Equal Sums of Like Powers

By E. M. Wright

(Received 6th March, 1948.
Read 7th May, 1948.)

1. In this note all small latin letters denote rational integers. We write $k \geqq 1, s \geqq 1$ and consider the simultaneous equations

$$
\begin{equation*}
\sum_{i=1}^{j} x_{i 1}^{h}=\sum_{i=1}^{j} x_{i 2}^{h}=\ldots \ldots=\sum_{i=1}^{j} x_{i 8}^{h} \quad(1 \leqq h \leqq k) \tag{1}
\end{equation*}
$$

A solution of these equations is said to be non-trivial if no set $\left\{x_{i u}\right\}$ is a permutation of another set $\left\{x_{i v}\right\}$. In 1851 Prouhet ${ }^{1}$ constructed a non-trivial solution of these equations with $j=s^{k}$ and Lehmer ${ }^{2}$ has recently found a parametric solution for the same j. Here I give two alternative elementary proofs of Lehmer's result. Lehmer's own proof depends on the ideas of generating functions, exponentials, differentiation, matrices, and complex roots of unity, though all at a fairly simple level. One of my proofs requires only the factor theorem for a polynomial and the other only the multinomial theorem for a positive integral index.

I also show how to construct solutions for general k and any $s \leqq 2^{m}$ with $j=m 2^{k}$. This result is an advance on Prouhet's, since my value of j is in general less than his value s^{k}. My method is almost trivial.

Many authors ${ }^{3}$ have found solutions of (1) for particular values of k, s and j (especially $s=2$) and Gloden ${ }^{4}$ has shown how to construct solutions for $k=2,3$ or 5 , any s and $j=k+1$. So far as I know, only Prouhet and Lehmer have considered the problem for general k and s. Elsewhere ${ }^{5}$ I have shown that solutions exist for

[^0]general k and s when
$$
j=\frac{1}{2}\left(k^{2}+k+2\right) \quad(k \text { even }), \quad j=\frac{1}{2}\left(k^{2}+3\right) \quad(k \text { odd })
$$
values of j which are much less than Prouhet's s^{k} or my $m 2^{k}$ and which are, in fact, independent of s. But the method proves only the existence of solutions and cannot be adapted to construct a solution.
2. The Prouhet-Lehmer Theorem. We take $n \geqq 2$ and suppose the numbers $a_{i}(1 \leqq i \leqq n)$ to satisfy $0 \leqq a_{i} \leqq s-1$. Any set $\left(a_{1}, \ldots, a_{n}\right)$ such that
\[

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n} \equiv r(\bmod s) \tag{2}
\end{equation*}
$$

\]

is called an (n, r) set. If $r \equiv t(\bmod s)$, every (n, r) set is an (n, t).set and conversely. If $\phi=\phi\left(a_{1}, \ldots, a_{n}\right)$, we say that $\sum_{(n, r)} \phi$, the sum of ϕ over all (n, r) sets, is independent of r if

$$
\underset{(n, 0)}{\Sigma} \phi=\sum_{(n, 1)} \phi=\ldots=\sum_{(n, 8-1)} \phi
$$

We may enumerate all the (n, r) sets by letting each of a_{1}, \ldots, a_{n-1} take independently the values 0 to $s-1$ and choosing a_{n} for each set so that (2) is satisfied. From this it follows that there are just s^{n-1} different (n, r) sets and also that, if ϕ does not depend on $a_{n}, \sum_{(n, r)} \phi$ is independent of r. More generally

Lemma 1. If ϕ does not depend on one of the a_{i}, the sum $\underset{(n, r)}{\sum_{i}}$ is independent of r.

Lehmer's result is as follows.
Theorem 1. If μ_{1}, \ldots, μ_{n} are any numbers and

$$
\xi=a_{1} \mu_{1}+a_{2} \mu_{2}+\ldots+a_{n} \mu_{n}
$$

then $\Sigma \xi^{h}$ is independent of r for $1 \leqq h \leqq n-1$.
(n, r)
If we put $n=k+1$ and μ_{1}, \ldots, μ_{n} any non-zero integers, Theorem 1 provides us with a solution of the equations (1). Prouhet's result is the particular case of Theorem 1 in which $\mu_{l}=s^{l-1}(1 \leqq l \leqq n)$, so that the ξ corresponding to the (n, r) sets are just those integers between 0 and $s^{k+1}-1$ inclusive, the sum of whose digits in the scale of s is congruent to $r(\bmod s)$. This solution is obviously nontrivial. The case $s=2$ of Theorem 1 is due to Escott. ${ }^{1}$
${ }^{1}$ Quart. Jour. of Math., 41 (1910), 145.

Lehmer also proves

Theorem 2. If $\mu_{1} \mu_{2} \ldots \mu_{n} \neq 0$, then $\underset{(n, r)}{\Sigma} \xi^{n}$ is not independent of r.
3. First Proof. By the multinomial theorem we have

$$
\underset{(n, r)}{\Sigma} \xi^{h}=\underset{t_{1}+\ldots+t_{n}=h}{\Sigma} \frac{h!}{t_{1}!\ldots t_{n}!} \quad \mu_{1}^{t_{1}} \ldots \mu_{n}^{t_{0}}\left\{\underset{(n, r)}{\Sigma} a_{1}^{t_{1}} \ldots a_{n}{ }^{t_{n}}\right\}
$$

where $t_{1}, t_{2}, \ldots, t_{n}$ are all non-negative and $0!=1$ as usual. Let us consider the coefficient of a particular $\mu_{1}^{t_{1}} \ldots \mu_{n}^{t_{n}}$. If $h<n$, at least one of the t_{i} must be zero, $a_{1}{ }^{t_{1}} \ldots a_{n}{ }^{t_{n}}$ does not depend on one of the a_{i} and so the coefficient of $\mu_{1}^{t_{1}} \ldots \ldots \mu_{n}^{t_{n}}$ is independent of r by Lemma l. Theorem 1 follows.

If $h=n$, the same argument shows that every term is independent of r except that in $\mu_{1} \ldots \mu_{n}$. Hence Theorem 2 follows from

Lemma 2. The sum

$$
Q(n, r)=\sum_{(n, r)} a_{1} \ldots a_{n}
$$

is not independent of r.
If $Q(n, r)$ is independent of r, we have for every r

$$
\begin{aligned}
0 & =Q(n, r+1)-Q(n, r) \\
& =\sum_{a_{n}=1}^{s-1} a_{n} Q\left(n-1, r+1-a_{n}\right)-\sum_{a_{n}=1}^{s-1} a_{n} Q\left(n-1, r-a_{n}\right) \\
& =\sum_{a=0}^{s-2}(a+1) Q(n-1, r-a)-\sum_{a=1}^{8-1} a Q(n-1, r-a) \\
& =\sum_{a=0}^{s-2} Q(n-1, r-a)-(s-1) Q(n-1, r-s+1) \\
& =\sum_{a=0}^{s-1} Q(n-1, r-a)-s Q(n-1, r+1) .
\end{aligned}
$$

If a runs through a complete set of residues $(\bmod s)$ so does $r-a$. Hence

$$
\sum_{a=0}^{s-1} Q(n-1, r-a)=\sum_{a_{1}=0}^{\varepsilon-1} \ldots \sum_{a_{n-1}=0}^{s-1} a_{1} a_{2} \ldots a_{n-1}=\left\{\frac{1}{2} s(s-1)\right\}^{n-1}
$$

and so

$$
Q(n-1, r+1)=2^{1-n} s^{n-2}(s-1)^{n-1}
$$

is independent of r. Repeating this argument $(n-1)$ times we
find that

$$
Q(1, r)=r \quad(0 \leqq r \leqq s-1)
$$

is independent of r. This is absurd and so Lemma 2 is true.
4. Second proof. The expression

$$
S(r, t)=\sum_{(n, r)} \xi^{h}-\sum_{(n, t)} \xi^{h}
$$

is a homogeneous form of degree h in $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$. If one of the μ, say μ_{n}, is zero, ξ does not depend on a_{n} and so, by Lemma 1, $S(r, t)=0$. Hence μ_{n} is a factor of $S(r, t)$ and similarly for $\mu_{1}, \ldots, \mu_{n-1}$; that is, $S(r, t)$ has the factor $\mu_{1} \mu_{2} \ldots \mu_{n}$. If $h<n$, this is impossible unless $S(r, t)$ vanishes identically. This is Theorem 1.

If $h=n$, we have

$$
S(r, t)=C \mu_{1} \mu_{2} \ldots \mu_{n}
$$

and so ${ }^{1}$

$$
\Sigma_{(n, r)} \xi^{n}=F\left(\mu_{1}, \ldots, \mu_{n}\right)+n!\mu_{1} \ldots \mu_{n} Q(n, r)
$$

where F is independent of r. Theorem 2 follows from Lemma 2 as before.
5. Theorem 3. If we have a non-trivial solution of (1) for $s=2$ and $j=J$, we can construct a non-trivial solution for the same $k, s=2^{m}$ and $j=m J$, where m is any positive whole number.

Let us suppose that

$$
\sum_{i=1}^{J} b_{i}^{h}={\underset{i=1}{J} c_{i}^{h} \quad(1 \leqq h \leqq k), ~(1 \leqq}^{j}
$$

where the b are not a permutation of the c. By a simple use of the binomial theorem it follows that

$$
\begin{equation*}
\sum_{i=1}^{J}\left(t+b_{i}\right)^{h}=\sum_{i=1}^{J}\left(t+c_{i}\right)^{h} \quad(1 \leqq h \leqq k) \tag{3}
\end{equation*}
$$

for every t. Hence we may suppose every b and every c positive, We choose

$$
d>\max \left(b_{1}, \ldots, b_{J}, c_{1}, \ldots, c_{J}\right)
$$

[^1]We now consider a set of $m J$ numbers divided into m sub-sets. The u-th sub-set consists either of the J numbers $(u-1) d+b_{i}$ ($1 \leqq i \leqq J$) or of the J numbers $(u-1) d+c_{i}(1 \leqq i \leqq J)$. We have thus two choices of each sub-set and so 2^{m} choices of the set itself, no two of which lead to the same set of numbers. By applying (3) to each corresponding pair of sub-sets we see that the sum of the h-th powers of the numbers of each set is the same, provided that $\mathbf{l} \leqq h \leqq k$.
6. If we use the particular case $s=2$ of Theorem 1 , we can thus construct a solution for general s with $j=m 2^{k}$, provided $s \leqq 2^{m}$. For particular k, solutions with smaller j can, of course, be constructed from known solutions for $s=2$.

Department of Mathematics, University of Aberdeen.

[^0]: ${ }^{1}$ Comptes Rendus (Paris), 33 (1851), 225.
 2 Scripta Math. 13 (1947), 37-41.
 ${ }^{3}$ Dickson's History of the Theory of Numbers II, chap. 24, lists 65 articles on this topic between 1878 and 1920.

 4 Mehrgradige Gleichungen (Groningen 1944), 71.90.
 5 Bull. Amer. Math. Soc. 54 (1948), 755-757.

[^1]: 1 Here again we use the multinomial theorem, so that the two proofs of Theorem 2 do not differ greatly.

