Equal Sums of Like Powers

By E. M. WRIGHT

(Received 6th March, 1948. Read 7th May, 1948.)

1. In this note all small latin letters denote rational integers. We write $k \ge 1$, $s \ge 1$ and consider the simultaneous equations

$$\sum_{i=1}^{j} x_{i1}^{h} = \sum_{i=1}^{j} x_{i2}^{h} = \dots = \sum_{i=1}^{j} x_{i8}^{h} \qquad (1 \le h \le k).$$
(1)

A solution of these equations is said to be non-trivial if no set $\{x_{iu}\}$ is a permutation of another set $\{x_{iv}\}$. In 1851 Prouhet¹ constructed a non-trivial solution of these equations with $j = s^k$ and Lehmer² has recently found a parametric solution for the same j. Here I give two alternative elementary proofs of Lehmer's result. Lehmer's own proof depends on the ideas of generating functions, exponentials, differentiation, matrices, and complex roots of unity, though all at a fairly simple level. One of my proofs requires only the factor theorem for a polynomial and the other only the multinomial theorem for a positive integral index.

I also show how to construct solutions for general k and any $s \leq 2^m$ with $j = m2^k$. This result is an advance on Prouhet's, since my value of j is in general less than his value s^k . My method is almost trivial.

Many authors ³ have found solutions of (1) for particular values of k, s and j (especially s = 2) and Gloden ⁴ has shown how to construct solutions for k = 2, 3 or 5, any s and j = k + 1. So far as I know, only Prouhet and Lehmer have considered the problem for general k and s. Elsewhere ⁵ I have shown that solutions exist for

- ⁴ Mehrgradige Gleichungen (Groningen 1944), 71-90.
- ⁵ Bull. Amer. Math. Soc. 54 (1948), 755-757.

¹ Comptes Rendus (Paris), 33 (1851), 225.

² Scripta Math. 13 (1947), 37-41.

³ Dickson's History of the Theory of Numbers II, chap. 24, lists 65 articles on this topic between 1878 and 1920.

general k and s when

 $j = \frac{1}{2}(k^2 + k + 2)$ (k even), $j = \frac{1}{2}(k^2 + 3)$ (k odd),

values of j which are much less than Prouhet's s^k or my $m2^k$ and which are, in fact, independent of s. But the method proves only the existence of solutions and cannot be adapted to construct a solution.

2. The Prowhet-Lehmer Theorem. We take $n \ge 2$ and suppose the numbers a_i $(1 \le i \le n)$ to satisfy $0 \le a_i \le s-1$. Any set (a_1, \ldots, a_n) such that

 $a_1 + a_2 + \ldots + a_n \equiv r \pmod{s} \tag{2}$

is called an (n, r) set. If $r \equiv t \pmod{s}$, every (n, r) set is an (n, t) set and conversely. If $\phi = \phi(a_1, \ldots, a_n)$, we say that $\sum \phi$, the sum of ϕ

over all (n, r) sets, is independent of r if

$$\sum \phi = \sum \phi = \ldots = \sum_{(n, 0)} \phi.$$

We may enumerate all the (n, r) sets by letting each of a_1, \ldots, a_{n-1} take independently the values 0 to s-1 and choosing a_n for each set so that (2) is satisfied. From this it follows that there are just s^{n-1} different (n, r) sets and also that, if ϕ does not depend on a_n , $\Sigma \phi$ is independent of r. More generally

LEMMA 1. If ϕ does not depend on one of the a_i , the sum $\sum_{(n,r)} \phi$ is independent of r.

Lehmer's result is as follows.

THEOREM 1. If μ_1, \ldots, μ_n are any numbers and

 $\xi = a_1 \,\mu_1 + a_2 \,\mu_2 + \ldots + a_n \,\mu_n,$

then $\Sigma \xi^h$ is independent of r for $1 \leq h \leq n-1$.

(n, r)

If we put n = k + 1 and μ_1, \ldots, μ_n any non-zero integers, Theorem 1 provides us with a solution of the equations (1). Prouhet's result is the particular case of Theorem 1 in which $\mu_l = s^{l-1}$ $(1 \le l \le n)$, so that the ξ corresponding to the (n, r) sets are just those integers between 0 and $s^{k+1} - 1$ inclusive, the sum of whose digits in the scale of s is congruent to r (mod s). This solution is obviously nontrivial. The case s = 2 of Theorem 1 is due to Escott.¹

¹ Quart. Jour. of Math., 41 (1910), 145.

Lehmer also proves

THEOREM 2. If $\mu_1 \mu_2 \dots \mu_n \neq 0$, then $\sum_{(n, r)} \xi^n$ is not independent of r.

3. First Proof. By the multinomial theorem we have

$$\sum_{(n,r)} \xi^h = \sum_{t_1+\cdots+t_n=h} \frac{h!}{t_1!\cdots t_n!} \quad \mu_1^{t_1}\cdots \mu_n^{t_n} \left\{ \sum_{(n,r)} a_1^{t_1}\cdots a_n^{t_n} \right\},$$

where t_1, t_2, \ldots, t_n are all non-negative and 0! = 1 as usual. Let us consider the coefficient of a particular $\mu_1^{t_1} \ldots \mu_n^{t_n}$. If h < n, at least one of the t_i must be zero, $a_1^{t_1} \ldots a_n^{t_n}$ does not depend on one of the a_i and so the coefficient of $\mu_1^{t_1} \ldots \mu_n^{t_n}$ is independent of r by Lemma 1. Theorem 1 follows.

If h = n, the same argument shows that every term is independent of r except that in $\mu_1 \dots \mu_n$. Hence Theorem 2 follows from

LEMMA 2. The sum

$$Q(n, \mathbf{r}) = \sum_{(\mathbf{n}, \mathbf{r})} a_1 \dots a_n$$

is not independent of r.

If Q(n, r) is independent of r, we have for every r0 = Q(n, r + 1) - Q(n, r) $= \sum_{a_n=1}^{s-1} a_n Q(n-1, r+1-a_n) - \sum_{a_n=1}^{s-1} a_n Q(n-1, r-a_n)$ $= \sum_{a=0}^{s-2} (a+1) Q(n-1, r-a) - \sum_{a=1}^{s-1} a Q(n-1, r-a)$ $= \sum_{a=0}^{s-2} Q(n-1, r-a) - (s-1) Q(n-1, r-s+1)$ $= \sum_{a=0}^{s-1} Q(n-1, r-a) - s Q(n-1, r+1).$

If a runs through a complete set of residues (mod s) so does r - a. Hence

$$\sum_{a=0}^{s-1} Q(n-1, r-a) = \sum_{a_1=0}^{s-1} \dots \sum_{a_{n-1}=0}^{s-1} a_1 a_2 \dots a_{n-1} = \{\frac{1}{2}s(s-1)\}^{n-1}$$

and so

$$Q(n-1, r+1) = 2^{1-n} s^{n-2} (s-1)^{n-1}$$

is independent of r. Repeating this argument (n-1) times we

find that

$$Q(1, r) = r \qquad (0 \leq r \leq s - 1)$$

is independent of r. This is absurd and so Lemma 2 is true.

4. Second proof. The expression

$$S(\mathbf{r}, \mathbf{t}) = \sum_{(n, r)} \xi^h - \sum_{(n, t)} \xi^h$$

is a homogeneous form of degree h in $\mu_1, \mu_2, \ldots, \mu_n$. If one of the μ , say μ_n , is zero, ξ does not depend on a_n and so, by Lemma 1, S(r, t) = 0. Hence μ_n is a factor of S(r, t) and similarly for μ_1, \ldots, μ_{n-1} ; that is, S(r, t) has the factor $\mu_1 \mu_2 \ldots \mu_n$. If h < n, this is impossible unless S(r, t) vanishes identically. This is Theorem 1.

If h = n, we have

$$S(\mathbf{r}, \mathbf{t}) = C\mu_1\mu_2\ldots\mu_n,$$

and so¹

$$\sum_{(n,r)} \xi^n = F(\mu_1,\ldots,\mu_n) + n! \ \mu_1\ldots\mu_n Q(n,r),$$

where F is independent of r. Theorem 2 follows from Lemma 2 as before.

5. THEOREM 3. If we have a non-trivial solution of (1) for s = 2 and j = J, we can construct a non-trivial solution for the same k, $s = 2^m$ and j = m J, where m is any positive whole number.

Let us suppose that

$$\sum_{i=1}^{J} b_i^h = \sum_{i=1}^{J} c_i^h \qquad (1 \le h \le k),$$

where the b are not a permutation of the c. By a simple use of the binomial theorem it follows that

$$\sum_{i=1}^{J} (t+b_i)^h = \sum_{i=1}^{J} (t+c_i)^h \qquad (1 \le h \le k) \qquad (3)$$

for every t. Hence we may suppose every b and every c positive, We choose

 $d > \max(b_1, \ldots, b_J, c_1, \ldots, c_J).$

¹ Here again we use the multinomial theorem, so that the two proofs of Theorem 2 do not differ greatly.

We now consider a set of mJ numbers divided into m sub-sets. The *u*-th sub-set consists either of the J numbers $(u-1)d + b_i$ $(1 \le i \le J)$ or of the J numbers $(u-1)d + c_i$ $(1 \le i \le J)$. We have thus two choices of each sub-set and so 2^m choices of the set itself, no two of which lead to the same set of numbers. By applying (3) to each corresponding pair of sub-sets we see that the sum of the h-th powers of the numbers of each set is the same, provided that $1 \le h \le k$.

6. If we use the particular case s = 2 of Theorem 1, we can thus construct a solution for general s with $j = m 2^k$, provided $s \leq 2^m$. For particular k, solutions with smaller j can, of course, be constructed from known solutions for s = 2.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ABERDEEN.

142