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Abstract

Let p be an odd prime. In this paper, we consider the equation

x2 + p2m = 2yn, gcd(x, y) = 1, n > 2,

and we describe all its solutions. Moreover, we prove that this equation has no solution (x, y, m, n) when
n > 3 is an odd prime and y is not the sum of two consecutive squares. This extends the work of Tengely
[On the diophantine equation x2 + q2m = 2yp, Acta Arith. 127(1) (2007), 71–86].
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1. Introduction

Let Z, N be the sets of all integers and positive integers, respectively. Let p be an odd
prime. The equation

x2 + p2m = 2yn, x, y, m, n ∈ N, gcd(x, y) = 1, n > 2, (1.1)

is an important type of exponential Lebesgue–Ramanujan–Nagell equation. The
literature is very rich and there are many papers discussing the solutions (x, y, m, n)
of (1.1) for special cases. For examples one can refer to [1, 10, 13, 14, 17, 18].
Ljunggren [10] considered the more general equation

Cx2 + D = 2yn, x, y, n ∈ N,

and described the solutions when n satisfies certain conditions.
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In this paper, we describe all solutions of (1.1). We start with some notation. Let
r, s, t, a, b ∈ N. Write

u(t) =
(t−1)/2∑

i=0

(
t
2i

)
2i, v(t) =

(t−1)/2∑
i=0

(
t

2i + 1

)
2i, 2 - t; (1.2)

U(t) =
1

2(t−1)/2

(t−1)/2∑
i=0

(
t
2i

)
3i, V(t) =

1
2(t−1)/2

(t−1)/2∑
i=0

(
t

2i + 1

)
3i, 2 - t; (1.3)

A(2r, a, b) =
2r−1∑
i=0

(
2r

2i

)
a2r−2i(−b2)i,

B(2r, a, b) = ab
2r−1∑
i=0

(
2r

2i + 1

)
a2r−2i−2(−b2)i,

(1.4)

with r ≥ 2, gcd(a, b) = 1, 2 | ab;

C(t, a) =
a

2(t−1)/2

(t−1)/2∑
i=0

(−1)i

(
t
2i

)
at−2i−1,

D(t, a) =
1

2(t−1)/2

(t−1)/2∑
i=0

(−1)i

(
t

2i + 1

)
at−2i−1,

with 2 - at.
The aim of this paper is to prove the following result.

T 1.1. All solutions of (1.1) are included in the following four cases.

(i) If p=3, then (1.1) has only the solutions (x, y, m, n)=(13, 5, 2, 3), (545, 53, 3, 3),
and (79, 5, 1, 5).

(ii) If p satisfies

ps = |A(2r, a, b) ± B(2r, a, b)|, (1.5)

then (1.1) has only the solutions

(x, y, m, n) = (|A(2r, a, b) ± B(2r, a, b)|, a2 + b2, s, 2r). (1.6)

(iii) If p satisfies

ps = U(t), (1.7)

then (1.1) has only the solutions

(x, y, m, n) = (4V3(t) − 3V(t), 2V2(t) − 1, s, 3). (1.8)
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(iv) If p satisfies
ps = |D(q, a)|, (1.9)

where q is an odd prime, then (1.1) has only the solutions

(x, y, m, n) =


(|C(q, 239)|, 13, s, 4q) when a = 239,

(|C(q, u(t))|, v(t), s, 2q) when a = u(t),(
|C(q, a)|,

a2 + 1
2

, s, q
)

when a > 1.

(1.10)

Recently, Tengely [18] used the Gel’fond–Baker method to prove that there exist
only finitely many odd primes p such that (1.1) has the solution (x, y, m, n) with
gcd(x, y) = 1, x, y ∈ N, satisfying the condition

n > 3 is an odd prime, y is not a sum of two consecutive squares. (1.11)

Using Theorem 1.1, we know that if (1.1) has a solution (x, y, m, n) such that n > 3
is an odd prime, then this solution is either in case (i) with the solution

p = 3, (x, y, m, n) = (79, 5, 1, 5), (1.12)

or in case (iv) with the solution

ps = |D(q, a)|, (x, y, m, n) =
(
|C(q, a)|,

a2 + 1
2

, s, q
)
, (1.13)

where q > 3 is an odd prime. For (1.12), y = 5 = 22 + 12 can be denoted as the sum of
two consecutive squares. For (1.13),

y =
a2 + 1

2
=

(a + 1
2

)2

+

(a − 1
2

)2

.

Therefore, we immediately deduce the following result.

C 1.2. For any odd prime p, (1.1) has no solution (x, y, m, n) satisfying
condition (1.11).

We organise this paper as follows. In Section 2, we will recall and prove some
useful properties related to Pell equations and other exponential equations that we will
use to prove Theorem 1.1. In the last section, we combine an elementary method and
the deep result of Bilu et al. [3] to prove Theorem 1.1.

2. Lemmas

Let D be a positive integer which is not a square. By the results in [12] on Pell
equations, we immediately obtain the following two lemmas.
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L 2.1. If the equation

u2 − Dv2 = −1, u, v ∈ N, (2.1)

has a solution (u, v), then there exists a unique solution (u1, v1) of (2.1) such that
u1 + v1

√
D ≤ u + v

√
D. We call (u1, v1) the least solution of (2.1). Any solution of (2.1)

has the form
u + v

√
D = (u1 + v1

√
D)t, t ∈ N, 2 - t.

L 2.2. If the equation

U2 − DV2 = −2, U, V ∈ N, (2.2)

has a solution (U, V), then there exists a unique solution (U1, V1) of (2.2) such that
U1 + V1

√
D ≤ U + V

√
D. We call (U1, V1) the least solution of (2.2). Any solution of

(2.2) has the form

U + V
√

D
√

2
=

(U1 + V1
√

D
√

2

)t

, t ∈ N, 2 - t.

One can easily use Magma [4] to obtain the following result.

L 2.3. The equation

X2 − 5Y4 = ±1, X, Y ∈ N,

has only the solutions (X, Y) = (2, 1) and (9, 2).

The next result was obtained by Lebesgue [8].

L 2.4. The equation

X2 + 1 = Yk, X, Y, k ∈ N, k > 1,

has no solution (X, Y, k).

Ke [7] proved a similar result.

L 2.5. The equation

X2 − 1 = Yk, X, Y, k ∈ N, k > 1,

has only the solution (X, Y, k) = (3, 2, 3).

We prove the next two results.

L 2.6. The equation

X2 + 1 = 2Yk, X, Y, k ∈ N, X > 1, Y > 1, k > 2, (2.3)

has only the solution (X, Y, k) = (239, 13, 4).

https://doi.org/10.1017/S000497271200010X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271200010X


[5] On the exponential Diophantine equation x2 + p2m = 2yn 307

P. We suppose that (X, Y, k) is a solution of (2.3). From a result in [16, see p. 168],
we know that k has no odd prime factor, so we obtain k = 2r, r > 1. From (2.3),

X2 + 1 = 2(Yk/4)4, X, Yk/4 ∈ N, X > 1, Yk/4 > 1. (2.4)

From [9] we know that (2.4) has only the solutions (X, Yk/4) = (1, 1), (239, 13) and the
proof of Lemma 2.6 is complete. �

L 2.7. The equation

Xk + 1 = 2Y2, X, Y, k ∈ N, X > 1, Y > 1, k > 2, (2.5)

has only the solution (X, Y, k) = (23, 78, 3).

P. We suppose that (X, Y, k) is a solution of (2.5). From [2, Theorem 1.1] with
n = k, y = 1, c = 2, we know that k < 4. Multiplying x3 + 1 = 2y2 by 8 we obtain
Y2 = X3 + 8, where X = 2x and Y = 4y. Then we can use Magma [4] to obtain the
following rational points:

(−2 : 0 : 1), (1 : 3 : 1), (2 : −4 : 1), (46 : 312 : 1),

whose corresponding solutions are

(x, y) = (1, 0), ( 1
2 ,

3
2 ), (1, 1), (23, 78).

So the only solution of the equation x3 + 1 = 2y2, with x > 1, y > 1 is (23, 78). This
completes the proof of Lemma 2.7. �

The next result can be seen in [11, Section 15.2].

L 2.8. Let r be a positive odd number. All solutions of the equation

X2 + Y2 = Z2r
, X, Y, Z ∈ N, gcd(X, Y) = 1, 2 | Y, (2.6)

can be expressed as

X + Y
√
−1 = ±(a ± b

√
−1)2r

, Z = a2 + b2, a, b ∈ N, gcd(X, Y) = 1, 2 | ab.

L 2.9. Let t be a positive odd number. All solutions of the equation

X2 + Y2 = 2Zt, X, Y, Z ∈ N, gcd(X, Y) = 1, 2 - XY, (2.7)

can be expressed as

X + Y
√
−1

√
2

= ±

(a ± b
√
−1

√
2

)t

, 2Z = a2 + b2, a, b ∈ N, gcd(X, Y) = 1, 2 - ab.

P. This is a special case of [20, Corollary 3.1], for a = b = 1 and c = 2. �
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L 2.10. The system of equations

X2 − 2Y2 = −1, Z2 − 3Y2 = −2, X, Y, Z ∈ N, (2.8)

has only the solution (X, Y, Z) = (1, 1, 1).

P. If (2.8) has a solution (X, Y, Z) such that (X, Y, Z) , (1, 1, 1), then X, Y, Z are
three positive odd numbers satisfying min(X, Y, Z) ≥ 3 and Z > Y . From (2.8),

Y2 + Z2 = 2X2, gcd(X, Z) = 1. (2.9)

From (2.9), (Z + Y
2

)2

+

(Z − Y
2

)2

= X2,
Z + Y

2
,

Z − Y
2
∈ N,

gcd
(Z + Y

2
,

Z − Y
2

)
= 1, 2

∣∣∣∣∣ (Z + Y
2

)(Z − Y
2

)
.

(2.10)

When (Z − Y)/2 is even, from Lemma 2.8 and (2.10),

Z + Y
2
= a2 − b2,

Z − Y
2
= 2ab, X = a2 + b2,

a, b ∈ N, a > b, gcd(a, b) = 1, 2 | ab. (2.11)

Therefore,
X = a2 + b2, Y = a2 − 2ab − b2. (2.12)

From (2.12) and (2.8),

a4 − 8a3b + 2a2b2 + 8ab3 + b4 = 1.

Using Kant [6], one has (a, b) = (0, ±1), (±1, 0). This is impossible.
Similarly, when (Z − Y)/2 is odd, from (2.10) we know that

X = a2 + b2, Y = −a2 + 2ab + b2,

where a, b satisfy (2.11). We come to the same conclusion. Thus (2.8) has only the
solution (X, Y, Z) = (1, 1, 1) and this completes the proof of Lemma 2.10. �

L 2.11 [5, Theorem 1]. The equation

X2 + 2 = 3k, X, k ∈ N,

has only the solutions (X, k) = (1, 1) and (5, 3).

Let α, β be two algebraic numbers. If (α + β)2 and αβ are two nonzero coprime
rational integers and α/β is not a root of unity, we call (α, β) a Lehmer pair. Suppose
that f = (α + β)2, g = αβ. Then

α = 1
2 (

√
f ±
√

h), β = 1
2 (

√
f ∓
√

h), h = f − 4g.
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The pair ( f , h) is called the parameter of the Lehmer pair (α, β). For a positive
integer k, one defines the corresponding sequence of Lehmer numbers by

Lk(α, β) =


αk − βk

α − β
when 2 - k,

αk − βk

α2 − β2
when 2 | k.

(2.13)

All Lehmer numbers are nonzero rational integers.
If two Lehmer pairs (α1, β1) and (α2, β2) satisfy α1/α2 = β1/β2 ∈ {±1, ±

√
−1}, then

we call them equivalent. When two Lehmer pairs (α1, β1) and (α2, β2) are equivalent,
then Lk(α1, β1) = ±Lk(α2, β2), for k ∈ N. When k > 1, a prime number p is a primitive
divisor of Lk(α, β) if p | Lk(α, β) and p - (α2 − β2)2L1(α, β) · · · Lk−1(α, β).

L 2.12 [19]. When 6 < k ≤ 30 and k , 8, 10, 12, if Lehmer numbers Lk(α, β)
have no primitive divisor, then, equivalently, the parameters of the corresponding
Lehmer pair (α, β) must be:

(i) k = 7, ( f , h) = (1, −7), (1, −19), (3, −5), (5, −7), (13, −3), (14, −22);
(ii) k = 9, ( f , h) = (5, −3), (7, −1), (7, −5);
(iii) k = 13, ( f , h) = (1, −7);
(iv) k = 14, ( f , h) = (3, −13), (5, −3), (7, −1), (7, −5), (19, −1), (22, −14);
(v) k = 15, ( f , h) = (7, −1), (10, 2);
(vi) k = 18, ( f , h) = (1, −7), (3, −5), (5, −7);
(vii) k = 24, ( f , h) = (3, −5), (5, −3);
(viii) k = 26, ( f , h) = (7, −1);
(ix) k = 30, ( f , h) = (1, −7), (2, −10).

The following result is [3, Theorem 1.4].

L 2.13. When k > 30, Lehmer numbers Lk(α, β) have primitive divisors.

Properties 3.4 and 3.5 of [15] give the following lemma.

L 2.14. If p is a primitive divisor of a Lehmer number Lq(α, β), where q is an
odd prime, then p ≡ ±1 (mod 2q).

3. Proof of Theorem 1.1

Suppose that (x, y, m, n) is a solution of (1.1). As p is an odd prime, x and y are
positive odd numbers relatively prime to p.

When n is a power of 2, since n > 2,

n = 2r, r ∈ N, r ≥ 2. (3.1)

From (1.1) and (3.1), ( x + pm

2

)2

+

( x − pm

2

)2

= y2r
, (3.2)
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where (x + pm)/2 and |x − pm|/2 are two coprime positive integers and one is odd and
the other is even.

If |x − pm|/2 is even, then from Lemma 2.8 and (3.2), we know that

x + pm

2
+
|x − pm|

2

√
−1 = ±(a ± b

√
−1)2r

, (3.3)

y = a2 + b2, a, b ∈ N, gcd(a, b) = 1, 2 | ab. (3.4)

From (1.4), we know two rational integers A(2r, a, b) and B(2r, a, b) satisfying

A(2r, a, b) + B(2r, a, b)
√
−1 = (a + b

√
−1)2r

, (3.5)

so, from (3.3) and (3.5),

x = |A(2r, a, b) ± B(2r, a, b)|, pm = |A(2r, a, b) ∓ B(2r, a, b)|. (3.6)

Similarly, if |x − pm|/2 is odd, then, from (3.2),

|x − pm|

2
+

x + pm

2

√
−1 = ±(a ± b

√
−1)2r

(3.7)

and (3.4). From (3.5) and (3.7), we know that x and pm also satisfy (3.6). So from
(3.1), (3.4) and (3.5), we know that if p satisfies (1.5), then (1.1) has the solution (1.6)
in case (ii).

If n is not a power of 2, then n must have an odd prime factor q and (1.1) can be
rewritten as

x2 + (pm)2 = 2(yn/q)q, gcd(x, pm) = 1. (3.8)

From Lemma 2.9 and (3.8),

x + pm
√
−1

√
2

= ±

(a ± b
√
−1

√
2

)q

, (3.9)

2yn/q = a2 + b2, a, b ∈ N, gcd(a, b) = 1, 2 - ab. (3.10)

Let

α =
a + b

√
−1

√
2

, β =
a − b

√
−1

√
2

. (3.11)

Using (3.10) and (3.11), we know that both α and β are algebraic integers, (α + β)2 =

2a2 and αβ = yn/q are two coprime positive integers, and

α

β
=

a2 − b2

2
+ ab
√
−1

yn/q

is not a root of unity. Therefore, (α, β) is a Lehmer pair with the parameter (2a2, −2b2).
Suppose Lk(α, β), k ∈ N, is the corresponding Lehmer number. Using (2.13), (3.9) and
(3.11), we see that

pm = b|Lq(α, β)|. (3.12)
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We know that p is an odd prime and Lq(α, β) is a nonzero rational integer, so, from
(3.12),

b = pr, r ∈ Z, 0 ≤ r ≤ m. (3.13)

If r = 0 then b = 1, and from (3.9) and (3.10) we obtain

x = |C(q, a)|,

pm = |D(q, a)|,

and
a2 + 1 = 2yn/q. (3.14)

If n/q > 2, from Lemma 2.6 and (3.14),

a = 239, y = 13, n = 4q.

If n/q = 2, (3.14) becomes

u2 − 2v2 = −1, u, v ∈ N (3.15)

with (u, v) = (a, y). Since the least solution of (3.15) is (u1, v1) = (1, 1), from
Lemma 2.1 we obtain

a = u(t), y = v(t), n = 2q,

where u(t) and v(t) satisfy (1.2).
If n/q = 1, (3.14) gives

y =
a2 + 1

2
, n = q, a ∈ N, a > 1, 2 - a. (3.16)

Therefore, if p satisfies (1.9) then (1.1) has the solution (1.10) in case (iv).
If r > 0 and q > 5, then from (3.12) and (3.13) we know that the Lehmer number

Lq(α, β) has no primitive divisors by Lemmas 2.12 and 2.13 as the parameter is
(2a2, −2b2). So we will only consider the cases r > 0 and q ∈ {3, 5}.

If 0 < r < m and q = 3, then from (3.12) and (3.13) we know that b = pr and

pm−r =
|3a2 − p2r |

2
. (3.17)

As gcd(a, b) = 1, using (3.17) we know that p = 3, r = m − 1, b = 3m−1 and

a2 + 2 = 32m−3. (3.18)

Lemma 2.11 and (3.18) imply that (a, m) = (1, 2) and (5, 3). Therefore, we have the
following two solutions of (1.1):

p = 3, (x, y, m, n) = (13, 5, 2, 3), (545, 53, 3, 3). (3.19)

If r = m and q = 3, then (3.12) and (3.13) give b = pm and

p2m − 3a2 = −2. (3.20)

Equation (3.20) can be transformed into the form

U2 − 3V2 = −2, (3.21)
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where (U, V) = (pm, a). We know that the least solution of (3.21) is (U1, V1) = (1, 1).
So Lemma 2.2 implies that

pm = U(t), a = V(t), (3.22)

where U(t) and V(t) satisfy (1.3). Since q = 3, from (3.10) and (3.22), we deduce that

yn/3 =
a2 + b2

2
=

V2(t) + U2(t)
2

= 2V2(t) − 1. (3.23)

If n/3 > 2, then using Lemma 2.7 and (3.23), we get a = V(t) = 78. This contradicts
(3.10) as a is an odd number. If n/3 = 2, then Lemma 2.10, (3.20), and (3.23)
imply that (X, Y, Z) = (y, V(t), a) = (1, 1, 1), which is impossible. So we have n/3 = 1.
Therefore, from (3.9), (3.22) and (3.23), we know that if p satisfies (1.7), then (1.1)
has the solution (1.8) in case (iii).

If 0 < r < m and q = 5, then we use (3.9), (3.12) and (3.13) to get b = pr and

pm−r = 1
4 |5a4 − 10a2 p2r + p4r |. (3.24)

Since gcd(a, b) = 1, (3.24) implies that p = 5, r = m − 1, b = 5m−1 and

a4 − 2 · 52m−2a2 + 54m−5 = ±4. (3.25)

From (3.25), (a2 − 52m−2

2

)2

− 54m−5 = ±1.

As m > 1, 4m − 5 > 1, then by Lemmas 2.4 and 2.5 this is impossible. Thus there is no
solution when 0 < r < m and q = 5.

If r = m and q = 5, then b = pm and we use the above method to obtain

5a4 − 10a2 p2m + p4m = ±4,

that is, ( p2m − 5a2

2

)2

− 5a4 = ±1. (3.26)

We know that a is a positive odd number. Then Lemma 2.3 and (3.26) imply that a = 1
and |p2m − 5a2| = |p2m − 5| = 4. Thus, b = pm = 3. Using (3.9) and (3.10), we obtain
the following solution of (1.1):

p = 3, (x, y, m, n) = (79, 5, 1, 5). (3.27)

So far we have obtained all solutions of (1.1) in cases (ii), (iii), and (iv).
Finally, we will consider case (i). If p = 3, then from (3.19) and (3.27), we know
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that (1.1) has at least three solutions:

(x, y, m, n) = (13, 5, 2, 3), (545, 53, 3, 3), (79, 5, 1, 5). (3.28)

If (1.1) has the solution (x, y, m, n) in case (ii), then as 3 - xy and n = 2r, by
considerations modulo 3, (1.1) gives x2 + p2m ≡ x2 ≡ 1 ≡ 2 ≡ 2y2r

(mod 3), which is
a contradiction. If (1.1) has a solution in case (iii), then one can use (1.7) and (3.21) to
get 0 ≡ p2s ≡ U2(t) ≡ 3V2(t) − 2 ≡ −2 (mod 3), which is also a contradiction. If (1.1)
has a solution in case (iv), then (1.9) implies that 3 is a primitive divisor of a Lehmer
number Lq(α, β). So by Lemma 2.14, 3 ≡ ±1 (mod 2q). This is impossible. Therefore,
when p = 3, (1.1) has only the three solutions given in (3.28). This completes the proof
of Theorem 1.1.
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