mean value inequality for the
Frechet differentiable functions in Banach spaces [ 1 ], and for the lower semicontinuous
functions in Hilbert spaces [2]. Using a similar technique as in [2], Clarke and
Radulescu [3] extended the multidirectional mean value inequality for the locally
Lipschitz continuous functions in smooth Banach spaces. These authors considered
bounded sets of constraints. Recently, Zhu [10] generalized the result of Clarke and
Radulescu to a non necessarily bounded set of constraints, where the functions are
assumed to be lower semicontinuous (lsc) on smooth Banach spaces.

The main result of this paper is Theorem 1.3. It gives a second order generalization
to the multidirectional mean value inequality of Clarke and Ledyaev. The results of
this paper recover the mean value inequality establishes by Zhu in [10] and extend
some work of Deville and Ivanov in [9]. On the other hand, our extension will
permit to give the uniqueness of viscosity solution of second order Hamilton-Jacobi
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equations in finite dimensions by a simple proof. Note that the notion of viscosity
solution has been introduced by Crandall and Lions in [5]. In this paper, we develop
our conclusions from a smooth variational principle due to Deville, Godefroy and
Zizler in [6].

Let X be a real Banach space, we denote by X* the set of all continuous linear
forms on X, by Bx(x, r) the closed ball with center x and radius r and by Bx the
closed unit ball. For a point x € X and a subset C of X, we denote by d(x, C) :=
inf{||;t -c\\ : c e C] and [x, C] := {x + t(c - x) : c e C, t e [0, 1]}. We say that
a Banach space X satisfies property (H) if there exists a C2 bump function b on X
such that b' is Lipschitz continuous. We denote by 38(X) the space of all symmetric
bilinear forms on X. Let y be a closed subspace of X, we denote by X/ Y the quotient
space.

REMARK 1.1. Since property (H) is clearly hereditary and X/Y is isomorphic to a
subspace of X when the complementation takes place, the space X/Y satisfies (H).
The Hilbert space situation is more trivial. However, property (H) fails the three-space
property (see [7, Remark V.I. 10]).

DEFINITION 1.2. Let X be a Banach space and let / : X -*• I U {+00} be a
function. Suppose that x € X is such that f(x) < +00. The viscosity (Frechet)
subdifferential of f at x is defined as follows:

D~f(x) := l<p'(x); <j) : X —> K is C1 and / — <j> has a local minimum a t*} .

The viscosity {Frechet) subdifferential of second order offatx is defined as follows:

D2f(x) := {(</>'(*), <t>"(x))\ <p: X -+ R is C2 and / -<p has a local minimum at x}.

Let X be a Banach space and let (x*, xm) e X* x d§(X). We use the following
notation: ||ac*|| := sup{|**(x)| : x 6 Bx) and ||JC*|| := sup{|x^(;c, JC)| : x € Bx).
For a closed subspace Y of X, we use the following notation: ||jt*||>-. := sup{|**(y)| :
y e By] and | |x^|UK, := sup{\xa(y, y)\ : y e BY}.

THEOREM 1.3. Let X bea Banach space satisfying (H) and Y be a closed subspace
ofX such that X/ Y satisfies also (//). There exists a constant aX/Y > 0 satisfying the
following result: Let x e X, r € K. Set H := Y + C, where C is a closed convex (not
necessarily bounded) subset of X and A :— [x, / / ] . Suppose that f : X —»• RU{+oo}
is Isc bounded below on A + h Bx for some h > 0 and that

lim inf f(y)>f(x) + r.

Then, for all e > 0, there exists x0 e X and (x^, xf) € D2~ f(x0) such that
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(i) 11*5Hf < e> \\xf\\&<Y) < £ andd(x0, A) < e;
(ii) r <(x*0,y-x)+e\\y-x\\,VyeH;

(iii) f(x0) < l im,_0infy eA+,Bx f(y) + \r\+e;
(iv) \\x'0\\ < £ + ^(infA /-infA+,B, / ) ; \\xf\\ < e2 + 2^(infA f-MA+hBx / ) .

REMARK 1.4. (i) If we replace property (//) by the existence of a Lipschitz
and C1 bump function b on X, and if we set Y — {0} in Theorem 1.3, then we recover
the result of Zhu in [10].

(ii) If we suppose, in Theorem 1.3, that sup5 infA+jB)r / = infA / , then (iv) can be
replaced by: d(x0, A)\\x*\\ < s and^2(^0, A)\\xf \\ < s2.

For a subset 5 of X, we define the indicator function 8S by

JO if x € S;

I +oo otherwise.

We denote by dom f := [x e X : f(x) < +oo}.
Let / b e a convex function on a Banach space X and x e X be such that f(x) < + o o ,

then the subdifferential of / at x is the set

df(x) = {p e X*; f — p has a minimum at x}.

When / is lsc convex, the Frechet subdifferential of / coincides with the subdiffer-
ential in the sense of convex analysis, that is, D~f(x) = df(x). We shall say that a
function / : X —> R U {+00} admits a strong minimum at some point x if:

(i) f(x) = inf{/()0, y € X] and
(ii) (yn) converges to* for every sequence (yn) C X satisfying limn f(yn) — f(x).

This paper is organized as follows. In Section 2, we give the proof of Theorem 1.3
and in Section 3, we prove the uniqueness of second order viscosity solutions of
certain Hamilton-Jacobi equations in finite dimensions.

2. The multidirectional mean value inequalities of second order

The variational principle below (Theorem 2.1), was proved by Deville, Godefroy
and Zizler (see [6]). In this statement, we denote by \\g\\oa = sup{|g(.x)|; x e X],
lls'lloo = sup{||g'(jc)||; x e X] and ||g"|loo = sup{||g"(x)||; x e X}, where \\g'{x)\\ :=
sup{\g'(x)(h)\;he X, \\h\\ < 1}, and | | S " ( J C ) | | = {sup \g"(x)(h, h)\;he X, \\h\\ < 1}.

THEOREM 2.1. Let X be a Banach space satisfying (H) and f : X ->• K U {+00}
be a bounded below, lsc function, which is not identically equal to +00. Then for all
e > 0, there exists a C2 function (f> : X —> K such that

https://doi.org/10.1017/S1446788700013045 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013045


162 Mohammed Bachir [4]

(i) f + <f> admits a strong minimum,

(ii) maxdl^lL, ||0'||oo. IWloo) < «•

For the proof of Theorem 1.3, we need the following three lemmas.

LEMMA 2.2. Let X be aBanach space satisfying (H). Letg : X x X ->• R U {+00}
fee an Isc bounded below function which is not identically equal to +00. Let Cbea non
empty subset of X. For all integer m > 0, let us denote Am(x, z) := g(x, z)+md(z, C)
for all (x, z) € X x X. 77ien, /or a// m > 0, f/zere exist (xm, zm) € X x X and a C2

function 4>m : X x X ->• OS ^MC/I ?/iaf

(i) md(zm, C) —>• 0 w/ien m —> 00.
(ii) maxdl^Hoo, ||<#J|oo, Halloo) < 1/m an^ Am -<pm admits a strong minimum

at(xm,zm).
(iii) lim infm-,0og(xm, zm) = lim,_0 in

PROOF. Letam := inf(v,;)exxx Am(x, z), then (am)m isan increasing sequence which
is bounded by lim,_o inf{^(JC, z ) : ^ e X , rf(z, C) < ??). So (am)m converges to some
real number a e K such that

a < lim inf {^(JC, z) : x e X, d(z, C) < rj}.
0

Since X satisfies (/ /) , then X x X also satisfies ( / / ) . In fact, if b : X - • D& is an C2

bump function with Lipschitz derivative, then the function fi : X x X -»• R, defined
by B(JC, z) := b(x)b(z), is also a C2 bump function with Lipschitz derivative. By
applying Theorem 2.1 to Am for all m, we obtain a C2 function <j>m defined on X x X

such that maxdltfUU, I I0JU, II<O«>) < i/m' a n d (•*».. z»>) e X x ^ s u c h t h a t

Am - 0m has a strong minimum at (xm, zm) and

(1) Am(xm,zm)< inf Am(x,z) + \/m = am + l/m.
x.zcX

This implies (ii).
By the definition of am and (1), we have

am < Am(xm, zm) = A2m(xm, Zm) - md(zm, C) < a2m + md{zm, C)
2m

Thus md(Zm, C) < a2m + I/(2m) — am and it follows that md(zm, C) -> 0 when
m —*• 00. This gives (i).

Now let us prove (iii):

a < lim M{g(x, z) : x € X, d(z, C) < r?)

< l iminf^U m ,z m ) = lim inf Am(xm, zm) < a-

Soliminfra_00^(jrm,zm) = l im^oinf{g(x, z) : x e X, d(z,C)<n}. •

https://doi.org/10.1017/S1446788700013045 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013045


[5] Multidirectional mean value inequality 163

In [9], Deville and Ivanov proved a variational principle of constraints of second
order, with finite dimensional spaces of constraints. Lemma 2.3 extends their result
to infinite dimensional spaces of constraints.

LEMMA 2.3. Let X be a Banach space satisfying (//) and Y be a closed subspace
ofX such that the space X/ Y also satisfies (//). Then there exists a constant ax/y > 0
with the following property: for every Isc bounded below function f : X —*• KU{+oo},
every subset A of X (A D dom / ^ 0) and every e > 0, there exists m0 e N*,
Jto, Zo 6 X, (x*. xf) e D2~f(x0) and (z*, zf) e D2~mod(-, A)(zo) such that

(i) ll*o II>" < £< Wxo Wmv) < £. d(x0 - z0, Y) <s andd(z0, A) < e;
(ii) K + zo*|| <e;
(iii) f(x0) < lim^o mfy^+nBx /(v) + e;
(iv) ||JCO1 < s + a-f- (infA / - infx / ) ; ||;cf || < e2 + ^( infA / - infx / ) .

PROOF. Let us denote by n : X —> X/Y the canonical surjection and by ft :
X/ Y -*• R a bump function of class C2 on X/ Y with support in the unit ball Bx/ Y

of X/Y such that max(ft) = ft(7r(0)) = 1. Set ax/Y := maxdlft'lU, ||ft"||oo)- The
function ft o n : X —> K is also of class C2. Let £ > 0. We can suppose without loss
of generality that 0 < s < min{l, \/2ax/Y}. Since / is bounded below, the constant
8 := infA / - inf* / > 0 is well defined. We set X := - ( £ 4 + 8) < 0. Now, for
every integer m > 2/s4, we consider the following function

Am(z, x) := fix) + Xb o n I J + mdiz, A).

Let us apply Lemma 2.2 to Amix, z) '•= gix, z) + mdiz. A) with gix, z) := fix) +
Xb o nix — z/e). Then we obtain a point ixm, zm) € X x X and a C2 function <pm

such that d(zm, A) < l/m;ma\i\\<pm\\oo;\\(p'm\\oc;\\4>^\\oo) < l/m and Am - <t>m has a
strong minimum at (jcm, zm).

Since Am — <pm has a strong minimum at (jcm, zm), if we first fix z = zm and then
x = xm, we obtain (x*m, x®) e D2~ f(xm) and (z*m, zf,) € D2~mdi-, A)(zm) with

(4) Z m : = ( _ J ( ^ , m ) + - ^ ^ _ _ ) ] o 7 r ,
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We prove that for a sufficiently large m € M, x0 := xm\ x^ := x*m; xf := x®
(respectively z0 = zm\ ZQ = z*m

 a n d zf = zf) satisfy our lemma.
From (2)-(3) and the fact that n(y) = 0 for all y e Y, we have

and

Now since max(||<?U00; | |^ | |oo; \\<pmID < 1/m, it follows that | |j£||K. < 1/m and

To complete the proof of (i), it suffices to show that

\\rc{xm - zm)\\x/Y •= d(xm - zm, Y) < e.

Indeed, since Am — <f>m has a minimum at (xm, zm), for all x, z € X we have

, A) + Xb o 7T

< fix) + mdiz, A) + kb o n [ - (pmix, z).
\ e )

Now suppose that ||7r(;cm — zm)\\x/Y > £• Then, using the fact that supp(ft) C BX/Y,
we get b o niixm — zm)/e) = 0. Now, taking z — x € A in the above inequality and
using the fact that biniO)) = 1, we obtain, for all x e A,

fixm) + mdiZm, A) - <pmixm, Zm) < / (*) +k~ 0m(x, x).

From ||0m || < \/m, we get

k > fixm) - inf fix) +mdizm, A) - - > inf / - inf fix) - -
A m x A /^

Since w > 2/e4, it follows that k > —^ — e4, which is impossible and concludes the
proof of (/).

From (2) and (4), we get: \\xm + z*m\\ < 2/m. This gives (ii).
Now, we prove (iii). Using Lemma 2.2 (iii), we obtain that for sufficiently large m

(we can extract subsequences ixmk)k< and izmk)k of ixm)m and izm)m respectively)

< liminf \fix) + kbon (- J : x e X; J(z, A) <r]\+£

< lim inf {fix) + kb o 7r(0) : x € A + r)Bx] + e

= lim inf {fix) : x € A + ??fix} + A + e.
()
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But b o n((xm — zm)/e) < 1 and k < 0, so kb o n((xm — zm)/e) > k. Thus

f(xm) < liminf {/(*) : x e A + r)Bx\ + e.
n-*o I J

Finally, (iv) comes from (2) and (3). Indeed, using (2), the fact that m > 2/e4,
0 < e < min{l, l/2aX/K} and that |A.| = e4 + (infA / — inf* / ) we obtain

II * l l I U ' II , l ^ l l l ! . ' ! ! ^ l , 3 , (• t r • t A a * I Y
\\x || < \\<p ||oo H IIo IIoo < 1- £ aX/Y + I inf / — inf / '

e m \ A x

In a similar way, using (3), we obtain that \\x® || < s2 + (mfA f — inf x f)ax/y/e2- •

LEMMA 2.4. Let X be a Banach space, Y a closed subspace ofX.Ca closed subset
ofX andx e X. Set H := Y + C and A := [x, / / ] . Then, for every (x0, z0) € X x X,
we have

(i) J(JC0, A) < d(x0 - zo, Y) + d(Zo, A);

(ii) d(xQ, H) < d(x0 - zo, Y) + d(z0, H).

PROOF. Note that for every y e Y and every A. e [0, 1[, H = H - y/{\ - k). This
is due to the linearity of the subspace K I Now let us fix (x0, zo) e X x X. For
all y e Y, we have

rf(jt0,A) = i n f | | j c o - u | | = inf \\x0 - (kx + (I - k)h)\\
veA ke[0,\].

heH

= inf \\xo-(kx + (l -k)h)\\
X€[0,l[,

< \\x0 - (zo + y)\\ + inf \\(zo + y) - (kx + (I - k)h)\\
A.€[0,1[,

heH

heH

(\-k)[h-
1 - k

= |l*o - (zo + y)\\+ J n f llzo - ( ^ + (1

= ll(*o-zo)-:yll+rf(zo, A).

Taking the infimum over y € Y, we conclude the proof of (i).
In a similar way we prove (ii). •

PROOF OF THEOREM 1.3. We first prove the theorem when r = 0 and then we
deduce the general case.
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Case 1: r = 0. Let e > 0 and let us fix h e ]0, h/2[ such that

inf f(y) > f(x).
yeH+2hBx

We assume without loss of generality that

(5) e < min inf f(y) - f(x), h .
\y€H+2hBx

Let us denote by S := A + hBx the closure of A + hBx in X. The function /]
defined by f\(x) := f(x) + Ss(x) for all x e X is lsc bounded below on X. Let us
apply Lemma 2.3 to the function fu the subspace Y and the set A. So, there exists
x0, Zo € X, (x*, xf) e D2f\{x0) and (z*, zf) e D2~mQd(-, A)(z0) such that

(a) ||JC*||K. < e/2, ||jr*||«(K) < e/2, J(x0 - z0, K) < e/2 and d(z0, A) < e/2;

(b) K + Zol < £ / 2 ;
(c) / , (x0) < lim,_0 inf̂ A+^B, / , (y) + e/2;
(d) ||x'|| < e/2 + 2ax/K/e(infA / , - inf* / , ) ; \\xf\\ < e2/4 + 4ax/K/

First, we show that d(x0, A) < e, which implies that x0 belongs to the interior of
A + hBx, and so (JC^, JC^) e D2~ f(x0). Indeed, thanks to Lemma 2.4 (i), we have
the following inequality: d(x0, A) < d(x0 — zo,Y) + d(zo, A). It follows from (a)
that d(x0, A) < e. This completes the proof of (i).

Proof of (ii). Since z,; e D~mo.d(-, A)(z0) = dmod(-, A)(z0), it follows that

(6) (z*, z - zo) < mod(z, A) - morf(zo, A), Vz e X.

Choose a bounded sequence («„)„ e A such that ||zo — «„|| < d(zo. A) + \/n. For

every w € A w e h a v e d ( u ; — wn + zo, A) < ||z0 —« n | | < d(zo, A) + l/n and it follows

from (6) that

(7) (ZQ, W - un) < mod{w -un+ zo, A) - mod(zo, A) < mo/n.

By (b) we deduce (x*, w — un) + e\\w — un\\ > — (z*, u; — «„). Using (7), for all

w € A, we obtain

(8) (**, w -un) +e\\w ~un\\ > —mo/n.

To complete the proof of (ii), we need the following claim.

CLAIM. There exists h > 0 such that for all n > 2/e, d(un, H) > h.
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PROOF OF THE CLAIM. First we need to show that d(x0, H) > 2h. Suppose that
the contrary holds. Using (5), it follows that

/(*<>)> inf f(y)>f(x) + s.
yeH+2hBx

On the other hand, by (c) and the fact that x e A, we get f(x0) < f(x) + e. This
leads to a contradiction. Consequently,

(9) d(x0, H) > 2h.

Now, from (9), the fact that d(x0 — zo, Y) < e/2 < h/2 and Lemma 2.4 (ii) we deduce
that d(zo, H) > h. On the other hand,

d(z0, H) < ||zo - un\\ + d(un, H) < d(zo, A) + 1/n + d(un, H).

Thus d{un, H) > d(zo, H) - d(z0, A) - 1/n for all n e N. It follows that, for
n > 2/e,

d(un, H) > d(zo, H) - d(z0, &)-^>h-^-£- = h-e>0

and the claim is proved with h := h — s. •

Now we complete the proof of (ii). Since un € A, there exists /„ 6 [0, 1] and
yn e H such that

(10) un=x + tn(yn-x).

Let (tnt)k be a subsequence of (?„)„ that converges to some point t0 e [0. 1]- We
claim that t0 ^ 1. Suppose the contrary holds, that is, t0 = 1. Using the Claim for
sufficiently large k, we get

h < d(uHt, H) < | K - ) U I = (l-tnt)\\x - y n t \ \ .

Since (unk)k is bounded and tnk —> t0 = 1, it follows from (10) that the sequence ynk

is also bounded and it follows from the above inequality that

h <liminf ((1 - tnj\\x - ynj) = (1 - /0)liminf ||jc - y,n\\ = 0 ,

which is impossible since h > 0. Hence t0 ^ 1.
Now, for each y e H, we set «n(.y) := y + ?„(/„ — y) (hn(y) € H, by convexity

of H). Using (10) we get hnk(y) - unk = (1 - *„,)(>> " *) f o r a11 y ^ H. Taking
u; = /in4 (y) e H c A in (8), we get

{xt,y-x)+e\\y-x\\> -——}—, Vy e H.
ik 1 — tnk
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Letting k tend to infinity, we obtain (JCQ, y — x) + e\\y — x|| > 0, for all y € H. This
completes the proof of (ii). The proofs of (iii) and (iv) are given directly by (c) and (d).

Now we deduce the general case.
General case: On X x R, we consider the norm defined as follows:

II(or, Oil := 11*11 + 1*1 for all (x,t) e X x R.

Let 0 < e < 1 and choose s' such that e' e ]0, e/4[, s'\r\ < e and

lim inf f(y)>
0£H+B

Let us define the function F on X x R as follows: F(x, t) := f(x) — (r + e')t. It is
clear that F is lsc on X x K and is bounded below on [(x, 0), H x {1}] + hBXxR- On
the other hand,

lim inf F = (lim inf / ) - (r + e') > f(x) = F(x, 0).
i7-»0«x{l|+j)SXxR \n-0H+r,Bx J

Now we apply Case 1 with the function F, the set H' = Hx{l] — C x {1} + Y x {0} and
the point (x, 0). There exists (JC0, /O) 6 [(•£, 0), H x {1}] + s'BXxix. (which implies,
in particular, that d(t0, [0, 1]) < e' and d(x0, A) < s') and (x*,xf) e D2~f(x0)
satisfying 1|JC* ||y < e', \\xf\\Y < s' and

F(x0, t0) = f(x0) - (r + e')r0 < lim inf (/(^) - (r + e'
i->0[(.;,0],//x[i]i+,B(I,

It follows from the above inequality that

/(xo) < lim inf (/(x) - ( r + e')C - to))+ e'
>i->o[a.o),//x|i|]+i,Bx,«

< lim inf / + |r + e'|(l + e') + e'
-)-.0[i.H]+^Bi

< lim inf f + \r\+e.
n-+0[i,H}+rlBx

Using Case 1, we also deduce the following inequality:

0 < { x ; , y - x ) - ( r + e') + e ' ( \ \ y - x \ \ + l ) , Vy e H.

This inequality implies that r < (XQ, ^ — JC) + e||y — X|| for all y e H. The proof is
completed. •

The following corollary will permit us to prove uniqueness of second order viscosity
solution of Hamilton-Jacobi equations.
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COROLLARY 2.5. Let Y be a Banach space satisfying (H). Let x eY, T e l and
r e K. Suppose that f : K x Y -*• R U {+00} is Isc function bounded below on
[0, T +h]xY for some h > 0. Assume further that / ( 0 , y) > f(T, x) + r, for all
y eY. Then, for all e > 0, there exists (t0, x0) e [0, T + s[xY, (a, p) e 1 x Y* and
( I %) € # ( R x Y) with ((a, p), (% %)) € D2~f(t0, xo), such that

(i) llpll < e ; IICall < £ ;
(ii) a < -r/T + e;

(iii) f(x0, t0) < l i m ^ o inf(t.xM(T.x)MxY]+nBtx, fif, x) + \r\+s.

PROOF. Set / / = {0} x Y, A = [(7,Jc), {0} x Y] and F := / +
The function F is Isc bounded below on [—A, T + h] x Y. Let us remark that
A-f/iBuxK c [—/i, r + / i ] x Y. Then we have that F is bounded below on A + h B&xY-
Now let us observe that

lim inf F(x) = inf f(0, y) > f(T,x) + r - sT = F(T,x) + r - sT.
^QxzH+B eY

Consider X = K x Y and x = (T, x). Then we apply Theorem 1.3 to the set H, the
space X, the point x e X, the real number r — eT G 1 , and the function F . We get
a point (to, x0) € (A + eBx) n dom F (this implies that (?0, x0) e[0,T + s[xY) and
((a. P), (& a )) € - ° r /(^o- Jfo) satisfying the corollary. •

REMARK 2.6. If we suppose in Corollary 2.5 that / ( 0 , y) > 0 for all y e H, then
we can set /• = —f(T, x), and we obtain in (ii) that a < f(T, x)/ T + s.

3. Application to Hamilton-Jacobi equations

The purpose of this section is to recover, by a simple proof, the uniqueness of
viscosity solution of second order. Note that the formula for the second order subdif-
ferential of the sum of two lower semicontinuous functions is not available in infinite
dimensions. A counterexamples in infinite dimensional Hilbert spaces are given in [8].

LEMMA 3.1. Let U\, ui be two Isc functions defined on a finite dimensional Banach
space X. Let x0 € X and (p, Q) 6 D'l~ (u\ + u2)(x0)- Then for all s > 0, there exists
xitx2 e X, (Pl, Qt) e D2'(u,Kxi)and(p2, Q2) e D2 (u2)(x2) such that

(i) \\x{ - xo\\ < e and \\x2 - xo\\ <£;
(ii) ||MI(JC|) - «1 Uo)II < £ and \\u2(x2) - M 2 U 0 ) | | < e;

(in) WP1 + P2-PW <eand\\Ql + Q2-Q\\ < e.
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Let X be a Banach space and H : U. x X x X* x 38(X) - • R be a uniformly
continuous function. We consider the associated evolution equation:

\u, + H(t,x, Du, D2u) = 0

\u(O,x) = uo(x),

where u0 : X —>• K is the initial condition, u is defined on K x X, M, denotes the
partial derivative with respect to the real variable, and Du and D2u denote the first
and second partial derivatives with respect to the x-variable.

Here we focus our attention here on the uniqueness of a continuous viscosity
solution u : R+ x X -> K o f ( l l ) .

As in Definition 1.2, we define the viscosity superdifferential of second order of /
alxby D2+ f(x) := [(</>'(x), 0" (JC)) ;0 : X ->• R is C2 and f-<p has a local maximum
atx}.

DEFINITION 3.2. A function u : K+ x X -> R is a viscosity subsolution of (11)
if M is upper semi continuous (use) and, for every (t,x) € R+ x X and every
((«- />). (c S)) e D2tf(t,x), we have

, p , D) < 0 ,

| M ( 0 , X ) <«<>(*).

The function M is a viscosity supersolution of (11) if u is lower semi continuous (lsc)
and, for every (t, x) € M.+ x X and every ((a, p ) , ( ^ ) ) e D2~ f(t, x), we have

\u(O,x)>uo(x).

Finally, u is a viscosity solution of (11) if u is both a viscosity subsolution and a
viscosity supersolution of (11).

PROPOSITION 3.3. Let X be a finite dimensional Banach space and let u, v be two
real valued functions defined on R+ x X such that u is use bounded above and v
is lsc bounded below. If u is a viscosity subsolution of (11) and if v is a viscosity
supersolution of (11), then u < v.

PROOF. Let us fix T e]0, +oo[ and, in order to get a contradiction, let us assume
that inflo.r]xx(i' — «) < 0. The function v — u is lsc bounded below on [0, T] x X.
Thus, for e > 0 sufficiently small, there exists (t0, x0) € ]0, T] x X such that

(v — u)(tn, Xr,) < inf (v — u) + eT < 0.
[ o r i x
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According to the initial condition, we have (v — u)(0,x) > 0 for every x e X.
Now, let us apply Corollary 2.5 and Remark 2.6 to the function v — u. Thus, there
exists (t,x) e [0, to + £[ x X and ((a, p), (£ %)) € D2~ (v - u)(t,x) such that
a < (v — u)(t0, xo)/to + £, \\p\\ < £ and ||D|| < e. Let us apply Lemma 3.1 to the
functions ut = v and u2 = —u. There exist (tu x{), (t2, x2) e K+ x X,

I' (Ax C,
I w. Pi), I ̂  p.

and

satisfying:

(i) ||x! - x|| < e, \\x2 -x\\ <s, |r, - r| < e, \t2 - t\ < e;
(ii) ||D! - D 2 - D | | < e , ||p, - p2 - p\\ < £ and \ax - a2 - a\ <e.

The function u is a viscosity subsolution of (11), so a2 + H(t2, x2, p2, D2) < 0. On
the other hand, the function v is a viscosity supersolution of (11), so

a ,+ff ( r , , Jc , ,p 1 ,D,)>0.

Consequently,

inf[0r]xxO - «) (v - u)(t0, x0) (v-u)(to,xo)
• • > £ > £

T T t0

> a — 2e > <2i — a2 — 3e

> H(t2,x2,p2, D2) - H(ti,xi,pi,Di)-3£.

Moreover, | |x t-x2 \ \ < ||JC,-JCO|H-||JCO-JC2|| < 2e,\\ti-h\\ < \\ti-to\\ + \\to-t2\\ < 2e,
Wpi-Pill < Ilp.-P2-Pll + Ilpll < 2eand||D1-D2| | < ||D, -D2-D\\ + \\D\\ < 2e.
Using the uniform continuity of H and sending e to zero, we get

(u -u) >

which is a contradiction. •

REMARK 3.4. Proposition 3.3 clearly implies the uniqueness of viscosity solution
for (11). The existence of viscosity solutions for (11) was established in [4].

Acknowledgements

The author wishes to thank R. Deville for his constant support and many fruitful
conversations.

https://doi.org/10.1017/S1446788700013045 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013045


172 Mohammed Bachir [14]

References

[1] F. H. Clarke and Yu. Ledyaev, 'Mean value inequalities', Proc. Amer. Math. Soc. 122 (1994),
1075-1083.

[2] ———, 'Mean value inequalities in Hilbert space', Trans. Amer. Math. Soc. 344 (1994), 307-324.
[3] F. H. Clarke and M. L. Radulescu, 'The multidirectional mean value theorem in Banach space',

Canad. Math. Bull. 40 (1997), 88-102.
[4] M. G. Crandall, H. Ishii and P. L. Lions, 'User's guide to viscosity solutions of second order partial

differential equations', Bull. Amer. Math. Soc. (N.S.) 27 (1992), 1-67.
[5] M. G. Crandall and P. L. Lions, 'Viscosity solutions of Hamilton-Jacobi equations', Trans. Amer.

Math. Soc. 277 (1983), 1-42.
[6] R. Deville, G. Godefroy and V. Zizler, 'A smooth variational principle with applications to

Hamilton-Jacobi equations in infinite dimensions',/ Fund. Anal. I l l (1993), 197-212.
[7] , Smoothness and renormings in Banach spaces, Pitman Monographs 64 (Longman, New

York, 1993).
[8] R. Deville and El. Haddad, 'The subdifferential of the sum of two functions in Banach space, II.

Second order case', Bull. Austral. Math. Soc. 51 (1995), 235-248.
[9] R. Deville and M. Ivanov, 'Smooth variational principles with constraints', Arch. Math. 69(1997),

418-426.
[10] Q. J. Zhu, 'The Clarke-Ledyaev mean value inequality in smooth Banach spaces', Nonlinear Anal.

32(1998), 315-324.

Laboratoire de Mathematiques
Universite Bordeaux I
351, cours de la Liberation
33405 Talence Cedex
France
e-mail: bachir516@yahoo.fr

https://doi.org/10.1017/S1446788700013045 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013045

