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Abstract. We study p-Wasserstein spaces over the branching spaces R2 and [−1, 1]2 equipped with
the maximum norm metric. We show that these spaces are isometrically rigid for all p ≥ 1, meaning
that all isometries of these spaces are induced by isometries of the underlying space via the push-
forward operation. This is in contrast to the case of the Euclidean metric since with that distance
the 2-Wasserstein space over R2 is not rigid. Also, we highlight that the 1-Wasserstein space is not
rigid over the closed interval [−1, 1], while according to our result, its two-dimensional analog, the
closed unit ball [−1, 1]2 with the more complicated geodesic structure is rigid.

1 Introduction and the main result

Recent developments of optimal mass transport theory [1–3, 9, 16, 17] serve as
main motivation for studying the Wasserstein space; that is, the space of probability
measures endowed with a metric generated by optimal mass transport. The structure
of the isometry group of Wasserstein spaces has been studied for the first time in
a groundbreaking paper by Kloeckner [13] in the case when the underlying space
is the Euclidean space R

n . This research has been followed up by Bertrand and
Kloeckner [6, 7], Gehér, Titkos, Virosztek [10, 11], Santos-Rodriguez [15]. These
authors considered various underlying metric spaces with different properties. The
general feature of these spaces was, that they were non-branching geodesic metric
spaces. This non-branching property of the underlying space was inherited by the
Wasserstein space as well [1, 15] and it was used in an essential way (e.g., in [15]) to
show that isometries of Wasserstein spaces preserve the class of Dirac masses.
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2 Z. Balogh et al.

In this article, we consider the situation of branching spaces, namely R
2 and

Q = [−1, 1]2 endowed with the maximum metric. Since the above-mentioned tech-
nique does not work in our case, we shall use a different method in order to determine
the structure of the isometry group of the Wasserstein space over these spaces.

Before defining the necessary notions and introducing the notation we will use
throughout this article, we highlight a very recent result of Che, Galaz-García, Kerin,
and Santos-Rodríguez [8] which provided interesting examples of non-rigid Wasser-
stein spaces over certain classes of normed spaces.

To state our main result, we start by introducing some notation. Let X ⊆ R2 be a
closed subset equipped with the maximum metric dm ∶ X × X → [0,∞)

dm((x1 , x2), (y1 , y2)) =max{∣x1 − y1∣, ∣x2 − y2∣},

which is a complete and separable metric space. For p ≥ 1 we consider the
p-Wasserstein space (Pp(X , dm), dWp), where X ⊆ R2 is a closed subset and
Pp(X , dm) is the space of Borel probability measures μ supported on X ⊆ R2 with
finite pth moments:

∫
X

d p
m(x , x0) dμ(x) < ∞

for some (and thus for all) x0 ∈ R2. This set is endowed with the Wasserstein metric
coming from optimal mass transport, i.e.,

dWp(μ, ν) = min
π∈C(μ ,ν)

⎛
⎜
⎝
∬

X×X

d p
m(x , y) dπ(x , y)

⎞
⎟
⎠

1
p

,

where C(μ, ν) is in the set of couplings between μ and ν. That is, π ∈ P(X × X) and its
marginals are equal to μ and ν: π(A× X) = μ(A), and π(X × A) = ν(A) for any Borel
set A ⊆ X. Recall that if 0 < p < 1, then the definition of the p-Wasserstein distance is
slightly different. In that case, dWp(μ, ν) =minπ∈C(μ ,ν) ∬

X×X
d p

m(x , y) dπ(x , y).

For the sake of brevity, we will denote the Wasserstein space (Pp(X , dm), dWp) by
Wp(X , dm).

The support of a measure μ will be denoted by supp(μ). For some distinguished
collection of lines L ⊂ R2 the set

Wp(L, dm) = {μ ∈Wp(R2 , dm) ∣ supp(μ) ⊆ L}

will play an important role. Recall that a geodesic segment (or shortly: geodesic) is a
curve γ ∶ [a, b] →Wp(X , dm) such that

dWp(γ(t), γ(s)) = C∣t − s∣

for all t, s ∈ R. Note, that by reparametrizing the curve γ we can always achieve that
C = 1. Geodesics with C = 1 will be called unit-speed geodesics.

This article aims to connect isometries of the underlying space X, and the
Wasserstein space Wp(X , dm). Recall that given a metric space (M , 𝜚) a map
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Isometric rigidity of Wp(R2 , dm) and Wp(Q , dm) for p ≥ 1 3

f ∶ M → M is called an isometry if it is bijective and distance preserving, i.e., 𝜚( f (m),
f (m′)) = 𝜚(m, m′) for all m, m′ ∈ M.

Recall that any isometry of (X , dm) induces an isometry of Wp(X , dm) by push-
forward. Indeed, if T ∶ X → X is an isometry, then the map T# is an isometry of
Wp(X , dm), where T# μ stands for the push-forward measure of μ by T

T# μ(A) = μ(T−1(A) for all Borel sets A ⊆ X .

In what follows, we shall call isometries of the type T# trivial isometries. We call the
Wasserstein space Wp(X , dm) isometrically rigid if all of its isometries are trivial.

Let us recall that by the results of Kloeckner [13] the quadratic Wasserstein
space W2(Rn , d∥⋅∥2) is not rigid as it has non-trivial shape-preserving isometries.
Moreover, in the case n = 1 there is a flow of exotic (non-shape-preserving) isometries.
Furthermore, the structure of the isometry group of Wasserstein spaces could depend
both on the choice of X and the value of p. Indeed, the results of [10] show in the one-
dimensional case X = R that the isometry group of W2(R, d∣⋅∣) is much larger than
the isometry group of Wp(R, d∣⋅∣) for all p ≠ 2, while if X = [0, 1], then the isometry
group of W1([0, 1], d∣⋅∣) is richer than the isometry group of Wp([0, 1], d∣⋅∣) for all
p > 1 (see [10]). As it was already pointed out in [10], the same conclusion holds for
every compact interval [a, b]. For our considerations, the relevant conclusion is that
Wp([−1, 1], ∣ ⋅ ∣) is rigid if and only if p ≠ 1.

In this article, we distinguish the cases p = 1 and p > 1. We note that the case p < 1
has already been covered by the general result [11, Corollary 4.7] which says that the
Wasserstein space Wp(X , d) is isometrically rigid for every Polish underlying space
(X , d) and for every parameter p < 1. Furthermore, the underlying space X will be
either R2 or the closed unit ball Q = [−1, 1]2. Our main result shows, that in contrast
to the above non-rigidity results in the one-dimensional case, (and also in the higher
dimensional Rn with the Euclidean metric) in our situation the Wasserstein spaces
are isometrically rigid when the underlying space R

2 or Q is considered with the
maximum metric.

Theorem 1.1 Let X = R2 or X = Q = [−1, 1]2 equipped with the maximum metric. Then
for any p ≥ 1 the Wasserstein space Wp(X , dm) is isometrically rigid. That is, for any
isometry Φ ∶Wp(X , dm) →Wp(X , dm) there exists a unique isometry T ∶ (X , dm) →
(X , dm) such that

Φ(μ) = T# μ, for any μ ∈Wp(X , dm).

The proof will be a combination of Proposition 2.1 with Theorems 3.3, 3.6, 3.9,
and 3.10.

Due to the difficulty caused by the branching nature of the underlying space,
instead of Dirac masses, we shall consider measures supported on diagonal lines and
prove that this class of measures is preserved by isometries. This seems to be a similar
phenomenon to the one in the recent work of Balogh, Titkos, and Virosztek [5] about
rigidity in the setting of the Heisenberg group. In that paper, the authors proved that
measures supported on vertical lines in the Heisenberg group are preserved. In our
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4 Z. Balogh et al.

setting vertical lines will be replaced by diagonals that are suitable to our geometry. In
the sequel, we shall consider two special lines (briefly: diagonals)

L+ = {(t, t) ∣ t ∈ R} and L− = {(t,−t) ∣ t ∈ R},

and their translates:

L = Lε ,a = {(x1 , x2) ∈ R2 ∣ x2 = εx1 + a} for some ε ∈ {−1, 1} and a ∈ R.(1.1)

When we are working in Q = [−1, 1]2, (with a slight abuse of notation) these symbols
denote the line segment contained in Q.

The consideration of diagonal lines in our arguments is based on the observation
that there is a unique geodesic (with respect to the maximum metric) connecting two
points in the plane if and only if the two points are on the same diagonal Lε ,a . We think
that understanding rigidity in this special branching space will give us important clues
to tackle the same question in general normed spaces.

Definition 1.1 Let X be either R2 or Q equipped by the maximum metric. We call
the Wasserstein space Wp(X , dm) diagonally rigid, if for every Wasserstein isometry
Φ ∶Wp(X , dm) →Wp(X , dm) there exists an isometry T ∶ (X , dm) → (X , dm) such
that Φ(μ) = T#(μ) whenever the support of μ is a subset of L+ or L−.

Our aim in Section 2 is to prove that diagonal rigidity implies rigidity. This step
is quite general in the sense that its proof works the same way for any p ≥ 1 and
X ∈ {R2 , Q}. To prove that Wp(X , dm) is indeed diagonally rigid is more tricky and
uses very different arguments for different underlying spaces X = R2 and X = [−1, 1]2
and for different values of p. These results are proven in Section 3.

2 Diagonal rigidity implies rigidity

The main result of this section is the following.

Proposition 2.1 Let p ≥ 1 and X ∈ {R2 , Q}. Assume that the space Wp(X , dm) is
diagonally rigid. Then the Wp(X , dm) is rigid.

For the sake of brevity, we only prove the case X = R2. The same argument works
in the case X = Q, replacing lines by line segments contained in Q.

The proof of the statement will be a combination of lemmas. The first lemma is
about the minimal distance projection onto lines.

Lemma 2.2 Let L ⊂ R2 be a line that is not parallel to the x-axis and the y-axis, and
let x ∈ R2. Then there exists unique x̂ ∈ L such that dm(x , x̂) ≤ dm(x , y) for all y ∈ L.

Proof If x ∈ L, then we take x̂ ∶= x and the claim is obvious. If x /∈ L, then x̂ is the
first point of contact of metric balls centered at x with L. Since metric balls are squares
aligned with the x and y-axes, and by assumption L is not parallel to any of these axes,
x̂ is uniquely defined. ∎

Denoting by PL(x) = x̂, we obtain a well-defined projection map PL ∶ R2 → L. Our
second statement is about the projection of measures defined by the push forward
under this projection map.
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Isometric rigidity of Wp(R2 , dm) and Wp(Q , dm) for p ≥ 1 5

Lemma 2.3 Let μ ∈Wp(R2 , dm). Then, the measure μ̂ = PL #(μ) is the metric projec-
tion Wp(R2 , dm) →Wp(L, dm) i.e., the unique measure in Wp(L, dm) such that

dWp(μ, μ̂) ≤ dWp(μ, ν)
for all ν ∈Wp(L, dm).
Proof To prove the inequality in the statement, let ν ∈Wp(L, dm) be an arbitrary
measure and π be an optimal coupling between μ and ν. Then

d p
Wp
(μ, ν) = ∫

R2×L

d p
m(x , y) dπ(x , y).

Since d p
m(x , y) ≥ d p

m(x , PL(x)) for all x ∈ R2 , y ∈ L and supp(π) ⊆ R2 × L, we have
that

d p
Wp
(μ, ν) = ∫

R2×L

d p
m(x , y) dπ(x , y) ≥ ∫

R2×R2

d p
m(x , PL(x)) dπ(x , y)

= ∫
R2

d p
m(x , PL(x)) dμ(x) = d p

Wp
(μ, μ̂).

This shows that μ̂ is a minimizer for the problem inf{d p
Wp
(μ, ν)∶ ν ∈Wp(L, dm)}.

To show that μ̂ is the unique minimizer, note that in the case equality we
have that y = PL(x) for π almost every (x , y) showing that π = (Id × PL)# μ and
thus ν = PL# μ. ∎

The next lemma shows that the action of the isometry and the push-forward by
projection commute.

Lemma 2.4 If Φ ∶Wp(R2 , dm) →Wp(R2 , dm) is an isometry such that Φ(μ) = μ for
all μ ∈Wp(L+, dm) ∪Wp(L−, dm) then we have the commutation relations

Φ(PL+ #(μ)) = PL+ #(Φ(μ)) and Φ(PL− #(μ)) = PL− #(Φ(μ))
for all μ ∈Wp(R2 , dm).
Proof The proof is based on the previous lemma, and we prove only the first
commutation relation regarding L+ as the case of L− is very similar.

Let μ ∈Wp(R2 , dm) and μ̂ = PL+ #(μ). We have to show that Φ(μ̂) = PL+ #(Φ(μ)).
Since μ̂ ∈Wp(L+ , dm), we note that Φ(μ̂) = μ̂ by assumption. As Φ is an isometry,

D ∶= dWp(μ, μ̂) = dWp(Φ(μ), Φ(μ̂)) = dWp(Φ(μ), μ̂).

Let ν ∈Wp(L+, dm). Thus ν = Φ−1(ν) ∈Wp(L+ , dm), and therefore

dWp(Φ(μ), ν) = dWp(μ, Φ−1(ν)) = dWp(μ, ν) ≥ D for all ν ∈Wp(L+, dm).
Since dWp(Φ(μ), Φ(μ̂)) = D and μ̂ = Φ(μ̂) ∈Wp(L+ , dm) is the minimizer of the
distance, from the uniqueness part of Lemma 2.3, we have μ̂ = Φ(μ̂) = PL+ #(Φ(μ))
as required. ∎

After this preparation we can turn to the proof of Proposition 2.1. The proof is
inspired by Bertrand and Kloeckner [6] and it is based on the method of Radon
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6 Z. Balogh et al.

transform. In our case, the Radon transform will be a mapping R ∶Wp(R2 , dm) →
Wp(L+ , dm) ×Wp(L−, dm) defined by

R(μ) ∶= (PL+ #(μ), PL− #(μ)).(2.1)

Proof of Proposition 2.1 Without loss of generality, we can assume that Φ(μ) = μ for
all μ ∈Wp(L+, dm) ∪Wp(L− , dm). Now we want to extend this property to the whole
Wp(R2 , dm). The main idea is to consider a subset F ⊂Wp(R2 , dm) such that

• F is dense in Wp(R2 , dm),
• for any μ1 , μ2 ∈ F the following holds:

PL+ #(μ1) = PL+ #(μ2) and PL− #(μ1) = PL− #(μ2)  ⇒ μ1 = μ2 ,

• Φ(F) ⊆ F.

The second condition is the injectivity of the Radon transform on the set F. Suppose
that we have such an F. Then, applying Lemma 2.4 we get that for any μ ∈ F

PL+ #(Φ(μ)) = Φ(PL+ #(μ)) = PL+ #(μ)

and

PL− #(Φ(μ)) = Φ(PL− #(μ)) = PL− #(μ).

By the third condition we have Φ(μ) ∈ F and so we can apply the second condition
for the two measures μ1 = μ and μ2 = Φ(μ). This implies that Φ(μ) = μ for all μ ∈ F.
Using the density of F in Wp(R2 , dm) (the first condition) we get that Φ(μ) = μ for
all μ ∈Wp(R2 , dm).

Therefore it is enough to find a set F that satisfies the conditions above. We define
F by the following:

F ∶=
⎧⎪⎪⎨⎪⎪⎩

N
∑
i=1

a i δx i

'''''''''''
N ≥ 1,

N
∑
i=1

a i = 1,

for i ≠ j we require a i ≠ a j , and PL+x i ≠ PL+x j and PL−x i ≠ PL−x j

⎫⎪⎪⎬⎪⎪⎭
.

Let us check the required conditions for this choice of F. For the first condition we
use the fact that the set of finitely supported measures is dense in Wp(R2 , dm). Since
a finitely supported measure can be clearly approximated in Wp(R2 , dm) by elements
of F, the first property follows.

In order to show the second property, let μ1 , μ2 ∈ F such that PL+ #(μ1) = PL+ #(μ2)
and PL− #(μ1) = PL− #(μ2). We have to conclude that μ1 = μ2.

To check this, let us assume that

μ1 =
N1

∑
i=1

a(1)i δx(1)
i

, and μ2 =
N2

∑
i=1

a(2)i δx(2)
i

.
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Isometric rigidity of Wp(R2 , dm) and Wp(Q , dm) for p ≥ 1 7

By the condition that PL+ #(μ1) = PL+ #(μ2) and PL− #(μ1) = PL− #(μ2), we obtain the
equations

N1

∑
i=1

a(1)i δPL+(x
(1)
i )
=

N2

∑
i=1

a(2)i δPL+(x
(2)
i )

and
N1

∑
i=1

a(1)i δPL−(x
(1)
i )
=

N2

∑
i=1

a(2)i δPL−(x
(2)
i )

.

From here we conclude, that N1 = N2 = N , a(1)i = a(2)i and x(1)i = x(2)i for i = 1, . . . , N
which gives that μ1 = μ2.

To verify the third property, i.e., that Φ(F) ⊆ F, let us take an element
μ = ∑N

i=1 a i δx i ∈ F. Recalling that Φ fixes all measures supported on the diagonals L+
and L−, we get by Lemma 2.4 that

PL #(μ) = Φ(PL #(μ)) = PL #(Φ(μ))

for L ∈ {L+, L−}, and therefore we have

PL+ #(Φ(μ)) = PL+ #(μ) =
N
∑
i=1

a i δPL+(x i) ,

where PL+(x i) ∈ L+ and

PL− #(Φ(μ)) = PL− #(μ) =
N
∑
i=1

a i δPL−(x i) ,

where PL−(x i) ∈ L−. In conclusion, we obtain that the Radon transform of μ and Φ(μ)
are equal

R ∶= R(μ) = R(Φ(μ)) = (
N
∑
i=1

a i δPL+(x i),
N
∑
i=1

a i δPL−(x i)) .

Now observe that Φ(μ) is a finitely supported measure with support contained in
the intersection of the two pre-images:

(PL+)−1({PL+(x1), . . . , PL+(xN)}) ∩ (PL−)−1({PL−(x1), . . . , PL−(xN)}).

This intersection is an N-by-N grid, and we refer to its points by z i , j(1 ≤ i , j ≤ N),
where z i , j satisfies that PL+(z i , j) = PL+(x i) and PL−(z i , j) = PL−(x j). Hence Φ(μ) can
be written as

Φ(μ) =
N
∑
i=1

N
∑
j=1

a i , jδz i , j ,

where a i , j ≥ 0, ∑N
i=1∑N

j=1 a i , j = 1 and ∑N
i=1 a i , j = a j and ∑N

j=1 a i , j = a i . Since the grid
is finite, there is a positive minimal distance between its points

c ∶= min
(i , j)≠(i′ , j′)

dm(z i , j , z i′ , j′) > 0.
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8 Z. Balogh et al.

Figure 1: Illustration of a finitely supported measure μ with a possible image Φ(μ) and the grid
determined by the pre-images of PL+ and PL− .

Figure 2: Illustration of μ′, the measure that we obtain by a sufficiently small perturbation
of μ.

From here, we assume by contradiction that Φ(μ) ∉ F. Since Φ(μ) ∉ F, then there
exist at least two points z, z′ ∈ supp(Φ(μ)) such that their projection onto either L+
or L− coincide (Figure 1).

We briefly sketch how to obtain the desired contradiction and we give the details
later.

First, by slightly perturbing the measure μ we will construct a measure μ′ (Figure 2)
such that

arg min{dWp(μ, ξ) ∣ ξ ∈Wp(R2 , dm),R(ξ) = R(μ′)} = {μ′}.(2.2)

Next, using the existence of z and z′ as above; by small perturbations of Φ(μ) we
will construct two measures ν′1 and ν′2 (Figure 3) such that R(ν′1) = R(ν′2) = R(μ′)
and

arg min{dWp(Φ(μ), ξ) ∣ ξ ∈Wp(R2 , dm),R(ξ) = R(μ′)} ⊇ {ν′1 , ν′2}.(2.3)

Finally, dWp(μ, Φ−1(ν′1)) = dWp(μ, μ′) = dWp(μ, Φ−1(ν′2)) contradicts the fact that
μ′ is the unique minimizer (Figure 4). This contradiction guarantees that Φ(μ) ∈ F.

After this brief sketch of the proof, we turn to the details.
If Φ(μ) /∈ F, then there exist two points z, z′ ∈ supp(Φ(μ)) such that their projec-

tions onto either L+ or L− coincide. Indeed, if there are no such points, then all points
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Isometric rigidity of Wp(R2 , dm) and Wp(Q , dm) for p ≥ 1 9

Figure 3: Illustration for ν′1 and ν′2 - the two measures that we obtained by sufficiently small
perturbations of Φ(μ).

Figure 4: Illustration of the final step leading to a contradiction. Dashed lines represent equal
distances.

of the support of Φ(μ) project to different points of L+ and L−. Since

PL− #(Φ(μ)) =
N
∑
i=1

a i δPL−(x i), PL+ #(Φ(μ)) =
N
∑
i=1

a i δPL+(x i)

and a i ≠ a j (1 ≤ i ≠ j ≤ N), this implies that Φ(μ) = ∑N
i=1 a i δx i = μ, which leads

to a contradiction. Without loss of generality, we can assume that this common
projection is PL+(x1) ∈ L+, i.e., PL+(z) = PL+(z′) = PL+(x1), and for some 1 ≤ j1 ≠
j2 ≤ N we have z = z1, j1 , z′ = z1, j2 and a1, j1 > 0, a1, j2 > 0. Using this observation, we
construct the measures μ′ , ν′1 , ν′2 as follows. We take a point x′ ∈ L+ such that c0 ∶=
dm(PL+(x1), x′) < c/2. Let us denote the elements of

((PL+)−1({PL+(x′)})) ∩ ((PL−)−1({PL−(x1), . . . , PL−(xN)}))
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10 Z. Balogh et al.

by z0, j (1 ≤ j ≤ N) so that PL+(z0, j) = x′ and PL−(z0, j) = PL−(x j). We will also use the
notation x0 = z0,1. For every 0 ≤ i′ ≤ N , 1 ≤ j, j′ ≤ N

dm(z0, j , z1, j) < dm(z i′ , j′ , z1, j)

if (i′ , j′) ∉ {(0, j), (1, j)}. To see this, observe that by construction, dm(z0, j , z1, j) = c0.
If i′ ≠ 0 and (i′ , j′) ≠ (1, j), then we have dm(z i′ , j′ , z1, j) > c by definition. If i′ = 0
and j′ ≠ j, then using the reverse triangle inequality, we have dm(z0, j′ , z1, j) ≥
dm(z1, j′ , z1, j) − dm(z0, j′ , z1, j′) ≥ c − c0 > c0 . Let us fix a weight a satisfying 0 < a <
min{a1, j1 , a1, j2} < a1. Now, we consider the following measures

μ′ = aδx0 + (a1 − a)δx1 +
N
∑
i=2

a i δx i ,

ν′1 = aδz0, j1
+ (a1, j1 − a)δz1, j1

+ a1, j2 δz1, j2
+

N
∑

j=1, j≠ j1 , j2

a1, jδz1, j +
N
∑
i=2

N
∑
j=1

a i , jδz i , j ,

ν′2 = aδz0, j2
+ a1, j1 δz1, j1

+ (a1, j2 − a)δz1, j2
+

N
∑

j=1, j≠ j1 , j2

a1, jδz1, j +
N
∑
i=2

N
∑
j=1

a i , jδz i , j .

Obviously, μ′ , ν′1, and ν′2 are probability measures satisfying R(μ′) = R(ν′1) =
R(ν′2) =∶ R′, namely

R′ = (aδx′ + (a1 − a)δPL+(x1) +
N
∑
i=2

a i δPL+(x i) ,
N
∑
i=1

a i δPL−(x i)) .

Our next step is to prove that:

dWp(μ, μ′) = dWp(Φ(μ), ν′1) = dWp(Φ(μ), ν′2) = a
1
p c0 ,(2.4)

moreover, μ′ satisfies the following uniqueness property:

if dWp(μ, ξ) = a
1
p c0 , and R(ξ) = R′ then ξ = μ′ .(2.5)

Equations (2.4) and (2.5) together will justify relations (2.2) and (2.3).
In order to show (2.4) note that if ξ1 , ξ2 are finitely supported probability measures

with supports in a discrete set P, then

dWp(ξ1 , ξ2) = min
Π∈C(ξ1 ,ξ2)

( ∑
(u ,v)∈P×P

d p
m(u, v) ⋅Π(u, v))

1
p

.

The proof of each of the equations in (2.4) is similar, therefore we will only prove the
equality dWp(μ, μ′) = a

1
p c0. Notice first, that since every transport plan must move a

total weight of at least a to x1 from the support points of μ′, we have that

dWp(μ, μ′) ≥ (
N
∑
i=0

d p
m(x i , x1)Π(x i , x1))

1
p

≥ (d p
m(x0 , x1)a)

1
p = a

1
p c0 ,

since d p
m(x i , x1) ≥ d p

m(x0 , x1) and∑N
i=0 Π(x i , x1) ≥ a. On the other hand, if we move

weight a directly from x0 to x1, we exactly get that the cost of this transport plan is
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a
1
p c0. Now we turn to the proof of (2.5). Let us suppose that we have a probability

measure ξ with R(ξ) = R′. Then ξ can be written in the form

ξ =
N
∑
i=0

N
∑
j=1

b i , jδz i , j ,

such that
N
∑
j=1

b0, j = a,
N
∑
j=1

b1, j = a1 − a,
N
∑
j=1

b i , j = a i (2 ≤ i ≤ N),
N
∑
i=0

b i , j = a j .

Again, every transport plan must move a total weight of at least a to x1 from the
support points of ξ. Hence, we get that again

dWp(ξ, μ) ≥ (
N
∑
i=0

N
∑
j=1

d p
m(z i , j , x1)Π(z i , j , x1))

1
p

≥ (d p
m(x0 , x1)a)

1
p = a

1
p c0 .(2.6)

Let us recall that dm(x0 , x1) < dm(z i , j , x1), if (i , j) ∉ {(0, 1), (1, 1)}. (Note that
z0,1 = x0, z1,1 = x1). Therefore, equality holds in (2.6) if and only if all transport occurs
between x0 and x1 with weight a. This implies that ξ − aδx0 = μ − aδx1 and hence
ξ = μ′.

In the last step, we show that the existence of ν′1 ≠ ν′2 implies that μ′ is not a unique
minimizer in relation (2.2). Indeed, since Φ−1 is an isometry preserving measures
supported on L+ and L− we have by Lemma 2.4 that R(Φ−1(ν′1)) = R(Φ−1(ν′2)) = R′.
Furthermore, according to (2.4), we have

dWp(μ, Φ−1(ν′1)) = dWp(Φ(μ), ν′1) = a
1
p c0 = dWp(μ, μ′),

and similarly,

dWp(μ, Φ−1(ν′2)) = dWp(Φ(μ), ν′2) = a
1
p c0 = dWp(μ, μ′).

Since Φ−1(ν′1) ≠ Φ−1(ν′2), this is a contradiction. ∎

3 Proof of the main result

According to Proposition 2.1, it is enough to show that the Wasserstein space
Wp(X , dm) is diagonally rigid. The proof of this fact is divided into four parts
according to the choice of X = R2 or X = Q and p = 1 or p > 1.

3.1 Diagonal rigidity of W1(R2 , dm)

In this subsection, we deal with the case p = 1 and show that W1(R2 , dm) is diagonally
rigid. That is, we show that if Φ ∶W1(R2 , dm) →W1(R2 , dm) is an isometry, then
Φ(μ) = μ for all μ ∈W1(L+) ∪W1(L−)—up to a trivial isometry induced by an
isometry of the underlying space R2 .

We recall the slightly more general notion than L+ and L− of diagonal lines by
calling L ⊂ R2 a diagonal line if

L = Lε ,a = {(x1 , x2) ∈ R2 ∣ x2 = εx1 + a} for some ε ∈ {−1, 1} and a ∈ R.(3.1)
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12 Z. Balogh et al.

Figure 5: The allocation of directions in R
2 according to (3.3).

Observe that these lines coincide with the set of images of L+ by the isometry group of
(R2 , dm). The following proposition is a metric characterization of those elements of
W1(R2 , dm) that are supported on a diagonal line. Let us note that this statement plays
the same role as [11, Lemma 3.5], where Dirac masses were characterized in a similar
way in Wasserstein spaces over a Hilbert space. In this sense, diagonally supported
measures in our space have the same metric property as Dirac masses in the case of
Hilbert spaces.

Proposition 3.1 Let μ ∈W1(R2 , dm). The following statements are equivalent.
(i) μ is supported on a diagonal line Lε ,a ⊂ R2 .

(ii) For every ν ∈W1(R2 , dm) there exists an η ∈W1(R2 , dm) such that

dW1(μ, ν) = dW1(ν, η) = 1
2

dW1(μ, η).(3.2)

In words, this item means that μ admits a symmetrical with respect to every other
measure.

Proof We prove the direction (i) ⇒ (ii) first. Let ε ∈ {−1, 1} and a ∈ R be fixed, let
μ ∈W1(R2 , dm) such that

supp(μ) ⊂ L = Lε ,a = {(x1 , x2) ∈ R2 ∣ x2 = εx1 + a} .

Let us construct the following map, which we will call the allocation of directions in
the sequel:

e ∶ R2 → R
2; (y1 , y2) ↦ e((y1 , y2)) ∶=

⎧⎪⎪⎨⎪⎪⎩

(−ε, 1) if y2 ≥ εy1 + a,
(ε,−1) if y2 < εy1 + a.

(3.3)

See Figure 5 for an illustration the map given above.
The above allocation of directions has the crucial property that for all

x = (x1 , x2) ∈ L, for all y = (y1 , y2) ∈ R2 , and for all t ≥ 0 we have

dm(x , y + te(y)) = dm(x , y) + dm(y, y + te(y)) = dm(x , y) + t.(3.4)
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Let us justify (3.4) only in the sub-case ε = 1 and y2 ≥ εy1 + a as the other three sub-
cases are very similar. We know that x2 = x1 + a and y2 ≥ y1 + a which implies that
y2 − x2 ≥ y1 − x1 , or equivalently, x1 − y1 ≥ x2 − y2 . Therefore,

dm(x , y) = dm((x1 , x2), (y1 , y2))
=max{x1 − y1 , y1 − x1 , x2 − y2 , y2 − x2}
=max{x1 − y1 , y2 − x2}.

(3.5)

Moreover,

dm(x , y + te(y)) = dm((x1 , x2), (y1 , y2) + t(−1, 1))
= dm((x1 , x2), (y1 − t, y2 + t))
=max{x1 − y1 + t, y1 − x1 − t, y2 − x2 + t, x2 − y2 − t}
=max{x1 − y1 + t, y2 − x2 + t}
=max{x1 − y1 , y2 − x2} + t.

(3.6)

That is, (3.5) and (3.6) show that dm(x , y + te(y)) = dm(x , y) + t indeed, and it is
clear by the definition (3.3) that dm(y, y + te(y)) = t for every nonnegative t.

It is a straightforward consequence of the definition of e(y)—see eq. (3.3)—that
for every t ≥ 0 the map y ↦ y + te(y) is an injection of R2 and hence invertible on its
range.

Let ν ∈W1(R2 , dm) and let t0 ∶= dW1(μ, ν). Let us define

ηt ∶= (y ↦ y + te(y))# ν(3.7)

for t ≥ 0. As the map y ↦ y + te(y) is invertible, the couplings of μ and ν are in a
one-by-one correspondence with the couplings of μ and ηt (for every t ≥ 0), and this
correspondence is given by

π(μ ,η t) = (idR2 × (y ↦ y + te(y)))# π(μ ,ν) (π(μ ,ν) ∈ C(μ, ν), π(μ ,η t) ∈ C(μ, ηt)).
(3.8)

Therefore,

dW1(μ, ηt) = inf {∬
R2×R2

dm(x , z) dπ(μ ,η t)(x , z) ∣ π(μ ,η t) ∈ C(μ, ηt)}

= inf {∬
R2×R2

dm(x , y + te(y)) dπ(μ ,ν)(x , y) ∣ π(μ ,ν) ∈ C(μ, ν)}

= inf {∬
R2×R2

(dm(x , y) + t) dπ(μ ,ν)(x , y) ∣ π(μ ,ν) ∈ C(μ, ν)}

= inf {∬
R2×R2

dm(x , y) dπ(μ ,ν)(x , y) ∣ π(μ ,ν) ∈ C(μ, ν)} + t

= dW1(μ, ν) + t = t0 + t

(3.9)

for every t ≥ 0.
Note, that in the above computation, we heavily relied on the identity (3.4). The

reversed triangle inequality implies that

dW1(ν, ηt) ≥ ∣dW1(μ, ηt) − dW1(μ, ν)∣ = (t0 + t) − t0 = t.
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14 Z. Balogh et al.

On the other hand, the cost of the coupling (y ↦ (y, y + te(y)))# ν ∈ C(ν, ηt) is
simply t, and hence dW1(ν, ηt) = t. Therefore, with the particular choice t ∶= t0 =
dW1(μ, ν) the triple (μ, ν, ηt0) satisfies the requirement

dW1(μ, ν) = dW1(ν, ηt0) =
1
2

dW1(μ, ηt0)(3.10)

as every expression in (3.10) is equal to t0 .
We turn to the proof of the direction (ii) ⇒ (i). The assumption (ii) implies in

particular that for every y ∈ R2 there exists an η ∈W1(R2 , dm) such that

dW1(μ, δy) = dW1(δy , η) = 1
2

dW1(μ, η).(3.11)

Note that

dW1(μ, δy) = ∫
R2

dm(x , y) dμ(x) and dW1(δy , η) = ∫
R2

dm(y, z) dη(z).

Moreover, let π∗(μ ,η) denote an optimal coupling of μ and η, and let us note that we
have the following chain of inequalities:

dW1(μ, η) = ∬
R2×R2

dm(x , z) dπ∗(μ ,η)(x , z)

≤ ∬
R2×R2

dm(x , z) d(μ ⊗ η)(x , z)

≤ ∬
R2×R2

(dm(x , y) + dm(y, z)) dμ(x) dη(z)

= dW1(μ, δy) + dW1(δy , η).

(3.12)

Therefore, (3.11) implies that both inequalities of (3.12) are saturated. The saturation
of the first inequality means that μ ⊗ η is an optimal coupling of μ and ν with respect
to the transport cost c(x , y) = dm(x , y), while the saturation of the second inequality
means that

dm(x , z) = dm(x , y) + dm(y, z) for μ ⊗ η-almost every (x , z) ∈ R2 ×R2 .(3.13)

In order to get a contradiction, assume that μ is not supported on a diagonal line, and
let x and x′ be points of the support of μ that do not lie on a common diagonal line.
Now let us choose y to be y ∶= 1

2 (x + x′). With this choice we get

dm(x , z) < dm(x , y) + dm(y, z) or dm(x′ , z)
< dm(x′ , y) + dm(y, z) for all z ∈ R2/{y}.(3.14)

Indeed, it is easy to check—see also Figure 6—that if both triangle inequalities in (3.14)
are saturated, then z = y by necessity.

Consequently, (3.13) forces η to be η = δy . But then dW1(δy , η) = 0, which contra-
dicts to (3.11), because dW1(μ, δy) > 0 as μ is not diagonally supported and hence not
a Dirac. This contradiction completes the proof of the implication (ii) ⇒ (i). ∎

Now we give a metric characterization of the property that two measures μ1 and μ2
are supported on the same diagonal line.
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Figure 6: Illustration for eq. (3.14).

Proposition 3.2 Let μ1 , μ2 ∈W1(R2 , dm). The following statements are equivalent.

(i) μ1 and μ2 are supported on the same diagonal line.
(ii) For every ν ∈W1(R2 , dm), there exists an η ∈W1(R2 , dm) such that

dW1(μ i , η) = dW1(μ i , ν) + dW1(ν, η) for i = 1, 2 and dW1(ν, η) = 1.(3.15)

In words, this item means that there is a measure η aligned with both (μ1 , ν)
and (μ2 , ν).

Proof Let us start with the proof of the direction (i) ⇒ (ii). Assume that μ1 and μ2
are supported on the diagonal line L = {(x1 , x2) ∈ R2 ∣ x2 = εx1 + a} . Let us recall the
allocation of directions (3.3) and its crucial property (3.4). Let η be defined by

η ∶= (y ↦ y + e(y))# ν.(3.16)

Note that (3.16) is a special case of (3.7) with t = 1, and hence dW1(μ i , η) =
dW1(μ i , ν) + 1 for i = 1, 2.

Similarly as in the previous proposition, the reverse triangle inequality ensures
that dW1(ν, η) ≥ ∣dW1(μ i , η) − dW1(μ i , ν)∣ = 1, and the transport map (y ↦ (y, y +
e(y)))#ν between ν and η shows that dW1(ν, η) = 1 which completes the proof of this
direction.

To prove the direction (ii)  ⇒ (i), note that by the previous statement, both of
the measures μ1 and μ2 are supported on some diagonal line. Assume by contra-
diction that μ1 and μ2 are not supported on the same diagonal line, and hence in
particular there exist points x1 ∈ supp(μ1) and x2 ∈ supp(μ2) that do not lie on a
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16 Z. Balogh et al.

common diagonal line. As in the proof of Proposition 3.1 let us choose ν ∶= δy where
y = 1

2 (x1 + x2). With this choice, (3.15) implies that

dm(x , z) = dm(x , y)
+ dm(y, z) for μ i ⊗ η-almost every (x , z) ∈ R2 ×R2 (i = 1, 2).

In particular, dm(x i , z) = dm(x i , y) + dm(y, z) for i = 1, 2 which implies z = y for
η-almost every z, and hence forces η to be δy . However, this contradicts the require-
ment dW1(ν, η) = 1, so we got the desired contradiction. ∎

Now we are in the position to prove the main result of this section.

Theorem 3.3 The Wasserstein space W1(R2 , dm) is diagonally rigid. That is, for any
isometry Φ ∶W1(R2 , dm) →W1(R2 , dm) there exists an isometry T ∶ R2 → R

2 such
that Φ ○ T# fixes all measures supported on L+ and L−.

Proof Let Φ ∶W1(R2 , dm) →W1(R2 , dm) be an isometry, and let μ, μ′ ∈W1(L+)
be two measures, μ ≠ μ′. According to Proposition 3.2, their images Φ(μ) and Φ(μ′)
are supported on a diagonal line Lε ,a for a suitable ε ∈ {−1, 1} and a ∈ R. Since for
every ε ∈ {−1, 1} and a ∈ R there is an isometry T ∶ R2 → R

2 that maps Lε ,a onto L+,
we can assume that supp(Φ(μ)) ⊆ L+ and supp(Φ(μ′)) ⊆ L+. In fact, for every ν
with supp(ν) ⊆ L+ we conclude that supp(Φ(ν)) ⊆ L+. Indeed, let us repeat the above
argument for μ and ν. Since they are both supported on L+ their images are supported
on the same diagonal line. We already know that supp(Φ(μ)) ⊆ L+, and therefore if
Φ(μ) is not a Dirac mass, then Proposition 3.2 guarantees that supp(Φ(ν)) ⊆ L+. If
Φ(μ) is a Dirac mass, say Φ(μ) = δ(x ,x) then we have to exclude the possibility of
supp(Φ(ν)) ⊆ L−1,2x . To this aim, consider ν and μ′, and again, apply Proposition 3.2
to conclude that supp(Φ(μ′)) ⊆ L−1,2x . But this is a contradiction, as we already
know that supp(Φ(μ′)) ⊆ L+ and therefore supp(Φ(μ′)) = {(x , x)}, or equivalently
Φ(μ′) = δ(x ,x) = Φ(μ).

We obtain in this way, that Φ restricted to W1(L+) is a (bijective) isometry of
W1(L+), which is isomorphic to W1(R, ∣ ⋅ ∣) which is known to be isometrically rigid
— see [10]. Therefore measures in W1(L+) are left invariant by Φ.

Finally we need to show that measures in W1(L−) are also left invariant by Φ. To
see this note that (0, 0) ∈ L+ ∩ L− and considering the measure μ = δ(0,0) together
with another measure ν supported on L− we conclude by applying Proposition 3.2
that both Φ(μ) and Φ(ν) are supported on the same diagonal line. Since we know
already that Φ(μ) = μ = δ(0,0) we can conclude that the support of Φ(ν) is in L+ or
it is in L−. Since the first option cannot hold as the pre-images of measures supported
on L+ are supported on L+ by the previous paragraph, we are left with the second one.
This shows that if ν ∈W1(L−) then so is Φ(ν). By possibly applying another isometry
of R2 we obtain that Φ fixes the elements of ν ∈W1(L−) as well. ∎

3.2 Diagonal rigidity of Wp(R2 , dm) for p > 1

In this subsection, we show that the Wasserstein space Wp(R2 , dm) for p > 1 is
diagonally rigid. First, we give a metric characterization of Dirac measures. Such a
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characterization will guarantee that if μ is a Dirac mass, then Φ(μ) is a Dirac mass as
well.

Proposition 3.4 Let p > 1 and μ ∈Wp(R2 , dm). The following statements are equiva-
lent.
(i’) μ is a Dirac mass, that is, μ = δx for some x ∈ R2 ,
(ii’) For every ν ∈Wp(R2 , dm) there exists an η ∈Wp(R2 , dm) such that

dWp(μ, ν) = dWp(ν, η) = 1
2

dWp(μ, η).(3.17)

In words, item (ii’) means that μ admits a symmetrical with respect to every other
measure.

Note that the above Proposition 3.4 characterizing Dirac masses in Wp(R2 , dm)
for p > 1 highlights the difference between the cases p = 1 and p > 1. This statement is
very similar in spirit to Proposition 3.1 characterizing measures supported on diagonal
lines in W1(R2 , dm). In fact, condition (ii) of Proposition 3.1 is the same as condition
(ii’) of Proposition 3.4, up to a modification in the parameter value of the Wasserstein
distance that we consider. This means that diagonally supported measures play the
role of Dirac masses in the case p = 1, and in particular, there are plenty of examples
of non-Dirac measures satisfying condition (ii), which is the 1-Wasserstein version of
condition (ii’) above. These examples are explicitly constructed in the proof of the
(i) ⇒ (ii) part of Proposition 3.1.

Proof Let us prove the direction (i’) ⇒ (ii’) first. Let x ∈ R, let μ = δx , and let us
define the following dilation with center x on R

2:

Dx ∶ R2 → R
2; y ↦ Dx(y) ∶= x + 2(y − x).(3.18)

Now, for any ν ∈Wp(R2 , dm), let us define the corresponding ην by

ην ∶= (Dx)# ν.(3.19)

It is clear that dWp(μ, ην) = 2dWp(μ, ν). Indeed,

dWp(δx , ην) =
⎛
⎜
⎝
∫
R2

d p
m(x , z) d(Dx)#ν(z)

⎞
⎟
⎠

1
p

=
⎛
⎜
⎝
∫
R2

d p
m(x , x + 2(y − x)) dν(y)

⎞
⎟
⎠

1
p

=
⎛
⎜
⎝
∫
R2

2pd p
m(x , y)) dν(y)

⎞
⎟
⎠

1
p

= 2dWp(δx , ν).

Moreover, by the reversed triangle inequality, dWp(ν, ην) ≥ dWp(μ, ην) −
dWp(μ, ν) = dWp(μ, ν), while the obvious coupling of ν and ην given by the dilation
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18 Z. Balogh et al.

Dx guarantees that dWp(ν, ην) ≤ dWp(μ, ν), and hence the direction (i’)  ⇒ (ii’) is
proved.

To prove the other direction (ii’) ⇒ (i’), let ν be a Dirac mass, ν = δy , and let η
be as in condition (ii’). Then

dWp(μ, η) = (∬
R2×R2

d p
m(x , z) dπ∗(μ ,η)(x , z))

1
p

≤ (∬
R2×R2

d p
m(x , z) d(μ ⊗ η)(x , z))

1
p

≤ (∬
R2×R2

(dm(x , y) + dm(y, z))p d(μ ⊗ η)(x , z))
1
p

≤ (∬
R2×R2

dm(x , y)p d(μ ⊗ η)(x , z))
1
p

+ (∬
R2×R2

d p
m(y, z) d(μ ⊗ η)(x , z))

1
p

=
⎛
⎜
⎝
∫
R2

dm(x , y)p dμ(x)
⎞
⎟
⎠

1
p

+
⎛
⎜
⎝
∫
R2

d p
m(y, z) dη(z)

⎞
⎟
⎠

1
p

= (∬
R2×R2

dm(x , z)p d(μ ⊗ δy)(x , z))
1
p

+ (∬
R2×R2

d p
m(x , z) d(δy ⊗ η)(x , z))

1
p

= dWp(μ, ν) + dWp(ν, η).

Since we assumed that dWp(μ, ν) = dWp(ν, η) = 1
2 dWp(μ, η), all the inequalities in

the above chain are saturated. In particular, by the saturation of the Lp-Minkowski
inequality for p > 1 (strictly convex norm), we get that there is a nonnegative constant
α ≥ 0 such that

dm(y, z) = αdm(x , y) for μ-a.e. x ∈ R2 and for η-a.e. z ∈ R2 .(3.20)

If μ is not a Dirac mass, then let x1 and x2 be two different points in its support, and
let y ∶= 2

3 x1 + 1
3 x2 . Then the left-hand side of (3.20) is independent of x , while the

right-hand side is not—a contradiction. ∎
The next step is to find a metric characterization of the property that the support

of a measure μ is diagonally aligned with a point x in the underlying space, that
is, supp(μ) ⊂ (x + L+) ∪ (x + L−). This metric characterization turns out to be the
property that there is only one p-Wasserstein geodesic between δx measure and μ.

Proposition 3.5 Let p > 1 and x ∈ R2 be fixed. For a measure μ ∈Wp(R2 , dm) the
following statements are equivalent:
(a) There exists a unique unit-speed geodesic segment γ such that γ(0) = δx and

γ(T) = μ, where dWp(δx , μ) = T,
(b) We have the inclusion suppμ ⊆ Dx , where Dx = (x + L+) ∪ (x + L−).
Proof To prove the statement let us note that Corollary 7.22 in Villani’s book [17]
says that if p > 1, and the underlying metric space is a complete, separable, and locally
compact length space, then constant-speed geodesics connecting two measures are
all displacement interpolations, i.e., geodesics are always constructed from optimal
transport plans.
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Therefore (see [17, Corollary 7.23]), if we want to guarantee that there is only one
geodesic between two measures μ, ν, we need two properties:
• we need a unique optimal transport plan π̃,
• and for π̃-almost every (x , y), x and y must be joined by a unique geodesic.
Let us note that the first property is automatically satisfied since one of the masses that
we consider is a Dirac mass. Furthermore, note that in (R2 , dm), the second property
means exactly that x and y are diagonally aligned, i.e., both points lie on the same
diagonal line. For a fixed x ∈ R2 let us denote by Dx the set of those points that are
diagonally aligned with x. Of course, Dx is the union of the two diagonal lines L+ + x
and L− + x passing through x concluding the proof. ∎

Now we are in position to prove that Wp(R2 , dm) is diagonally rigid for p > 1.

Theorem 3.6 For all p > 1 the Wasserstein space Wp(R2 , dm) is diagonally rigid.

Proof Let Φ be an isometry. Since Proposition 3.4 is a metric characterization
of Dirac masses, we know that Φ maps the set of Dirac masses onto itself. That
is, there exists a bijection T ∶ R2 → R

2 such that Φ(δx) = δT(x). In fact, T is an
isometry, as dWp(δx , δy) = dm(x , y) for all x , y ∈ R2. Without loss of generality, we
can assume that T(x) = x, and thus Φ(δx) = δx for all x ∈ R2. Next, consider the
diagonal line L+. (The case of L− is completely analogous.) Fix an arbitrary x ∈ L+,
and observe that according to Proposition 3.5, for any μ such that supp(μ) ⊆ L, there
is only one geodesic connecting δx and μ. Therefore, there must be only one geodesic
between Φ(δx) = δx and Φ(μ). Again, according to Proposition 3.5 this means
that supp(Φ(μ)) ⊆ Dx . Now choose a y ∈ L+ (y ≠ x) and repeat the argument. The
conclusion is that supp(Φ(μ)) ⊆ Dy . But Dx ∩ Dy = L+, and therefore supp(Φ(μ)) ⊆
L+. Now we know that Φ sends measures supported on L+ into measures supported
on L+. Since L+ endowed with the restriction of dm ∶ R2 ×R2 → R+ onto L+ × L+ is
nothing else but (R, ∣ ⋅ ∣), the set

Wp(L+, dm) ∶= {μ ∈Wp(R2 , dm) ∣ suppμ ⊆ L+}
endowed with the Wasserstein distance is isometrically isomorphic to the Wasserstein
space Wp(R, d∣⋅∣) investigated in [10, 13], which is isometrically rigid if p ≠ 2. Since
we assumed that Φ(δx) = δx , isometric rigidity forces the restriction Φ∣Wp(L+ ,dm) to
be the identity, i.e., Φ(μ) = μ for all μ supported on L+. The same argument with
L− completes the proof in the p ≠ 2 case.

If p = 2 we need to use a more involved argument, sinceW2(R, d∣⋅∣) is not isometri-
cally rigid. In fact, if Ψ ∶W2(R, d∣⋅∣) →W2(R, d∣⋅∣) is an isometry, then Ψ(δx) = δx for
all x ∈ R itself does not imply Ψ(μ) = μ for all μ ∈W2(R, d∣⋅∣), as W2(R, d∣⋅∣) admits
exotic isometries and a non-trivial shape-preserving isometry.

Therefore, even if we know that Φ(δ(x ,x)) = δ(x ,x) for all (x , x) ∈ L+ we cannot
guarantee yet that Φ(μ) = μ for all μ with supp(μ) ⊆ L+. We have to rule out that the
restriction of Φ onto Wp(L+, dm) does not act like a non-trivial isometry. This boils
down to investigating the action on measures whose support consists of two points of
L+ as follows: using the isometric identification t ↦ (t, t) between the real line and
L+, we will use Kloeckner’s result which tells us how the image of a μ = αδ(x ,x) +
(1 − α)δ(y , y) would look like if Φ would act on L+ like non-trivial isometry. Then
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we will choose a special μ and a special Dirac measure δ(u ,v) (not supported on L+)
with the property that dW2(μ, δ(u ,v)) ≠ dW2(Φ(μ), δ(u ,v)) = dW2(Φ(μ), Φ(δ(u ,v))),
a contradiction.

Let us introduce some notations. For the diagonal line L+ the set of measures
supported on two points of L+ will be denoted by Δ2

Δ2 = {αδ(x ,x) + (1 − α)δ(y , y) ∣ α ∈ (0, 1), x , y ∈ R}.(3.21)

Following the notations in Kloeckner’s paper [13], elements of Δ2 will be parametrized
by three parameters m ∈ R, σ ≥ 0, and r ∈ R as follows:

μ(m, σ , r) = e−r

er + e−r δ(m−σ e r ,m−σ e r) +
er

er + e−r δ(m+σ e−r ,m+σ e−r).(3.22)

According to [13, Lemma 5.2], if an isometry Φ fixes all Dirac masses, then its action
on Δ2 is

Φ(μ(m, σ , r)) ∶= μ(m, σ , φ(r)),

where φ ∶ R→ R is an isometry. In other words, Φ is equal to the shape-preserving
isometry

Φ∗ ∶W2(L+) →W2(L+), Φ∗(μ(m, σ , r)) ∶= μ(m, σ ,−r),(3.23)

or Φ is equal to an exotic isometry

Φt ∶W2(L+) →W2(L+), Φt(μ(m, σ , r)) ∶= μ(m, σ , r + t)(3.24)

for some t ≠ 0, or Φ is the composition Φt ○Φ∗ for some t ≠ 0. Note, that if t = 0, then
Φt is the identity, so Φ0 is not an exotic isometry.

To handle the case Φ∗, choose μ = μ(0, 1, ln 2) = 1
5 δ(−2,−2) + 4

5 δ( 1
2 , 1

2 )
. Then

Φ∗(μ) = μ(0, 1,− ln 2) = 4
5

δ(− 1
2 ,− 1

2 )
+ 1

5
δ(2,2) .

Calculating the Wasserstein distance of μ and Φ(μ) from δ(2,0), we obtain that

dW2(δ(2,0) , μ(0, 1, ln 2)) =
√

5 and dW2(δ(2,0) , μ(0, 1,− ln 2)) =
√

5 + 4
5

.

So if Φ is an isometry, it cannot act on L+ like Φ∗.
To handle the case Φt for t > 0, choose μ = μ(0, 1, 0) = 1

2 δ(−1,−1) + 1
2 δ(1,1).

Then Φ(μ(0, 1, 0)) = μ(0, 1, t). Now fix the Dirac measure δ(−1,0) and calculate
dW2(δ(−1,0) , μ(0, 1, 0) and dW2(δ(−1,0) , μ(0, 1, t). Again, if Φ would act like Φt on
L+, we should get the same result, since Φ is an isometry. The calculation shows that
dW2(δ(−1,0) , μ(0, 1, 0)) =

√
5
2 and

dW2(δ(−1,0) , μ(0, 1, t)) =
√

2 + 2 − e−t

e t + e−t .

These two numbers are equal if and only if t = 0 or t = ln 3. We assumed that t > 0,
so one single Dirac δ(−1,0) excluded all Φt except t = ln 3. Choosing a different Dirac
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measure, say δ(− 1
2 ,0), a simple calculation shows that

√
13
8
= dW2(δ(− 1

2 ,0) , μ(0, 1, 0)) = dW2(δ(− 1
2 ,0) , μ(0, 1, ln 3)) =

√
12
8
+ 1

40
,

a contradiction. Similar calculations for Φt with negative t and for Φ∗ ○Φt show that
the only case when we don’t get a contradiction is when Φ acts as Φ0, which is the
identity. ∎

3.3 Diagonal rigidity of W1(Q , dm)

In this subsection, we consider the case when X = Q = [−1, 1]2 and p = 1. Diagonal
rigidity is achieved as a result of the following statements about measures that are
supported on the sides, at the corners, and finally on the diagonals of Q. The first
statement concerns measures supported on the opposite sides of the boundary of Q
and it is valid for all p ≥ 1.

Lemma 3.7 Let p ≥ 1 and Φ ∶Wp(Q , dm) →Wp(Q , dm) be an isometry. If
μ, ν ∈Wp(Q , dm) are two probability measures whose supports lie on opposite sides of
the closed unit ball Q = [−1, 1]2, then their isometric images Φ(μ) and Φ(ν) have the
same property.

Proof Let us note that if x , y ∈ Q are any two points then dm(x , y) ≤ 2 with equality
if and only if x and y lie on two opposite sides of Q.

This implies that if μ, ν ∈Wp(Q , dm), then

dWp(μ, ν) ≤ 2,(3.25)

with equality if and only if the supports supp(μ) and supp(ν) are contained in two
opposite sides of Q. To see this, note that inequality (3.25) follows immediately from
the definition of the Wasserstein metric dWp and the fact that dm(x , y) ≤ 2 for all
x , y ∈ Q. Furthermore, if supp(μ) and supp(ν) are contained in two opposite sides
of Q, then dm(x , y) = 2 for all x ∈ supp(μ) and y ∈ supp(ν).

Let π0 be an optimal coupling of μ and ν. Since supp(π0) ⊆ supp(μ) × supp(ν)we
have that dm(x , y) = 2 for any (x , y) ∈ supp(π0) and therefore

d p
Wp
(μ, ν) = ∫

Q×Q

d p
m(x , y) dπ0(x , y) = 2p .

To show the converse, let us assume that d p
Wp
(μ, ν) = 2p . Then for all couplings

π ∈ C(μ, ν) we have

2p = d p
Wp
(μ, ν) = ∫

Q×Q

d p
m(x , y) dπ(x , y) ≤ ∫

Q×Q

2p dπ(x , y) = 2p ,

thus dm(x , y) = 2 for π almost all (x , y). This applies for π = μ ⊗ ν, and so μ and ν
must be concentrated on the opposite sides of Q.

The statement of the lemma is now an immediate consequence of this claim.
Indeed, assume that supp(μ) and supp(ν) are contained in two opposite sides of Q.
Then we have d p

Wp
(μ, ν) = 2p . Since Φ ∶Wp(Q , dm) →Wp(Q , dm) is an isometry, we
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have d p
Wp
(Φ(μ), Φ(ν)) = 2p . But, then the supports of the two measures Φ(μ) and

Φ(ν)must be contained in two opposite sides of Q. ∎

Corollary 3.8 Let us fix a p ≥ 1 and denote by D = {x1 , x2 , x3 , x4} the set of vertices of
Q and let V be the set of Dirac measures supported on the points of D, i.e.,

V = {δx1 = δ(−1,−1) , δx2 = δ(1,−1) , δx3 = δ(1,1) , δx4 = δ(−1,1)}.

Given any isometry Φ ∶Wp(Q , dm) →Wp(Q , dm), there exists an isometry Ψ ∶
(Q , dm) → (Q , dm) such that Φ ○Ψ#(δx) = δx for all x ∈ D.

Proof Let us denote by S1 , S3 the two vertical and by S2 , S4 the two horizontal sides
of Q such that S1 is the left vertical and S4 is the top horizontal side.

We apply Lemma 3.7 to every pair of elements of V , and we conclude that for every
j ∈ {1, 2, 3, 4}, the measure Φ(δx j) is supported on a certain side S i of Q .

We claim that each Φ(δx j) must be in fact supported on some vertex. To see this
we argue by contradiction. Let us assume that for example Φ(δx1) is supported on one
of the sides, say S1 but not on any of the vertices of S1.

It is clear by Lemma 3.7 that all other measures Φ(δx i ) for i = 2, 3, 4 must be
supported on the opposite side of S1, that is S3 . But the mutual distance of any pair of
these measures must be equal to 2 which shows that any two of these three measures
must be lying on opposite sides again, which is S2 and S4. But there are only two
possibilities for measures with support in S2 ∩ S3 and S4 ∩ S3, namely the two Dirac
masses on the vertices of S3 which gives a contradiction.

It is easy to see that there exists an isometry Ψ ∶ Q → Q such that Φ ○Ψ# fixes
δx i and δx i+1 for some i ∈ {1, 2, 3, 4}, and therefore we can assume without loss
of generality that (Φ ○Ψ#)(δx i ) = δx i for i = 1, 2. This will imply that all measures
supported on S4 are fixed. We must show that Φ ○Ψ#(δx i ) = δx i for i = 3, 4. Note,
that the map

Φ ○Ψ# ∶Wp(Q , dm) →Wp(Q , dm)

is itself an isometry. Let us assume indirectly that Φ ○Ψ#(δx3) = δx4 (which implies
that and Φ ○Ψ#(δx4) = δx3 ), and take a ξ such that supp(ξ) ⊆ S3, ξ ∉ {δx2 , δx3}. Since
dWp(δx1 , ξ) = 2, we have

2 = dWp(δx1 , ξ) = dWp(Φ(δx1), Φ(ξ)) = dWp(δx1 , Φ(ξ)),

which implies that supp(Φ(ξ)) ⊆ S3 ∪ S4. Similarly, dWp(δx4 , ξ) = 2, and thus

2 = dWp(δx4 , ξ) = dWp(Φ(δx4), Φ(ξ)) = dWp(δx3 , Φ(ξ)),

which implies that supp(Φ(ξ)) ⊆ S1 ∪ S2. Combining supp(Φ(ξ)) ⊆ S1 ∪ S2 and
supp(Φ(ξ)) ⊆ S3 ∪ S4 with ξ ∉ {δx2 , δx3}, we get that Φ(ξ) = α∗δx2 + (1 − α∗)δx4 for
some α∗ ∈ (0, 1). (Recall that Φ(δx2) = δx2 , Φ(δx3) = δx4 , and Φ is injective.) If p > 1,
then this is a contradiction. Indeed, choose ξ ∶= δy with y ∈ S3/{x2 , x3}, and observe
that the triple δx2 , δy , and δx3 saturates the triangle inequality, but the triple Φ(δx2) =
δx2 , Φ(δy) = α∗δx2 + (1 − α∗)δx4 and Φ(δx3) = δx4 does not, as p

√
2p(1 − α∗) +

p
√

2pα∗ ≠ 2. If p = 1, we need a different argument. The set I ∶= {μα ∶= αδx2 + (1 −
α)δx4 ∣ α ∈ (0, 1)} is isometric to the set ((0, 1), 2∣ ⋅ ∣), since dW1(μα , μβ) = ∣α − β∣.

Downloaded from https://www.cambridge.org/core. 23 Jun 2025 at 10:13:45, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Isometric rigidity of Wp(R2 , dm) and Wp(Q , dm) for p ≥ 1 23

Therefore for any three different elements μα1 , μα3 , and μα3 there exists a bijection σ ∶
{1, 2, 3} → {1, 2, 3} such that dW1(μασ(1) , μασ(3)) = (μασ(1) , μασ(2)) + (μασ(2) , μασ(3)).
Now choose a non-degenerate triangle ξ1 , ξ2 , and ξ3 supported on S3/{x2 , x3} in the
sense that they do not saturate the triangle inequality in any order. The existence of
such a triple is a contradiction, as an appropriate permutation of their image in I will
saturate the triangle inequality. ∎

From now on we shall assume without loss of generality that our isometry

Φ ∶Wp(Q , dm) →Wp(Q , dm)

fixes the elements of V, i.e., the Dirac masses on the corners of Q. Note that this
property implies by Lemma 3.7 that any measure supported on one of the sides of
Q will be mapped to a measure supported on the same side of Q.

In what follows we shall prove, even a stronger property for measures supported
on the main diagonals

L+ = {(t, t) ∶ t ∈ [−1, 1]}, and L− = {(t,−t) ∶ t ∈ [−1, 1]},

namely, that they are fixed under the action of the isometry. This is valid for the case
p = 1.

Theorem 3.9 The Wasserstein space W1(Q , dm) is diagonally rigid.

Proof By Corollary 3.8, we can assume without loss of generality that Φ fixes the
Dirac masses at the four corners of Q. It is enough to show that if μ ∈W1(Q , dm)
supported on L+, then Φ(μ) = μ as the case of L− is similar. We show first that if
supp(μ) ⊆ L+, then supp(Φ(μ)) ⊆ L+. This is based on the following observation: If
x ∈ Q then

dm((−1,−1), x) + dm(x , (1, 1)) ≥ dm((−1,−1), (1, 1)) = 2(3.26)

with equality if and only if x ∈ L+.
The above inequality follows simply by the triangle inequality applied for the metric

dm. The characterization of the equality case is slightly more tricky. It is based on the
fact that the line segment L+ ∶ t → (t, t), t ∈ [−1, 1] is the only geodesic with respect to
the metric dm connecting the endpoints (−1,−1) and (1, 1). This observation has the
following consequence for measures: If μ ∈W1(Q , dm), then

dW1(δ(−1,−1) , μ) + dW1(μ, δ(1,1)) ≥ 2,(3.27)

with equality if and only if supp(μ) ⊆ L+. To show inequality (3.27), we integrate
inequality (3.26) with respect to μ. In this way, we obtain

dW1(δ(−1,−1) , μ) + dW1(μ, δ(1,1))

= ∫
Q

dm((−1,−1), x) dμ(x) + ∫
Q

dm(x , (1, 1)) dμ(x)

≥ ∫
Q

2 dμ(x) = 2.

(3.28)
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Let us assume that supp(μ) ⊆ L+. Then equality holds true in (3.26) for every point
x ∈ supp(μ) and thus by integrating, we obtain that equality holds in (3.28) as well.

Conversely, let us assume, that

dW1(δ(−1,−1) , μ) + dW1(μ, δ(1,1)) = 2

for some measure μ ∈W1(Q , dm). We have to show that supp(μ) ⊆ L+. We argue by
contradiction: assume that the exists a point x0 ∈ supp(μ) that is not contained in
L+. Then there exists a small radius r > 0 and a small ε > 0 with the property that
δ = μ(B(x0 , r) > 0 and

dm((−1,−1), x) + dm(x , (1, 1)) > 2 + ε, for all x ∈ B(x0 , r).

Using this relation, we obtain

dW1(δ(−1,−1) , μ) + dW1(μ, δ(1,1))

= ∫
supp(μ)

dm((−1,−1), x) dμ(x) + ∫
supp(μ)

dm(x , (1, 1)) dμ(x)

= ∫
supp(μ)

[dm((−1,−1), x) + dm(x , (1, 1))] dμ(x)

= ∫
supp(μ)∩B(x0 ,r)

[dm((−1,−1), x) + dm(x , (1, 1))] dμ(x)

+ ∫
supp(μ)/B(x0 ,r)

[dm((−1,−1), x) + dm(x , (1, 1))] dμ(x)

> (2 + ε)δ + 2(1 − δ) = 2 + εδ > 2,

which is a contradiction. Let us consider an isometry Φ ∶W1(Q , dm) →W1(Q , dm)
that fixes the elements of V (i.e., the Dirac masses on the corners of Q). Then we have

dW1(δ(−1,−1) , Φ(μ)) + dW1(Φ(μ), δ(1,1)) = dW1(δ(−1,−1) , μ)) + dW1(μ, δ(1,1)).

Assuming that supp(μ) ⊆ L+ we obtain that by the above that

dW1(δ(−1,−1) , μ)) + dW1(μ, δ(1,1)) = 2.

By the above equality we have, then

dW1(δ(−1,−1) , Φ(μ)) + dW1(Φ(μ), δ(1,1)) = 2,

which implies in turn that supp(Φ(μ)) ⊆ L+.
As mentioned at the beginning of the proof, the same argument shows that if we

have supp(μ) ⊆ L−, then it follows that supp(Φ(μ)) ⊆ L− as well. Since μ0 = δ(0,0) has
its support in L+ ∩ L−, and it is the unique measure with this property, we conclude,
that Φ(μ0) = μ0. Now let us consider the Wasserstein space W1(L+ , dm) of measures
supported on L+. By the above consideration, we have

Φ ∶W1(L+, dm) →W1(L+, dm),
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moreover, we know that Φ(μ0) = μ0 for the measure μ0 = δ(0,0) ∈W1(L+, dm). We
cannot apply the characterization of Wasserstein isometries on a line segment (see [10,
Theorem 2.5]) which implies that Φ(μ) = μ for all measures μ ∈W1(L+, dm). In the
same way we can also conclude, that Φ(μ) = μ for all measures μ ∈W1(L−, dm). ∎

The combination of Proposition 2.1 and Theorem 3.9 implies that W1(Q , dm) is
isometrically rigid.

3.4 Diagonal rigidity of Wp(Q , dm) for p > 1

In this final subsection, we consider the case X = Q = [−1, 1]2 and p > 1. In this case,
we also have the following statement.

Theorem 3.10 The Wasserstein space Wp(Q , dm) is diagonally rigid.

Proof Let Φ be an isometry of the Wasserstein space Wp(Q , dm). Since the Wasser-
stein space Wp([−1, 1], d∣⋅∣) is isometrically rigid, Corollary 3.8 and the remark after
that, implies that we can assume without loss of generality that Φ leaves every measure
supported either on the right vertical side [(1,−1), (1, 1)] or on the top horizontal side
[(−1, 1), (1, 1)] fixed. We are going to show that Φ leaves every measure supported on
the line diagonal segment [(−1,−1), (1, 1)] ⊂ Q fixed. The case of the other diagonal is
analogous.

In the first step, we consider measures supported on the upper half of the diagonal,
i.e., on the line segment [(0, 0), (1, 1)]. We prove first that these measures will be fixed.
In the second step, we proceed to consider general measures supported on the full
segment [(−1,−1), (1, 1)].

Let μ be a measure supported on the upper half of the diagonal of Q (that is, on
[(0, 0), (1, 1)]), and consider the projections pr ∶ (t, t) ↦ (1, 2t − 1) and pu ∶ (t, t) ↦
(2t − 1, 1) that map [(0, 0), (1, 1)] onto the right vertical side [(1,−1), (1, 1)] and
the top horizontal side [(−1, 1), (1, 1)], respectively (Figure 7). Let us introduce the
notation μr ∶= (pr)#(μ) and and μu ∶= (pu)#(μ).

Our goal is to show that μ is the unique minimizer of the functional

Wp(Q , dm) ∋ ν ↦ d p
Wp
(μr , ν) + d p

Wp
(ν, μu).(3.29)

Figure 7: Illustration for the definition of pu , pr , μu , and μr .
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Once this is proved, we are done, as in this case the equation

d p
Wp
(μr , Φ(μ)) + d p

Wp
(Φ(μ), μu) = d p

Wp
(Φ(μr), Φ(μ)) + d p

Wp
(Φ(μ), Φ(μu))

= d p
Wp
(μr , μ) + d p

Wp
(μ, μu)

= min
ν∈Wp(Q ,dm)

(d p
Wp
(μr , ν) + d p

Wp
(ν, μu))

(3.30)

forces Φ(μ) to be μ.
Let ν ∈Wp(Q , dm) be arbitrary, let π∗(μr ,ν) be an optimal transport plan between μr

and ν with respect to the cost c(x , y) = d p
m(x , y), let π∗(ν ,μu)

be an optimal transport
plan between ν and μu with respect to the same cost, and let π∗(μr ,ν ,μu)

∈ Prob(Q3) be
the gluing of them—see the “gluing lemma” [16, Lemma 7.6] for further details of this
construction. Moreover, set π∗(μr ,μu)

∶= (π∗(μr ,ν ,μu)
)

13
. Now

d p
Wp
(μr , ν) + d p

Wp
(ν, μu)

= ∬
Q2

d p
m(x , y) dπ∗(μr ,ν)(x , y) +∬

Q2
d p

m(y, z) dπ∗(ν ,μu)
(y, z)

=∭
Q3
(d p

m(x , y) + d p
m(y, z)) dπ∗(μr ,ν ,μu)

(x , y, z)

≥∭
Q3

min
y∈Q
{d p

m(x , y) + d p
m(y, z)} dπ∗(μr ,ν ,μu)

(x , y, z)

= ∬
Q2

min
y∈Q
{d p

m(x , y) + d p
m(y, z)} dπ∗(μr ,μu)

(x , z).

(3.31)

Let us compute miny∈Q{d p
m(x , y) + d p

m(y, z)} for any (x , z) ∈ Q2 — the case x = z
gives a trivial zero. By the reversed triangle inequality, we have

d p
m(x , y) ≥ ∣dm(x , z) − dm(y, z)∣p = d p

m(x , z) ∣1 − dm(y, z)
dm(x , z) ∣

p

.

Consequently,

d p
m(x , y) + d p

m(y, z) ≥ d p
m(x , z)

⎛
⎝
∣1 − dm(y, z)

dm(x , z) ∣
p

+ ∣dm(y, z)
dm(x , z) ∣

p⎞
⎠

.

It is crucial that p > 1 and hence the map t ↦ ∣t∣p is strictly convex on R. Therefore,
the function R ∋ λ ↦ ∣1 − λ∣p + ∣λ∣p has a unique minimizer which is λ0 = 1

2 , and the
minimum is 21−p — this can be justified by simple one-variable calculus. To sum up,

min
y∈Q
{d p

m(x , y) + d p
m(y, z)} = 21−pd p

m(x , z),
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and this minimum is achieved if and only if dm(x , y) = dm(y, z) = 1
2 dm(x , z)—note

that this does not imply that y = 1
2 (x + z). So we can continue (3.31) as follows:

∬
Q2

min
y∈Q
{d p

m(x , y) + d p
m(y, z)} dπ∗(μr ,μu)

(x , z) = 21−p∬
Q2

d p
m(x , z) dπ∗(μr ,μu)

(x , z)

≥ 21−pd p
Wp
(μr , μu).

(3.32)

The inequality in (3.32) is saturated if and only if π∗(μr ,μu)
is an optimal transport plan

between μr and μu with respect to the cost c(x , z) = d p
m(x , z). Observe, that (pr ×

pu)#(μ) is the unique optimal transport plan between μr and μu for this cost. Indeed,
by the definition of the max norm we get

(1 − (2t − 1))p ≤ d p
m((1, 2t − 1), (2s − 1, 1))(3.33)

and

(1 − (2s − 1))p ≤ d p
m((1, 2t − 1), (2s − 1, 1))(3.34)

for all (s, t) ∈ [0, 1] × [0, 1]. By the construction of μr and μu , the couplings of these
measures are in 1 − 1 correspondence with the couplings of μ with itself—now we
consider μ as a measure on [0, 1]. This correspondence is described as follows: if
π ∈ C(μr , μu), then let us define π̃ ∈ C(μ, μ) by π̃ ∶= (p−1

r × p−1
u )#(π). Then

∬
Q2

d p
m(x , z) dπ(x , z) = ∬

[0,1]2
d p

m((1, 2t − 1), (2s − 1, 1)) dπ̃(t, s).

≥∬
[0,1]2
(1 − (2t − 1))p dπ̃(t, s)

= ∫
[0,1]

(1 − (2t − 1))p dμ(t)

(3.35)

and (3.35) is saturated if and only if s ≥ t for π̃−a.e. (s, t). Using (3.34) we get

∬
Q2

d p
m(x , z) dπ(x , z) ≥ ∫

[0,1]

(1 − (2s − 1))p dμ(s)

which is saturated if and only if t ≥ s for π̃−a.e. (s, t). Therefore, if π is an optimal
coupling of μr and μu , then π̃ is supported on the diagonal of [0, 1]2 which implies
that π̃ = (id × id)#(μ). This means that π = (pr × pu)#(μ). So (pr × pu)#(μ) is the
only optimal transport plan.

At this point we know by (3.31) and (3.32) that

d p
Wp
(μr , ν) + d p

Wp
(ν, μu) ≥ 21−pd p

Wp
(μr , μu),(3.36)
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and (3.36) is saturated if and only if π∗(μr ,μu)
= (pr × pu)#(μ) and dm(x , y) =

dm(y, z) = 1
2 dm(x , z) for π∗(μr ,ν ,μu)

−a.e. (x , y, z) ∈ Q3 . Therefore, equality in (3.36)
implies that

supp(π∗(μr ,ν ,μu)
) ⊂ {((1, 2t − 1), y, (2t − 1, 1)) ∣ t ∈ [0, 1], y ∈ Q} .

However, the unique metric midpoint of (1, 2t − 1) and (2t − 1, 1) is (t, t). Therefore,
y = 1

2 (x + z)must hold for π∗(μr ,ν ,μu)
-a.e. (x , y, z) ∈ Q3 , which forces ν to be

((x , z) ↦ 1
2
(x + z))

#
π∗(μr ,μu)

= ((x , z) ↦ 1
2
(x + z))

#
(pr × pu)#(μ) = μ.

Now let us consider μ, a probability measure supported on the main diagonal
[(−1,−1), (1, 1)]. The displacement interpolation given by

μs ∶= ((x , x) ↦ (1 − s)(1, 1) + s(x , x))# (μ) (s ∈ [0, 1])

is the unique geodesic line segment between μ0 = δ(1,1) and μ1 = μ. Note that μ 1
2

is
supported on the “upper half of the diagonal” [(0, 0), (1, 1)] and hence preserved by Φ.
Moreover, (μs)0≤s≤ 1

2
is the only geodesic line segment between δ(1,1) and μ 1

2
, and the

unique extension of this geodesic segment to the parameter domain [0, 1] is (μs)0≤s≤1 .
Therefore, the geodesic line segment (ϕ(μs))0≤s≤1 containing Φ(μ0) = Φ(δ(1,1)) =
δ(1,1) and Φ(μ 1

2
) = μ 1

2
must coincide with (μs)0≤s≤1 , in particular, Φ(μ) = Φ(μ1) =

μ1 = μ. ∎

The combination of Proposition 2.1 and the above theorem implies that the Wasser-
stein space Wp(Q , dm) is isometrically rigid for p > 1.

4 Final remarks and open questions

We think that the ideas developed in this article can be used to prove isometric rigidity
of Wasserstein spaces that are built over certain normed spaces. Recent studies of the
structure of Wasserstein isometries feature interesting examples of both rigid and non-
rigid Wasserstein spaces. Kloeckner showed in [13] that the quadratic Wasserstein
space over Rn admits non-trivial isometries. As a recent result of Che, Galaz-García,
Kerin, and Santos-Rodríguez demonstrates [8], non-trivial isometries show up even
if the underlying normed space X can be written as H × Y , where H is a Hilbert space
and Y is a finite-dimensional normed space. Furthermore, by an application of a recent
result of Balogh, Stöher, Titkos, and Virosztek (see [4, Theorem 1.1]) it follows that
the Wasserstein space W1(Q , d1), (where d1 is the �1- metric on Q) is non-rigid as it
contains mass-splitting isometries. This result is in sharp contrast to our main result,
Theorem 1.1. On the other hand, non-quadratic Wasserstein spaces over Hilbert spaces
[10, 11], and Wasserstein spaces over spheres, tori, and Heisenberg groups [5, 12] turned
out to be rigid in the last years. Based on these recent developments, it would be an
intricate question to study the problem of rigidity of quadratic and non-quadratic
Wasserstein spaces over general normed spaces.

The question of rigidity of quadratic Wasserstein spaces have been investigated
for various underlying spaces including Hadamard spaces [6], [7] and more general
metric spaces with negative curvature in the sense of Alexandrov. The case of positive
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sectional curvature has been considered by Santos-Rodriguez [15]. It would be an
interesting question to study the problem of rigidity in more general metric measure
spaces satisfying a curvature-dimension condition, the so-called CD(K , N) (see [14]
and [17]) for K > 0 Note, that CD(K , N) spaces have a generalized lower bound on
the Ricci curvature and therefore are more general objects that the spaces considered
in [15].
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