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The space density p{r) of a spherical system with potential Φ(Γ) is related to the 
phase density as a function of specific energy χ and angular momentum 2ξ 
by a well-known integral equation. If the function p(r) is given (and thus also Φ ( Γ ) ) , 
this integral equation has no unique solution. In order to transform this problem 
into one with a unique solution we suggest the following form for Ψ(χ,ξ): 

*(χ,ξ) = Θ-"ψ(η), Θ = 1 +Ρξ, (1) 

where μ (dimensionless), Λ and ρ are parameters satisfying ρ > 0 and Λ > r " ^ , with 
Tmax the limiting radius of the star system. The additive constant in the potential 
is chosen so that Φ(τηια:Ρ) = 0. To make the parameters Λ and ρ dimensionless and 
give them some meaning we adopt the central potential Φ(0) as the unit of Φ, χ 
and u, and the equivalent radius of the stellar system re as the unit of length. Then 
Φ(0)Γ^ will be the unit of ζ. We obtain the integral equation 

/.Φ 
g(9) = 4y/2* / (Φ - F ( l , 5/2 - /<, 3/2; ps)i{>(u) du 

Jo 
(2) 

for the unknown function ψ{χι) which we call the partial density. The function F is 
the Gauss hypergeometric function, 

«;(Φ);= [ Ι + Ϊ Λ + ^ Γ ^ Φ ) ] / , (3) 

and 

/ « , (Φ — Μ)Γ 2 (Φ) 
s { * > u ) = ι + (χ + ΡΦ)νΐ(Φ y ( 4 ) 

If we put μ = 5/2 and λ = ρ = 0, then the equation (2) is of the well-known 
Eddington (1916) form: 

ίφ 

#(Φ) = 4Λ/27Γ / (5) 
Jo 

In this Ccise g(Φ) = p(Φ). If </(Φ) is represented as a power series in Φ, then it is 
easy to obtain the solution in the form of a power series in u, the term with Φη 

corresponding to the term un~ 2. Let us suppose we have an expansion ( finite of 
infinite) 

# ) = Σ ^ ( ι _ Φ
φ ) β (6) 

m,η v ' 

* Originally published in: T.B. Omarov (ed.), Dynamics of Galaxies and star clusters, 
" Ν auka" Κ az. S S R, Alma-Ata , 1973, p .82-87, Translated by L.P. Ossipkov. 
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with q a parameter. Then we obtain the solution in the form 

u ) - Y^tpTn,nF(m^i+ l , n - ^ ; q u ) u n ~ i , (7) 
m,n 

where 

Φτη,η = ^ ,η[4Λ/5πΒ(η - 1/2, 3 /2)]- 1 . (8) 

In the simplest case <ζ(Φ) is proportional to Φη. If moreover Λ = ρ = 0 then ρ is 
proportional to Φη and we recover the isotropic polytropes. If, on the other hand, 
Λ φ 0 but ρ — 0 then we find the quasi-polytropes studied by Gamm (1952) and 
Idlis (1961). 

Now let us consider generalised isochrone models. The potential of these models 
is 

Φ(Γ) - a(b -f C)" 1 , C(r) = (1 + a2r2)^ , α = 6 + 1. (9) 

Adopting M / | r ^ as the unit of the density, where M is the mass of the stellar 
system, we find the following density 

p(r) = ^a 3 (6 + 3C + 2&C2)(t + ζ)~3ζ~3. (10) 

It is evident that the function <7(Φ) can be represented in the form of the expansion 
(6), and q — bja. In the simplest case of the Schuster model b — 0 = q — 0) the 
expansion (6) is reduced to a polynomial. We obviously recover a polynomial for 

λ 2Λ/2rλ 8 16 2 64 3ι ^ 
ψ(η) = —[Λ + -pu + —(1 - X)u2 - —pu3]u*. (11) 

Ο / ZI 

If Λ = 1, ρ = 0 or Λ = 0, ρ > 0 we obtain models considered in KK68b, resp KK68a. 
In general the expansion (6) consists of six terms. Let us restrict ourselves for 

sake of simplicity to λ = 0. Then there will be only five terms in the expansion 
(6) and the coefficients will have a more simple form. The expansion is not unique 
of course. If we fix η = 3 then the coefficients of the expansion (2) will be the 
following: 

g-i,a = i ( l - b~2)pq, «,0,3 = 5(1 - 6 " 2 ) ( - 2 + 5 6 " ^ ) , 

51,3 = èt2 - - ''-'(I - 3b-2)pq), 32i3 = ±b-4pq, 

93,3 = - b~2pq). (12) 

These coefficients are to be multiplied by the same factor 2y/2n~2 for the transition 
to the expansion (7). It is evident that the first two hypergeometrical functions 
will yield only linear expression in u, so only three non-trivial hypergeometrical 
functions remain. 

For the limiting model b — oo, (q = 1) only one non-trivial hypergeometrical 
function will appear. We have 
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iK«) = l ^ l ^ 1 ' 4 ' 5 / ' 2 ; «) - 1 - P(1 - f «)]· (13) 

For the isochroneous model b = 1, (g = the solution is reduced to the formula 
(13.11) of KK68a. Three hypergeometrical functions can be found by recursion from 

F ( l ï l > 3 / 2 ï z ) = i î ^ ^ = /(z)> ζ = „ ι (14) 
v z ( l - z ) 

We find for m = 1, (ΊΙ = 3) 

F ( l , 4 , 5 / 2 , z ) = (1 - z)-*[&f(z)z-1 + | - ±z] (15) 

arid somewhat more complicated expressions for m = 2 and m = 3. The expressions 
for the full V;(w) has a similar structure. For the isochrone model, see KK68a. The 
complications for arbitrary q are not very essential. 

The parameter g, which characterizes central concentration, also affects the ve-
locity distribution of the models. For moderate values of q, the velocity distribution 
function in the central part of the model is close to Maxwellian. For larger values of 
q it becomes steeper. The parameter p, on the other hand, is a purely kinematic one. 
The radial elongation of the velocity distribution becomes larger when ρ increases 
and its central concentration becomes smaller. 

The case μ = | is of some interest too. The integral equation for the func-
tion ψ(ιι) i s more complicated but the expression for the relation of the radial to 
transversal velocity dispersions is found to be very simple: 

2 
—§ = 1 + ( λ + />Φ)Γ2. ( 1 6 ) 

Translator notes. 

The above study was further developed in a series of papers by Veltmann (1979b, 
1981, 1983). The distribution functions for generalized isochronous models (9), the 
two-parameter generalized isochronous models (see below) and the spherical models 
with the density law p(r) = po[l + ( r / ro ) 2 ] - ^ were studied there. In particular the 
limit values for ξ = 0 and asymptotics for ξ —> oo were found for the distribution 
function of the form Ψ(χ,ξ) = (χ — Λξ)αφ(ξ) (suggested earlier by Veltmann) and 
the explicit expressions for the coefficients V;m,n> 9m,η in (6), (7) were given there 
(if η = 3, m = 0.5) (Veltmann 1979b, 1981). Also the distribution function in the 
form 

= » < 4 (17) 
τη,η 

was considered by Veltmann (1981). If Λ = 0 then the distribution function of the 
generalized isochronous models is expressed in elementary functions (Veltmann, 
1983). 

The case ρ = 0 corresponds to systems with an ellipsoidal velocity distribution 
(Merrit, 1985; Ossipkov, 1979; Turakulov, 1983). The explicit expression of in 
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this case was given by Malasidze (1987) for generalized isochronous models. The 
radial velocity dispersion was also found by him for a —• 0 (Parenago's potential), 
a = 1 (Schuster-Plummer's sphere), and a —• oo. 

Generalized isochronous models with the potential (9) were described by Kuzmin 
& Veltmann (1973) (see also Veltmann, 1979a) with ore details. Earlier the similar 
potential was used by Kuzmin L· Malasidze (1969) for the study of plane galactic 
orbits. Some properties of these spherical models were also described by Ossipkov 
(1978), who has shown the stability of such models with the spherical velocity dis-
tribution (basing on Antonov's condition d3p/dΦ3 > 0. The model a —» oo was also 
discovered by Hernquist (1990) who showed that it can approximate de Vaucouleurs' 
density profile. Again based on the potential (9), Kuzmin L· Malasidze (1987) have 
constructed non-spherical models admitting a third and quadratic integral. 

Veltann (1979a,b) has considered the two-parameter generalization of the iso-
chronous model with the potential 

Φ(Γ) = Φ0«(&< + C T S Α/6< 1, Φ(Γ) = Φ0[1 + ( r / r 0 ) T s A/6 = 1. (18) 

Malasidze (1981) has suggested another generalization. His potential consists of two 
terms: equation (9) and the square of (9) taken with various weights. Malasidze 
(1984) constructed the corresponding spherical models and showed their stability 
(according to Antonov's criterion). 

At last we have to mention that Kuzmin et.ai (1986) studied the spherical 
models of mass distribution with the potential Φ(r) = Φο</-1 ln(l + VC) where 
Ç(r) is taken according to (9). The limiting case q = 1 coincides with Jaffe's model 
(1983). 
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