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With a view to numerical modelling and optimisation of wave energy farms, a simple
recursive formulation is employed to solve for the reflection and transmission of
plane water waves by a number of rows of vertical obstacles, under the wide-spacing
approximation. The proposed recursive formulation relies on the ‘concatenation’ of any
two sets of obstacles, for which the reflection–transmission problem is already resolved.
Furthermore, the obstacles are allowed to move in any combination of pitch and surge. The
proposed recursive model is validated by means of physical experiments in a small-scale
wave flume, whereby waves are reflected and transmitted by one, two and three rows
of vertical, flexible blades, taking into account dissipation within the fluid along the
wave propagation direction. For the special case of identical, regularly spaced rows,
under the adopted formalism, distinct theoretical behaviours are highlighted, depending
on whether or not individual obstacles absorb (or dissipate) energy as they interact with
incoming waves. In a ‘non-dissipative’ case, the well known fact that discrete values of the
row-to-row distance L completely cancel reflection is retrieved, as well as the existence of
‘band-gap’ intervals, i.e. intervals for L where reflection is high, with maximum reflection
occurring away from the Bragg condition. In contrast, when the obstacles dissipate or
absorb energy as they interact with the fluid, reflection is always non-zero, and, as the
number of rows tends to infinity, forms marked Bragg peaks, reaching unity when L is a
multiple of half a wavelength.
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1. Introduction

Ocean waves transport massive amounts of energy. In terms of power per metre of
wavefront, the monthly median power from wind waves above 30 ◦N for instance, ranges
from 17 to 130 kW m−1 (Arinaga & Cheung 2012). Wave energy has the potential to
be transformed into useful energy (Callaway 2007). In the case of Europe, it could be a
significant contributor to the electricity supply, with an estimated 300–400 GW potential
along European Atlantic coastlines alone (Babarit 2017). In addition to being a source of
clean, renewable power, large arrays of wave energy absorbing structures may also serve
the objective of mitigating coastal erosion along the shoreline (Nové-Josserand et al. 2018),
mimicking the wave reduction effect of natural coastal defences such as mangroves, salt
marshes or seagrass and kelp beds (Abanades, Greaves & Iglesias 2015; Narayan et al.
2016).

Among wave energy converter concepts, oscillating wave surge converters (OWSCs),
which primarily exploit the horizontal fluid motion, are identified as one of the most
promising and mature technological options (Babarit 2017). Traditional OWSC designs
consist of a rigid flap, oscillating around a rotation point, which can be fixed to the
sea bed or floating (Sarkar, Renzi & Dias 2014). Recent work (Nové-Josserand 2018;
Nové-Josserand et al. 2018) has investigated an artificial canopy of bio-inspired, flexible
OWSCs, with the two objectives of coastline protection and energy harvesting. These
arrays of flexible structures may indeed present benefits in terms of survivability and
absorption capabilities, in the same way that aquatic vegetation can withstand and dissipate
surface wave energy (Koehl & Wainwright 1977; Denny & Gaylord 2002). From the
theoretical point of view, on the one hand, each flexible element of the artificial canopy
acts as an oscillator, with its intrinsic natural frequency or damping coefficient. On the
other hand, the array as a whole can be viewed as a metamaterial, with properties related
to its internal structure, such as the existence of crystallographic effects analogue to
those observed in solid-state physics or acoustics, e.g. Bragg resonances (Garnaud &
Mei 2009; Arnaud et al. 2017; Rey et al. 2018). Several studies have explored these
ideas in different systems designed in view of engineering water wave propagation,
ranging from the refraction phenomenon of water waves propagating through an array of
bottom-mounted structures (Hu & Chan 2005; Arnaud et al. 2017), to the tuning of the sea
bed topography (Davies & Heathershaw 1984; Berraquero et al. 2013), or the deployment
of floating membranes with a crystalline array of defects that confer unique propagation
features to the hydroelastic waves that ensue (Domino, Fermigier & Eddi 2020). Rey et al.
(2018) study the propagation of water waves through dense and sparse arrays of vertical,
bottom-mounted cylinders, including the reflection of oblique flume modes in the analysis.
For dense arrays (where cylinder spacing in the wave direction is much smaller than the
wavelength), the cylinder array is better treated as a porous medium, while Bragg reflection
patterns become governed by the array length, as opposed to the cylinder spacing (Arnaud
et al. 2017; Rey et al. 2018).

In order to assess the potential, and improve the design of such flexible OWSC arrays,
it is necessary to articulate individual OWSC parameters, together with the array layout,
within a reasonably detailed dynamical model. Ideally, an appropriate dynamical model
should be able to predict global quantities, such as the reflected, transmitted, absorbed
and dissipated energy, as well as more detailed information on the dynamics of individual
flexible OWSCs, such as wave loads, motion and energy absorption. The present work
paves the way towards those objectives.

In the work of Nové-Josserand, Godoy-Diana & Thiria (2019), assuming that flexible
OWSCs are arranged in several rows parallel to the wavefront, a simple interaction
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model is proposed, which allows for assessing the effects of various parameters upon
the global reflection and transmission coefficients of the array (see also Renzi & Dias
(2012)). Analytical formulations are derived, which relate the transmission and reflection
coefficients of a single row, as well as the spacing between rows, to the transmission and
reflection coefficients of the whole array. Those formulae, however, neglect successive
reflections between non-neighbouring rows within the array. Furthermore, since reflection
and transmission coefficients are represented as real numbers, the model does not account
for the possible phase shift, induced by transmission and reflection.

In this work, building upon the ideas of Nové-Josserand et al. (2019), an improved
interaction model, similar to the one in Evans (1990), is proposed, which does not neglect
interactions between any pair of rows, and considers complex reflection and transmission
coefficients. Using the wide-spacing approximation, the proposed model is based on an
iterative approach, whereby the transmission–reflection problem is solved recursively as
new rows are successively added to the array. The recursion proposed in the present
study determines the reflection and transmission coefficients for the concatenation of
any two arrays, of which the reflection and transmission coefficients are already known.
Furthermore, the obstacles are allowed to move, and absorb energy, in any combination of
surge and pitch. Finally, wave dissipation within the fluid along the propagation direction
is taken into account within the model.

The interaction model is validated against the results of physical experiments carried
out by Nové-Josserand et al. (2019), whereby several rows of vertical, flexible blades are
subject to regular plane waves in a small-scale wave flume. Experimental results support
the model accuracy.

Taking a step back from the specific problem of flexible OWSCs, the paper then focuses
on the case of arrays made of identical, regularly spaced rows of obstacles. Exact formulae
are retrieved for the array reflection and transmission coefficients, as functions of the
properties of individual rows and array spacing, as well as asymptotic expressions when
the number of rows tends to infinity. Although the derivation of those formulae does not
differ, in principle, from existing work such as Linton (2011), in the present study the
individual transmission and reflection coefficients are expressed in a formalism which
emphasises the role of energy dissipation or absorption by the obstacles. As a result, the
formulae obtained for the global array reflection and transmission highlight the existence
of two significantly different behaviours, depending on whether or not the interaction
between the wave and individual rows involves energy absorption (or dissipation).

The remainder of this paper is organised as follows. The problem and associated
assumptions are defined in § 2. Section 3 presents a recursion relation to solve the reflection
and transmission problem. In § 4, the predictions of the proposed model are compared with
experimental results. In § 5, the special case of N identical rows is given special attention.
Conclusions are provided in § 6.

2. Problem definition and assumptions

2.1. Overview of the problem
Consider an array of thin, vertical structures arranged in parallel rows, such as that
illustrated in figure 1, where the extent of each row is infinite along the y axis. The water
depth is assumed constant. The undisturbed incident wave is a plane wave propagating in
the x direction, orthogonal to the rows. The array is assumed periodic in the y direction,
with periodicity smaller than the wavelength; in other words, λ > l + W. Therefore,
transverse modes can be neglected (Dalrymple & Martin 1990).
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Incoming wave direction
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Figure 1. An array of wave absorbing vertical blades.

The incoming wave is described by means of the free-surface elevation (FSE), η0, given
by the following equation:

η0(x, t) = Re{η̂0 exp(i(kx − ωt))}, (2.1)

where k = 2π/λ is the wavenumber, ω is the wave frequency and η̂0 is the complex
wave amplitude. As the incoming plane wave travels through a given row, the wave–row
interaction results in a transmitted plane wave and a reflected plane wave. Transmitted
and reflected wave amplitudes are deduced from the incoming plane wave through
transmission and reflection coefficients, respectively. Such a simple representation omits
the evanescent modes, which are essential to describe the flow in the close vicinity of each
row of obstacles. This implies, in particular, that the rows are sufficiently far from each
other (Evans 1990), hence the terminology ‘wide-spacing approximation’ (also known as
‘plane wave approximation’ in naval and offshore hydrodynamics). In theory, row-to-row
distances greater than one wavelength are necessary for the wide-spacing approximation to
be theoretically consistent (Martin 1984), although many studies (McIver & Bennett 1993;
chapter 6 of Linton & McIver 2001; chapter 3 of Li 2006) find, through comparison with
more accurate numerical techniques, that the wide-spacing approximation results remain
accurate for distances significantly smaller than the wavelength. Also note that the wide
spacing approximation does not assume that evanescent modes are non-existent: it merely
assumes that they can be neglected when analysing row-to-row interaction. The wave field,
as computed through the wide-spacing approximation, is only a partial description of the
exact wave field, valid outside the close vicinity of the rows considered.

Finally, the interaction theory presented in this work does not assume identical rows:
the obstacle characteristics, as well as their spacing, may vary across rows, but not within
a given row; furthermore, the distance between consecutive rows may also vary.

2.2. Diffraction problem for a single row of fixed obstacles
First consider a single row of fixed obstacles, which constitutes a diffraction problem. For
example, concerning the obstacles illustrated in figure 1, this assumption implies that the
blades are infinitely rigid. The fixed row, located at a position x1, is subject to an incoming
wave described as in (2.1). The wave, transmitted by the obstacle, propagates in the positive
x direction, and can be written as follows:

ηt(x, t) = Re{t̂η̂0 exp(i(kx − ωt))}, x > x1. (2.2)
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The reflected wave takes the form

ηr(x, t) = Re{r̂η̂0 exp(i(k(2x1 − x)− ωt))}, x < x1. (2.3)

In (2.2) and (2.3), t̂ and r̂ are complex-valued transmission and reflection coefficients,
which apply a change in amplitude and a phase shift to the incoming wave as it reaches
the obstacle position. The coefficients t̂ and r̂ depend on the obstacle geometry, and on the
incoming wave frequency. Also note that, since the row is thin, it is considered to have a
plane of symmetry transverse to the x axis; therefore, the reflection coefficient is identical
for incoming waves propagating in the positive and in the negative x directions.

It is possible to state a few general properties which r̂ and t̂ must satisfy (Linton 2011).
In linear wave theory, and considering no energy absorption or dissipation at the interface
with the obstacles, preservation of energy implies that the row reflection and transmission
coefficients satisfy the following equality:

|t̂|2 + |r̂|2 = 1. (2.4)

Equation (2.4) can be verified, for example, in Ursell (1947), for the case where the
rows of blades in figure 1 are replaced with infinitely long, submerged vertical barriers,
extending along the whole y axis, or in Linton (2011) for the case of submerged, horizontal
cylinder extending along the y direction.

In the more general case, where some of the incoming wave energy can be dissipated at
the interface with the obstacle, energy conservation implies the following inequality (see
e.g. Isaacson, Premasiri & Yang (1998) for a vertical slotted barrier):

|t̂|2 + |r̂|2 ≤ 1. (2.5)

Note that the energy-preservation property, whether it takes the form of (2.5) or (2.4),
should also be satisfied by the array as a whole.

Considering infinitely thin rows (or at least sufficiently thin with respect to the
wavelength), the following relation must hold between the complex reflection and
transmission coefficients r̂ and t̂:

t̂ + r̂ = 1. (2.6)

Indeed, one may think of the row, excited by two incoming waves of identical amplitude,
and propagating in opposite directions. The two incoming waves together form a standing
wave pattern. At the antinodes of the standing waves (i.e. at the locations where the
wave amplitude is the largest), the horizontal fluid velocity is zero along the whole water
column. Therefore, by synchronising the two exciting waves in such a way that the obstacle
is at one such antinode, the no-flow boundary conditions on the obstacle vertical boundary
are naturally satisfied. The presence of the obstacle thus leaves the flow unchanged.
Formulated in terms of the reflection and transmission coefficients, this is simply written
as t̂ + r̂ = 1. This can be verified, for example, in Huang (2007), for the case of porous
vertical barriers, or in Ursell (1947), for the case of impermeable vertical barriers covering
some fraction of the distance between the surface and the sea bottom. If the assumption
that the row is infinitely thin is removed, the relation r̂ + t̂ = 1 may be replaced with
|r̂ + t̂| = 1 (Linton 2011), with little changes in the calculations carried out in § 5.

The properties represented by (2.6), (2.4) and (2.5) may be visualised geometrically,
as shown in figures 2(a) (for a non-dissipative case) and 2(b) (in the general case). With
a non-dissipative interaction, t̂ and r̂ can be visualised in the complex plane as forming
two sides of a right-angled triangle, of which the hypotenuse is of unitary length, as seen
in figure 2(a). In contrast, a dissipative case is shown in figure 2(b). Energy preservation
implies that t̂ must lie inside the circle represented in the figure.
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Figure 2. Complex transmission and reflection coefficients for a row of obstacles, (a) when no energy
dissipation takes place at the interface and (b) when the interaction with the obstacle dissipates some energy.

2.3. Pitching and surging obstacles
In the foregoing section, the obstacles were considered fixed. However, pitching and
surging obstacles, such as rigid or flexible OWSCs, can be modelled in the same way. Let
r̂d and t̂d be the reflection and transmission coefficient of an individual row, assumed fixed
(d stands for diffraction). When the obstacles are oscillating, the reflected and transmitted
waves are the sum of diffraction and radiation effects, the latter being the effect of the
obstacle oscillating motion. Let ĥ+

rad and ĥ−
rad be the two coefficients such that for forced

pitching or surging oscillations with complex velocity amplitude ˆ̇Θ , the wave radiated
backward has amplitude ĥ−

rad
ˆ̇Θ , and the wave radiated forward has amplitude ĥ+

rad
ˆ̇Θ .

Because of the obstacle symmetry, ĥ−
rad and ĥ+

rad verify that ĥ−
rad = −ĥ+

rad. Consider an
incoming wave η̂0 propagating forward from x = −∞. Let Ĥ+ denote the transfer function
that relates the incoming wave to the row oscillation velocity, i.e. ˆ̇Θ = Ĥ+η̂0. Under wave
excitation, the reflected wave thus has complex amplitude (r̂d − ĥ+

radĤ+)η̂0, while the
transmitted wave has amplitude (r̂d + ĥ+

radĤ+)η̂0.
The reflection and transmission coefficients r̂ = r̂d − ĥ+

radĤ+ and t̂ = r̂d + ĥ+
radĤ+ also

satisfy (2.6) and (2.4) (if no energy is dissipated or absorbed by the oscillating obstacles),
or (2.6) and (2.5) (if some energy is dissipated or absorbed by the oscillating obstacles).

3. A recursive numerical approach

In this section, the case of several rows is considered. As illustrated in figure 3, each row
n is located at a position xn along the x axis, and is characterised by its transmission and
reflection coefficients, t̂n and r̂n, respectively.

Define X0,X1, . . . ,XN such that X0 < x1, xN < XN , and, for every n such that 0 < n <
N, xn < Xn < xn+1. In the fluid domain surrounding Xn, and delimited by the previous and
next rows, the wave field is specified by means of two coefficients η̂+

n and η̂−
n , representing

‘forward’ and ‘backward’ complex wave amplitudes, such that

η(x, t) = Re{η̂+
n exp(i(k(x − Xn)− ωt))+ η̂−

n exp(i(−k(x − Xn)− ωt))}. (3.1)

For n = 0 (respectively, n = N), the domain where (3.1) is valid extends towards −∞
(respectively, +∞). Furthermore, if incoming waves propagate from −∞ in the positive
x direction, η̂+

0 represents the forcing term of the whole system, while η̂−
N = 0, i.e. there is

no incoming wave propagating from +∞.
Consider a section S of the array comprised between X and X′, with one or more

obstacles located inside the interval [X; X′]; S is represented in figure 4. Define the
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…

Figure 3. Wave transmission and reflection through N obstacles.
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S
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Figure 4. Wave transmission and reflection through a domain S (a), a domain S ′ (b) and a domain S ′′ that is
the combination of S and S ′ (c).

‘forward’ and ‘backward’ complex wave amplitudes η̂+ and η̂− such that, in the
neighbourhood of X, the FSE is written as follows:

η(x, t) = η̂+ exp(i(k(x − X)− ωt))+ η̂− exp(i(−k(x − X)− ωt)). (3.2)

Similarly, define the complex wave amplitudes η̂′+ and η̂′− such that, in the neighbourhood
of X′, the FSE is written as follows:

η(x, t) = η̂′
+ exp(i(k(x − X′)− ωt))+ η̂′

− exp(i(−k(x − X′)− ωt)). (3.3)

Assume that the reflection and transmission problems have been solved for the domain
S = [X; X′], i.e. that complex coefficients R−, R+, T+ = T− = T have been found, such
that, for incident wave components η̂+ and η̂′− propagating into the domain S , the wave
components η̂− and η̂′+, propagating away from S , are derived as follows:

η̂− = R+η̂+ + Tη̂′
−,

η̂′
+ = R−η̂′

− + Tη̂+.

}
(3.4)
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In the above expression, the ‘forward’ and ‘backward’ transmission coefficients, T+ and
T−, are assumed identical, which will receive proper justification subsequently.

Similarly, let S ′ be the domain comprised between X′ and another position X′′ > X′, and
represented in figure 4. Complex coefficients R′−, R′+, T ′ have been found, such that, for
incident wave components η̂′+ and η̂′′−, the wave components η̂′− and η̂′′+ are determined as
follows:

η̂′
− = R′

+η̂
′
+ + T ′η̂′′

−,

η̂′′
+ = R′

−η̂
′′
− + T ′η̂′

+.

}
(3.5)

Now define S ′′ as the domain extending from X to X′′, as represented in figure 4. By
combining (3.4) and (3.5), it is straightforward to obtain a linear relation between {η̂+, η̂′′−},
on the one hand, and {η̂−, η̂′′+} on the other hand, such that

η̂− = R′′
+η̂+ + T ′′η̂′′

−,

η̂′′
+ = R′′

−η̂
′′
− + T ′′η̂+,

}
(3.6)

where the coefficients R′′+, R′′− and T ′′ are calculated as follows:

R′′
+ = R− − R′−(R+R− − T2)

1 − R′−R+
,

R′′
− = R

′
+ − R+(R′+R′− − T ′2)

1 − R′−R+
,

T ′′
+ = T ′′

− = T ′′ = T ′T
1 − R′−R+

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

Note that, in the above expression, if both S and S ′ satisfy the condition that their forward
and backward transmission coefficients are identical, the same holds for S ′′.

The recursion of (3.7) can be put into practice by defining the elementary domains Sn for
n = 1, . . . ,N, only containing the nth row, and extending from Xn−1 to Xn. For one such
domain, it is easy to find that the transmission and reflection coefficients are as follows:

Tn = t̂n exp(ik(Xn − Xn−1)), (3.8)

Rn+ = r̂n exp(2ik(xn − Xn−1)), (3.9)

Rn− = r̂n exp(2ik(Xn − xn)). (3.10)

The recursion can be initiated using the elementary domain containing the first row,
thus obtaining T1, R+

1 and R−
1 . Additional rows are then added sequentially through

the use of (3.7). It can be seen that, for every elementary domain, the forward and
backward transmission coefficients are identical, and that this property is preserved
through successive iterations of (3.7), which justifies a posteriori the simplifications in
(3.4) and (3.5).

The above recursion yields the global transmission and reflection coefficients of the
array, denoted as T{1,...,N}, R+

{1,...,N} and R−
{1,...,N}. For a given incident wave η̂+

0 , the wave
field between each pair of consecutive rows, i.e. η̂+

n and η̂−
n , can be reconstructed. To that

end, the reflected wave coefficient η̂−
0 is first calculated as η̂−

0 = R+
{1,...,N}η̂

+
0 . Then, other
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coefficients η̂+
n and η̂−

n for n > 0 are calculated recursively using the relations

η̂+
n = Tnη̂

+
n−1 + R−

n η̂
−
n ,

η̂−
n−1 = Tnη̂

−
n + R+

n η̂
+
n−1,

}
(3.11)

rearranged into

η̂+
n = T2

n − R+
n R−

n

Tn
η̂+

n−1 + R−
n

Tn
η̂−

n−1,

η̂−
n = −R+

n

Tn
η̂+

n−1 + 1
Tn
η̂−

n−1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.12)

This completes the description of the plane waves across the whole array.
In the above developments, it is assumed that, behind the last row, waves are free to

propagate away from the array (η̂−
N = 0). However, it can be of interest to investigate

the case where waves are blocked by some reflecting structure (e.g. the coastline) behind
the last row. In such a case, it is easy to simply add one more row, characterised by a
transmission coefficient equal to zero, and follow the very same procedure.

An important extension of the proposed approach consists of modelling some
dissipation within the fluid, by defining

Tn = t̂n exp(iκ(Xn − Xn−1)),

Rn+ = r̂n exp(2iκ(xn − Xn−1)),

Rn− = r̂n exp(2iκ(Xn − xn)),

⎫⎪⎬
⎪⎭ (3.13)

with κ defined as κ = k + iν, where ν > 0 is some dissipation factor. The inclusion of
such a dissipation factor is crucial in the analysis of small-scale experimental data, as
reported in § 4.

It can easily be shown that, by choosing Xn = xn+1, the recursion of (3.12) coincides
with the one proposed by Evans (1990). Finally, from an array optimisation perspective,
the proposed ‘concatenation’ formulae of (3.7) are advantageous, since they allow the
combination of arbitrary array sections.

4. Experimental validation

4.1. Experimental procedure
The proposed recursive numerical approach is validated by means of an experimental data
set, recorded by Nové-Josserand et al. (2019). The set-up consists of a small-scale wave
flume (0.6 m wide, 1.8 m long), with a wave maker at one end and a sloped damping beach
at the other end. The water depth is 8 cm. Flexible, vertical blades are placed in the wave
flume, arranged in one, two and three rows extending along the width of the wave flume. In
these experiments, the blades are surface piercing (although this is not necessary to employ
the theory of §§ 2 and 3). A three-dimensional map η(x, y, t) of the FSE is recorded by
means of an optical measurement system, as reported briefly in Appendix A, and in more
detail in chapter 3 of Nové-Josserand (2018). All three-dimensional mappings of the FSE
are averaged along the y axis, i.e. along the flume width, so that each experiment yields a
signal η(x, t). All experiments are carried out using the same excitation frequency (5 Hz),
close to the blade resonant frequency (Nové-Josserand et al. 2019). A descriptive sketch
of the experimental set-up is shown in figure 5.
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Camera
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5 HzWavemaker

Figure 5. Schematic diagram of the experimental set-up.

In each longitudinal position x, the η(x, t) signal is Fourier filtered at the 5 Hz excitation
frequency, in order to cancel parasitic frequencies due, for example, to undesired transient
events. An example of experimentally recorded signal η(x, t) is shown in figure 6 (before
and after Fourier filtering). Marked reflection patterns are visible in the up-wave zone.

The experimental validation procedure relies on the following steps.

(i) Estimate the reflection and transmission coefficients r̂ and t̂ of a single row of
obstacles, from the results of a single-row experiment.

(ii) Estimate the reflection and transmission coefficients R2, T2,R3, T3 of two-
and three-row arrays, for different configurations in terms of spacing between
consecutive rows.

(iii) Compare R2, T2,R3, T3 with their theoretical counterparts, computed using the
wide-spacing recursive model proposed in § 3.

However, before the steps outlined above can be followed, several practical challenges must
be overcome. First of all, because of the small size of the wave flume, wave dissipation
is expected to have a significant impact on observed results. Therefore, the results of a
blade-free experiment are used to calibrate the coefficient ν of an exponential dissipation
law as in (3.13). The procedure to calculate ν is reported in more detail in Appendix A.

Furthermore, the observed wavelength (λ = 6.90 cm) departs slightly from that
expected from linear wave theory (λ = 6.67 cm) for capillary-gravity waves (see
Appendix A). Accurate measurement of λ was found to be highly important, especially
in the process of estimating the phase of reflection and transmission coefficients. To
that end, the spatial autocorrelation a(�x) = E[η(x, t)η(x +�x, t)] was calculated in the
blade-free experiment, and λ = 6.90 cm was obtained as the distance between successive
maxima of the autocorrelation function (more specifically, taking the distance between
five consecutive maxima allows for excellent accuracy, below 1 %.) In addition, bearing in
mind that surface tension might vary slightly across experiments, depending on impurities
at the water surface, it was verified that λ remained consistent across all four sets of
experiments.

Finally, the recorded signal η(x, t) must be decomposed into two free wave components
η̂+ and η̂− propagating in the positive and negative x directions, respectively.
Those two components are required in order to estimate the array reflection and
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Figure 6. Experimental signal η(x, t) for N = 2 and L/λ = 0.5, prior to Fourier filtering (a) and after Fourier
filtering (b). Dotted, white lines indicate the longitudinal locations of the two rows.

transmission coefficients. In this work, η̂+ and η̂− are estimated based on a least squares
method, thoroughly detailed in Appendix A.

4.2. Experimental results
The magnitude and phase of the transmission coefficient of a single row of flexible blades
are found to be |t̂| ≈ 0.73 and φt ≈ 0.1 rad (see in Appendix A how uncertainty in λ
and ν is accounted for in the estimate of t̂). Note that, given those values, the row of
blades is a ‘dissipating’ obstacle, since clearly |t̂|2 + |r̂|2 = |t̂|2 + |1 − t̂|2 ≈ 0.61 < 1 (see
Appendix A). The missing energy is dissipated either internally (through bending) or
through viscous effects.

In the set of experiments with N = 2 rows, the first row (i.e. the farther up-wave) is
held fixed, while the spacing L between both rows is gradually increased by changing the
second row position; L thus covers a range of discrete values, between approximately 0.25
and one wavelength.

Figure 7 compares the reflection and transmission magnitudes obtained experimentally
(crosses), with their theoretical counterparts (thick dotted and solid lines) predicted by the
recursive model, including dissipation along the wave flume as in (3.13). The effect of
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Figure 7. Reflection and transmission magnitudes as a function of L/λ, obtained experimentally (crosses),
and from the recursive theoretical model (thick lines, dotted and solid) for N = 2 rows.
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Figure 8. Reflection and transmission magnitudes as a function of L23/λ, obtained experimentally (crosses),
and from the recursive theoretical model (thick lines, dotted and solid) for N = 3 rows.

parameter uncertainty is also visualised, by plotting the model reflection and transmission
coefficients, obtained when |t̂| is changed by ±5 % (thin lines, below and above the
nominal results). Taking into account the significant sensitivity of the model results to
the identified t̂ magnitude, the agreement between experimental and predicted coefficients
can be considered excellent, although transmission seems to be slightly overestimated by
the model.

In the experimental data set with N = 3, the length L12 between the first two rows is held
fixed to approximately 0.25λ, while L23 is gradually increased. As evidenced by figure 8,
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Water wave propagation through arrays of vertical obstacles

the agreement between the model and experimental results remains satisfactory, although
the model slightly underestimates reflection.

5. The particular case of identical rows

In this section, the case of identical rows is considered, whereby every row has the same
transmission and reflection coefficients t̂ and r̂, and the distance between each pair of
consecutive rows is L. Indeed, in such a case, analytical formulae can be found for the
array reflection and transmission coefficients (Evans 1990; Linton 2011). Several important
results arise, regarding the effect of L upon the array reflection properties, such as the
existence of discrete values which completely cancel reflection, and the existence of
‘band-gaps’, i.e. intervals where reflection is high, and tends to unity as the number of
rows increases. Furthermore, it has been pointed out (Linton 2011) that, for some cases
such as rows consisting of submerged, horizontal cylinders, spacing values which yield
maximum reflection (i.e. the centres of the reflection band-gap intervals) are shifted with
respect to the Bragg condition. In Arnaud et al. (2017), which investigates a dense array
of wave-dissipating vertical cylinders, treated as a porous medium, it can be noted that the
Bragg-type reflection minima are not null (in contrast to cases, see e.g. Rey et al. (2018),
where no dissipation is considered). In the present section, those results are revisited
and clarified by adopting a formalism, which highlights the role of energy absorption or
dissipation by the obstacles.

Define X0 = x1 − L/2 and, for n > 0, Xn = xn + L/2. For every domain Sn, the
transmission and reflection coefficients are given as

T = t̂eikL,

R+ = R− = r̂eikL.

}
(5.1)

Define

ηn =
(
η̂+

n

η̂−
n

)
. (5.2)

From the recursion in (3.12), ηn and ηn+1 verify (Linton 2011)

ηn+1 = Aηn, (5.3)

where the 2 × 2 matrix A has complex entries defined as follows:

A = e−ikL

t̂

(
(t̂2 − r̂2)e2ikL r̂eikL

−r̂eikL 1

)
. (5.4)

Therefore, η0 and ηN are related as follows:

ηN = ANη0. (5.5)

However, in the equation above, only η+
0 and η−

N are known, where η+
0 corresponds to the

system input, while η−
N is zero. Manipulating (5.5), it is easy to find the following relations:

η̂+
N = det(AN)

(AN)2,2
η̂+

0 ,

η̂−
0 = −(AN)2,1

(AN)2,2
η̂+

0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.6)
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Figure 9. Graphical representation in the complex plane of the transmission and reflection coefficients t̂ and r̂
in terms of the ‘non-dissipative’ coefficients t̂′ and r̂′.

Therefore, the global transmission and reflection coefficients are calculated as

TN = det(AN)

(AN)2,2
,

RN = −(AN)2,1

(AN)2,2
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.7)

where (AN)m,n denotes entry n,m of the matrix AN .
Of course, the solution above may be computed numerically. However, it is also

interesting to investigate the behaviour of RN and TN qualitatively, depending on the
basic parameters t̂, r̂ and L, in order to gain more general insight. In general, any pair
of coefficients t̂, r̂ satisfying (2.6) may be constructed from a ‘non-dissipative’ pair of
coefficients t̂′, r̂′, as follows:

t̂ = t̂′ − δ,

r̂ = r̂′ + δ,

}
(5.8)

with
δ = |δ|e2iφ, (5.9)

where |δ| = 1/2 − |t̂ − 1/2| and 2φ is the phase of t̂ − 1/2 (and φ is the phase of t̂′).
Coefficients t̂, r̂, t̂′, r̂′, δ are illustrated in figure 9. Essentially, t̂′ is the transmission
coefficient which is the closest to t̂, while representing a non-dissipative obstacle. It is
easy to show that t̂′ and r̂′ verify

t̂′ = cosφeiφ,

r̂′ = −i sinφeiφ.

}
(5.10)

With the decomposition of (5.8), the entries of A may be rewritten as a function of L,
|δ| and φ, using the following equations:

t̂2 − r̂2 = t̂ − r̂ = (1 − 2|δ|)e2iφ,

t̂ = t̂′ − δ = (cosφ − |δ|eiφ)eiφ,

r̂ = r̂′ + δ = (−i sinφ + |δ|eiφ)eiφ.

⎫⎪⎪⎬
⎪⎪⎭ (5.11)

Define, for ψ ∈ [0; 2π[,

f (ψ) = cosψ − |δ|eiψ,

g(ψ) = |δ|eiψ − i sinψ,

}
(5.12)

as well as the new variable θ = kL + φ.
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The matrix A may now be reformulated as follows:

A = 1
f (φ)

(
(1 − 2|δ|)eiθ g(φ)

−g(φ) e−iθ

)
. (5.13)

In order to obtain an analytical solution for the global transmission and reflection
coefficients, AN should be calculated explicitly as a function of the model parameters.
Instead of the recursion in Evans (1990), we can also proceed through a diagonalisation of
A, or use the direct result proposed by Williams (1992) for powers of 2 × 2 matrices. Let
ρ1 and ρ2 be the two eigenvalues of A. Then

AN =

⎧⎪⎨
⎪⎩

ρN
1

ρ1 − ρ2
(A − ρ2I2)− ρN

2
ρ1 − ρ2

(A − ρ1I2) if ρ1 /= ρ2,

ρN−1
1 (NA − (N − 1)I2) if ρ1 = ρ2.

(5.14)

The two eigenvalues of A are found to be

ρ1 = f (θ)
f (φ)

+
(

f (θ)2

f (φ)2
− 1

)1/2

,

ρ2 = f (θ)
f (φ)

−
(

f (θ)2

f (φ)2
− 1

)1/2

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.15)

It is easily verified that ρ1ρ2 = 1. Adopting the same idea as Evans (1990), define α ∈ C

such that cosh(α) = f (θ)/f (φ), and β ∈ C such that cosh(β) = g(θ)/g(φ). Then, ρ1 = eα
and ρ2 = e−α . Using (5.14), we finally use the fact that f (φ) sinh(α) = g(φ) sinh(β) to
obtain relatively simple expressions (Evans 1990) for RN and TN as follows:

RN = sinh(Nα)
sinh(Nα + β)

,

TN = sinh(β)
sinh(Nα + β)

.

⎫⎪⎪⎬
⎪⎪⎭ (5.16)

Noting that f (θ + π)/f (φ) = −f (θ)/f (φ) and g(θ + π)/g(φ) = −g(θ)/g(φ), it is
easy to see that α(θ + π) = α(θ)+ iπ and β(θ + π) = β(θ)+ iπ. Hence, RN(θ +
π) = −RN(θ) and TN(θ + π) = (−1)NTN(θ). As far as the reflection and transmission
magnitudes are concerned, it is thus sufficient to study RN and TN on any interval of
length π.

5.1. Non-dissipative obstacles
In the particular case of non-dissipative obstacles, i.e. obstacles verifying |r̂|2 + |t̂|2 = 1,
the parameter |δ| is zero, so that the functions f (θ)/f (φ) and g(θ)/g(φ) reduce to
cos θ/ cosφ and sin θ/ sinφ, respectively.

First consider θ in the interval ] − φ;φ[. Then cos θ/ cosφ is a real number greater
than unity, so that α is a real number, which increases from 0 to acosh(1/ cosφ) for θ =
[−φ; 0], and decreases from acosh(1/ cosφ) to 0 for θ ∈ [0;φ]. Over the same interval, β
is an imaginary number which goes from iπ to 0, with β = iπ/2 for θ = 0. Noting α = a
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and β = ib, a and b verify a = acosh(cos θ/ cosφ) and b = acosh(sin θ/ sinφ). Here RN
can be written as

RN = sinh(Na)
sinh(Na + ib)

, (5.17)

|RN | has no roots over ] − φ;φ[ and reaches its maximum value for θ = 0,

|RN |max =
1 −

(
1 − sinφ
1 + sinφ

)N

1 +
(

1 − sinφ
1 + sinφ

)N . (5.18)

As θ approaches the bounds of the interval, −φ and φ, both the numerator and the
denominator of RN tend to zero. A tedious first-order development yields the following
value for |RN | for θ = nπ ± φ:

|RN |θ=nπ±φ = N√
N2 + cot2 φ

. (5.19)

The interval θ ∈] − φ;φ[ corresponds to 2πL/λ ∈] − 2φ; 0[. It is the ‘band-gap’
interval in Linton (2011) and Evans (1990), where reflection is high, and tends to unity
as N grows to infinity.

Outside the band-gap interval, i.e. θ ∈]φ;π − φ[, α = ia where a is real and increases
in ]0;π[. Meanwhile, β = b where b is real, and β(π − θ) = −β(θ). Therefore, the
numerator of RN is i sin Na, which cancels exactly N − 1 times over ]φ;π − φ[, while
the denominator is strictly non-zero. Those are the well known discrete values of L/λ
which completely cancel reflection. Furthermore, |RN | is bounded from above as follows:

|RN | ≤ sinφ/ sin θ (5.20)

with equality when Na ≡ (π/2)[π], which occurs N times over the interval ]φ;π − φ[.
For two representative choices of parameters t̂ and r̂, numerical examples of |RN | are

provided in figure 10, for N = 2, 3, 4, 5 and 10. In the top graphs (φ = π/8), individual
rows predominantly transmit incident waves while, in the bottom graphs, individual
rows predominantly reflect incident waves (φ = 3π/8). Those two parameter options are
illustrated in figure 10( f,l).

The mathematical characterisation of |RN | can be appreciated in the different graphs of
figure 10 as follows.

(i) In the interval [nπ + φ; (n + 1)π − φ], delimited by means of vertical, dashed lines,
there are N − 1 values of θ which completely cancel reflection, as expected. Here
|RN | oscillates between 0 and the envelope function sinφ/ sin θ (dashed lines).

(ii) In the interval [nπ − φ; nπ + φ], |RN | remains larger than N/
√

N2 + cot2 φ, which
is reached for nπ ± φ (indicated by rounded markers).

It is interesting to see that maximum reflection is obtained for θ within intervals of the
form [nπ − φ; nπ + φ], which corresponds to kL ∈ [nπ − 2φ; nπ]. Those intervals are
wider as φ increases, i.e. as the reflection coefficient of individual rows predominates
over their transmission coefficient. Furthermore, as N increases, reflection tends to
unity over the whole band-gap width, while it remains bounded from above by the
function sinφ/ sin θ outside band-gap intervals. Finally, band-gaps are centred around
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Figure 10. Reflection coefficient magnitude for a set of N equally spaced rows of obstacles with no energy
dissipation (|δ| = 0), with N = 2, 3, 4, 5, 10 (a–e,g–k), for φ = π/8 (‘transmission-dominated’) and φ = 3π/8
(‘reflection-dominated’). The two parameter options for r̂, t̂ of individual rows are represented in panels ( f,l).
See also figure 9 for the meaning of φ and |δ|.

kL = nπ − φ, which is in contrast to ‘classical’ Bragg peaks which occur for kL = nπ,
as pointed out by Linton (2011). Therefore, strictly speaking, those two conditions only
coincide if the phase of the transmission coefficient is small. However, given the location
of the band-gap interval as specified above, the Bragg condition kL = nπ is never outside,
but always at the limit of the band-gap interval (even for large φ).

5.2. Dissipative obstacles
The case where dissipation occurs is more complicated, since the parameter |δ| is now
different from zero. However, it is easy to find the asymptotic behaviour of RN and TN as
N tends to infinity: while TN tends to zero, RN tends to R∞ = e−β .

The behaviour of |RN | is illustrated in figure 11 for N = 2, 3, 4, 5, 10 as well as |R∞|,
for ‘transmission dominated’ cases (panels (a–g)) and ‘reflection dominated’ cases (panels
(h–n)). In both sets of graphs, two different values of |δ| are shown: |δ| = 0.1 (weak
dissipation, lighter colour) and |δ| = 0.4 (strong dissipation, darker colour). As can be
seen in figure 11, |RN | oscillates around |R∞|. There is a larger number of oscillations as
N increases, and oscillations are less marked as |δ| approaches its maximum possible value
of 0.5. The figure also suggests that, even for relatively small N, the asymptotic function
|R∞| is an acceptable approximation for |RN |.

This time, there are no values of θ , for which |RN | vanishes. It is interesting to see
that a similar result is obtained in the case of an array of cylinders, as studied by Arnaud
et al. (2017). Therefore, it seems to hold rather generally that, in the case of obstacle arrays
made of identical rows, the presence of absorption or dissipation by individual rows makes
it impossible to obtain zero reflection. One of the consequences is in terms of wave energy
absorption: absorbing the totality of the incoming wave energy would imply cancelling
both reflection and transmission coefficients. Therefore, total absorption of the incoming
wave energy is impossible with an array of identical rows.

In the non-dissipative scenarios previously studied, the transmitted wave amplitude |TN |
could simply be calculated using the fact that |TN |2 + |RN |2 = 1. In the present case, some
part of the wave energy is dissipated or absorbed by the obstacles, so that |TN | cannot be
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Figure 11. Transmission coefficient magnitude for a set of N equally spaced rows, with N = 2, 3, 4, 5, 10 and
N → ∞, and four parameter options regarding φ and |δ|. In each graph, the lighter and darker lines correspond,
respectively, to |δ| = 0.1 (weak energy absorption or dissipation) and |δ| = 0.4 (strong energy absorption
or dissipation). The panels (a– f ) and (h–m) are for ‘transmission-dominated’ and ‘reflection-dominated’
interactions, respectively. The four parameter options are represented in panels (g,n). See also figure 9 for
the meaning of φ and |δ|.
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Figure 12. Transmission coefficient magnitude for a set of N equally spaced rows, with N = 2, 3, 4, 5, 10,
and four parameter options regarding φ and |δ|. In each graph, the lighter and darker lines correspond,
respectively, to |δ| = 0.1 (weak energy absorption or dissipation) and |δ| = 0.4 (strong energy absorption
or dissipation). The panels (a–e) and (g–k) are for ‘transmission-dominated’ and ‘reflection-dominated’
interactions, respectively. The four parameter options are represented in panels ( f,l). See also figure 9 for the
meaning of φ and |δ|.

immediately deduced from |RN |. Therefore, it is interesting, for the sake of completeness,
to also illustrate |TN |; figure 12 shows |TN | for the same range of cases as figure 11 (except
for N → ∞ since T∞ is simply zero). As can be appreciated in the figure, |TN | also
exhibits some oscillatory behaviour. Unsurprisingly, |TN | fades out to zero more rapidly
for stronger dissipation (larger |δ|), and when reflection of individual rows is larger than
their transmission.

The asymptotic function |R∞| deserves particular attention. To that end, figure 13 shows
|R∞| for a wide range of possible scenarios regarding φ and |δ| (illustrated in the circles
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Figure 13. Asymptotic reflection magnitude |R∞| for different values for φ, and from |δ| = 0 (non-dissipative
case, lightest colour) to |δ| = 1/2 (darkest colour). The corresponding t̂ and r̂ coefficients can be visualised in
the circles on both sides.

on both sides of the figure). As can be appreciated in figure 13, for |δ| > 0, the asymptotic
function |R∞| shows a marked peak, reaching unity for distances L such that kL = nπ.
This corresponds to classical Bragg peaks. Unsurprisingly, the peak width is smaller for
larger |δ| (i.e. individual rows tend to dissipate more energy) and for obstacles for which
transmission is predominant. It is also interesting to note that, even for relatively small
(but non-zero) |δ| values, a strong contrast can be observed with respect to the band-gaps
associated with ‘non-dissipative’ obstacles.

We now briefly turn back to the problem of wave energy absorption. Given that T∞ = 0,
the energy absorbed by the whole array is proportional to 1 − |R∞|2, and thus larger for
smaller |R∞|. Figure 13 allows the visualisation of those r̂, t̂ parameters, which are more
favourable from an energy absorption perspective. It appears that stronger transmission
by individual rows (e.g. the top-left graph) is desirable, so that t̂ should be chosen close
to unity; with such parameters, the array absorbs most of the incoming wave energy, if
the inter-row spacing does not match the Bragg condition. However, the particular case
t̂ = 1, r̂ = 0 merely corresponds to an absence of obstacles (and hence yields no energy
absorption at all).

Finally, the limiting case |δ| = 0.5 (i.e. t̂ = r̂ = 0.5) corresponds to the reflection/
transmission characteristics of a single row of wave energy devices operating under
optimal power-maximising control (Evans 1981). Nevertheless, as evidenced by the
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top-left graph, the choice |δ| = 0.5 is suboptimal for power absorption by the array
as a whole. In other words, parameter tuning may be optimal for individual rows, but
suboptimal for the interacting array. The need for model-based optimisation, articulating
individual row parameters together with array interaction, is thus confirmed.

6. Conclusion

With a view to the modelling and optimisation of wave energy farms, a simple recursive
formulation has been employed, based on the wide-spacing approximation, to solve for
the transmission and reflection of plane water waves through a number of rows of thin,
vertical obstacles, where each row is characterised by complex reflection and transmission
coefficients. The method allows the combination of any pair of adjacent subdomains of the
fluid, for which the reflection and transmission coefficients have already been solved, thus
lending itself to efficient numerical solution. Additional effects, such as linear dissipation
along a wave flume, or partial reflection by the shore or an absorption beach, may be
easily incorporated in the analysis. The theoretical limitations of the model, in terms of
applicability, are related to the array periodicity in the direction, transverse to the incoming
wave direction, which must be smaller than the wavelength, and to the distance between
consecutive rows, which must not be too small relative to the wavelength.

The array reflection and transmission, predicted by the recursive model from the
reflection and transmission coefficients of individual rows, are compared with the results
of small-scale physical experiments comprising N = 2 and N = 3 rows of vertical, flexible
blades. There is a close agreement between experimental and theoretical results, even
though the distance between consecutive rows is at times significantly smaller than the
wavelength, which corroborates the results of several numerical studies (McIver & Bennett
1993; chapter 6 of Linton & McIver 2001; chapter 3 of Li 2006), as well as experimental
results (e.g. Liu, Li & Zhu (2016), dealing with submerged semicircular bars). Those
conclusions suggest that the approach can be considered a suitable modelling option for
further simulation and optimisation of OWSCs.

In the case of identical, regularly spaced rows, distinctive behaviours are identified,
depending on whether individual rows predominantly reflect or transmit waves, and
whether or not they dissipate energy. With no dissipation, the well known fact that discrete
values of the row-to-row distance L cancel reflection is retrieved and clarified. In each
interval of width λ/2, where λ is the wavelength, there are exactly N − 1 values of L which
cancel reflection, and those values are all located within an interval, with width governed
by the reflection/transmission balance of individual rows. The existence of band-gap
intervals is also retrieved, centred away from the classical Bragg resonant condition. In
contrast, when dissipation is present, the reflection magnitude |RN | is always non-zero
and, as L grows, oscillates close to a reasonably simple asymptotic function R∞, which
is interesting to investigate. In contrast to the non-dissipative case, reflection maxima take
the form of the well known Bragg peaks, reaching unity when L is a multiple of λ/2.
Such peaks are narrower as more dissipation takes place. Finally, from the point of view
of power absorption, results illustrate the fact that design parameters may be optimal for
individual rows, but suboptimal as soon as array interaction is considered, thus confirming
the need for joint optimisation of device and array characteristics.

Regarding the objective of wave energy farm modelling and optimisation, further work
is still required towards a sufficiently detailed mathematical model of flexible OWSC
farms. In particular, it should be noted that reflection and transmission coefficients of
individual rows are determined by both the obstacle geometry, and by their dynamical
behaviour, including the possible use of control. Array optimisation of flexible OWSCs
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will require the distinct articulation of geometry and control effects, since those may have
significantly different implications in terms of investment cost.

In addition, ocean waves are best described as Gaussian, random processes (Pierson
1952), as opposed to the monochromatic case treated in the present study. Such random
waves are statistically characterised by their spectral density function, which shows how
energy is distributed across frequencies. It will be interesting to assess how the array
affects the wave field energy content, both up-wave and down-wave – the latter being
particularly important for coastal protection purposes. To that end, the methodology
employed in this paper can be readily generalised to polychromatic (random) wave
excitation signals. It is sufficient to know the reflection and transmission coefficients
of individual rows of obstacles over a range of frequencies covering the incident wave
spectrum bandwidth. The array reflection and transmission coefficients then become
complex functions of the frequency, and every variable of interest (reflected or transmitted
spectrum, absorbed power, obstacle motions, and so on) can be analysed in terms of
dynamical systems driven by Gaussian inputs. In particular, the tuning of row-to-row
spacing and other design parameters will need to be chosen, taking into account typical
wave spectra at the location considered, not just one frequency.
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Appendix A. Experimental data processing

A.1. Experimental set-up
The experiments were run in a small-scale (1/1000) wave flume at Laboratoire de Physique
et Mécanique des Milieux Hétérogènes, associated with a two-dimensional surface wave
measurement technique. The tank is 0.6 m wide and 1.8 m long. A three-dimensional map
(x, y, t) of the FSE is obtained through the synthetic schlieren technique (Moisy, Rabaud &
Salsac 2009), of which the working principle is as follows. The experiment is filmed from
above by means of a high-speed camera. The tank bottom is covered with a random dotted
pattern, over which the waves act as a magnifying glass as they propagate along the flume.
Each recorded frame is compared with a reference image, taken with a still water surface,
by means of statistical correlation analysis, thus providing a deformation map of the water
surface, first converted into a surface gradient, which is then numerically integrated to
obtain the FSE. The procedure is covered in more detail in chapter 3 of Nové-Josserand
(2018).

The flexible blades are made of Mylar sheets of thickness 350 μm, width 14 mm and
length 9 cm (1 cm more than the water depth). The blades are fixed to the flume bottom
by means of a Lego base, which allows for placing the blades in various configurations.

The possible influence of waves being reflected by the flume damping beach is avoided,
by limiting the analysis time window below the time necessary for waves to travel from the
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wave maker to the beach, and back to the observation zone where the blade array is located.
Similarly, the analysis time window starts sufficiently late so that transient dynamics have
faded out. In this work, the analysis time window of each experiment has a duration of
2 s, which covers 10 wave periods. The spatial zone of analysis, illustrated in figure 6, is
restricted to a 40 cm long area, encompassing the Lego base.

Finally, the η(x, y, t) mapping is averaged along the y direction, thus obtaining a
two-dimensional η(x, t) mapping, as illustrated in figure 6. Here η(x, t) is Fourier-filtered
at the 5 Hz excitation frequency, to obtain a single position-dependent complex amplitude
coefficient η̂(x), which characterises the wave field.

A.2. Wavenumber and dissipation coefficient estimation
For waves at a 5 Hz frequency, surface tension effects are not negligible anymore, so that
the theoretical dispersion relation should follow that of capillary-gravity waves,(

gk + σ

ρ
k3
)

tanh(kh) = ω2, (A1)

where σ = 0.074 N m−1 and ρ = 1000 kg m−3 are the water surface tension and density,
respectively. As mentioned in § 4, the observed wavelength (λ = 6.90 cm) departs slightly
from that expected from the above theoretical relation (λ = 6.67 cm). Such a difference
may be attributed to imperfect cleanliness of the water surface, which may have increased
the surface tension value. Alternatively, the deviation may have been due to the presence of
a relatively slow Stokes-induced current (less than 1 cm s−1), which would have resulted
in a Doppler effect. Those possibilities are the subject of ongoing investigation by the
authors.

A blade-free experiment is used to estimate the wave flume dissipation coefficient,
following (3.13). In the absence of perturbation of the generated wave field, for any two
longitudinal positions x1, x2, η̂ satisfies η̂(x2) = exp(iκ(x2 − x1))η̂(x1), with κ = k + iν.
Therefore, the wave amplitude |η̂| decreases as e−νx.

Here |η̂(x)| is smoothed using a moving average filter, thus yielding the blue curve
in figure 14 (shown in logarithmic scale). The best fit is found for a dissipation rate
ν = 2.15 m−1, also shown in figure 14, along with the corresponding lines obtained
when ν is changed by ±5 %. Note that the assumption of a homogeneous dissipation
coefficient along the wave flume is somewhat a simplification. In fact, the figure suggests
that dissipation might be stronger in the central area (15–25 cm into the analysis zone),
where the Lego base is located.

In all subsequent experiments, with blades in the small-scale flume, the equivalent
wavenumber is considered to be κ = 2π/λ+ iν, where λ and ν are the measured
wavelength and dissipation rate.

A.3. Transmission and reflection coefficient estimation
The experimental identification of an array’s reflection and transmission coefficients
requires the separation of the forward- and backward-propagating wave amplitudes in a
given observation zone, which is not a simple matter. In this work, a least squares method
is employed, based on the idea introduced by Mansard & Funke (1980).

Let x1, . . . , xM,M > 2 be a set of longitudinal positions in the up-wave zone of the
flume (i.e. between the wave maker and the blade array), and let x0 be a reference position.
The complex wave amplitudes η̂(x1), η̂(x2), . . . , η̂(xM) are measured. The total wave in
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Figure 14. Dissipation coefficient identification.

the zone is the sum of a forward-propagating wave η̂+ and a backward-propagating wave
η̂−, such that in every position xm, η̂(xm) = exp(iκ(xm − x0))η̂+ + exp(−iκ(xm − x0))η̂−.
Define

z =

⎛
⎜⎜⎝
η̂(x1)
η̂(x2)
...

η̂(xM)

⎞
⎟⎟⎠ , y =

(
η̂+
η̂−

)
, A =

⎛
⎜⎜⎝

exp(iκ(x1 − x0)) exp(−iκ(x1 − x0))
exp(iκ(x2 − x0)) exp(−iκ(x2 − x0))

...
...

exp(iκ(xM − x0)) exp(−iκ(xM − x0))

⎞
⎟⎟⎠ .

(A2a–c)

Finding η̂+ and η̂− is achieved by solving the equation Ay = z in a least-square error
sense, i.e.

ỹ = (A∗A)−1A∗z, (A3)

where ∗ denotes conjugate transpose.
The same method is applied in the down-wave zone with a set x′

1, . . . , x′
M of down-wave

positions and a reference position x′
0, to obtain η̂′+ and η̂′−, the forward and backward

wave coefficients in the down-wave zone. As pointed out by Mansard & Funke (1980),
this procedure exhibits some sensitivity to the choice of measurement points xm and x′

m,
but less so than by using only two measurement points and proceeding through a direct
inversion of a 2 × 2 system.

Once forward and backward wave amplitudes have been estimated in the up-wave and
down-wave zones, the reflection and transmission coefficients of any array located between
positions x0 and x′

0 can be calculated as follows:

R̂ = η̂−/η̂+,

T̂ = η̂′
+/η̂+.

}
(A4)

However, as mentioned above, results are sensitive to the choice of measurement
points x1, . . . , xM and x′

1, . . . , x′
M . Therefore, similarly to the procedure followed by

Nové-Josserand et al. (2019), a set of 30 positions x1, . . . , xM=30 is randomly selected
in the up-wave interval, as well as in the down-wave interval, and R̂ and T̂ are estimated
based on those two sets of random points. The same procedure is iterated 100 times (i.e.
with 100 different choices of 30 random locations), and the average R̂ and T̂ coefficients
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Figure 15. Estimated reflection and transmission coefficients for a single row of blades, as well as their sum.

are taken as the final estimates. The up-wave interval is between 0 and 100 mm inside the
frame, while the down-wave interval is between 250 and 350 mm inside the frame.

The identification of r̂ and t̂ for a single row is of particular importance. This was done
by employing the procedure outlined above, and choosing both x0 and x′

0 equal to the row
position. The results of the identification procedure are illustrated in figure 15, where the
100 different pairs of coefficients are shown in the complex plane as small markers, along
with their average as larger, circular markers. It can be seen that the sum of the estimated
t̂ and r̂ identified is reasonably close to unity, as expected from (2.6) (see also figure 2).

However, the phase of t̂ is found to exhibit high sensitivity to the exact wavelength
estimate λ, while that of r̂ depends strongly on the exact referencing of the row position
in the recorded frame x0. In contrast, the norm of both coefficient estimates is almost
insensitive to those parameters. Therefore, it is preferable to confirm the estimates above
through the use of an alternative method. This is done by estimating only |r̂| and |t̂| (which
are almost insensitive to λ and x0), using the approach outlined above, and using the
fact that r̂ + t̂ = 1. More specifically, in each random choice of M = 30 random points
up-wave and down-wave, the norms |r̂| and |t̂| are calculated by taking the norm of (A3).
The procedure is iterated 100 times, which yields reliable estimates of |r̂| and |t̂|. Finally,
using r̂ + t̂ = 1, it is found that

φt = ±acos
(

1 + |t̂|2 − |r̂|2
2|t̂|

)
. (A5)

Among the two possible values for the phase of t̂, the negative one is more consistent
with the observations in figure 15, and is therefore chosen. The resulting estimate t̂ is
indicated by means of a square in figure 15, very close to the one obtained through the
direct estimate (average of the green crosses in figure 15).

Finally, it is worth noting that the row of blades is a ‘dissipative’ obstacle, since clearly
|t̂|2 + |r̂|2 < 1 (in other words, t̂ and r̂ are not located on the circle pictured in the figure).
The energy dissipation splits into external dissipation (through friction and drag) and
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internal dissipation (through the blade internal damping). Only the latter may be converted
into useful energy. However, in this work, we do not investigate the balance between
external and internal dissipation.
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