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Abstract

A nonreflexive Banach space may have a weakly uniformly rotund dual. The aim of this paper is to
determine alternative characterisations and study further implications of this property in higher duals.
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1. Introduction

A Banach space X is said to be weakly uniformly rotund (WUR) if for each f ∈ S (X∗),
given ε > 0, there exists δ(ε, f ) > 0 such that for x, y ∈ S (X),

| f (x − y)| < ε when ‖x + y‖ > 2 − δ.

Hájek [9] solved a longstanding problem showing that a WUR Banach space
is an Asplund space. A simpler proof due to Godefroy appears in [6, page 397].
By equivalently renorming James space J to have WUR dual, he showed that a
nonreflexive Banach space may have WUR dual. These results suggest that the WUR
property might warrant further study as a dual property.

In Section 2 we characterise the WUR dual property by equivalent geometrical
conditions on the space. In Section 3 we follow the effect the WUR dual has with
fundamental relations expressed in terms of the natural embeddings of the space.

The norm of a Banach space X is Gâteaux differentiable at x ∈ S (X) if

lim
λ→0

‖x + λy‖ − ‖x‖
λ

exists for all y ∈ S (X)

or equivalently

lim
λ→0

‖x + λy‖ + ‖x − λy‖ − 2
λ

= 0 for all y ∈ S (X)
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and is uniformly Gâteaux differentiable (UG) if given y ∈ S (X) the limit is approached
uniformly for all x ∈ S (X) (see [4, pages 2 and 63]).

A Banach space X has weak∗ uniformly rotund (W∗UR) dual X∗ if for each x ∈ S (X),
given ε > 0, there exists δ(ε, x) > 0 such that for f , g ∈ S (X∗),

|( f − g)(x)| < ε when ‖ f + g‖ > 2 − δ.

It is well known that a Banach space X is WUR if and only if the dual norm of X∗

is UG and that a Banach space X has UG norm if and only if the dual X∗ is W∗UR
[4, page 63].

Differentiability properties of the norm can be characterised by continuity of
associated mappings. For x ∈ S (X), consider the set D(x) ≡ { f ∈ S (X∗) : f (x) = 1}.
We call the mapping x 7→ fx of X into X∗ a support mapping if, for each x ∈ S (X) and
real λ > 0, we have fx ∈ D(x) and fλx = λ fx.

Proposition 1.1. For a Banach space X with dual X∗ and second dual X∗∗:

(i) the norm of X is Gâteaux differentiable at x ∈ S (X) if and only if there exists a
support mapping x 7→ fx of X into X∗ such that for each y ∈ S (X) the real-valued
mapping x 7→ fx(y) is continuous at x [5, page 22];

(ii) the norm of X is UG if and only if for each y ∈ S (X) the real-valued mapping
x 7→ fx(y) is uniformly continuous on S (X) [7, page 394];

(iii) the norm of X∗∗ is Gâteaux differentiable at x̂ ∈ S (X̂) if and only if there exists
a support mapping x 7→ fx of X into X∗ such that for each F ∈ S (X∗∗) the real-
valued mapping x 7→ f̂x(F) is continuous at x [8, page 105];

(iv) the norm of X∗∗ is UG if and only if for each F ∈ S (X∗∗) the real-valued mapping
x 7→ f̂x(F) is uniformly continuous on S (X).

The proof of (iv) follows from Theorem 2.1 below.

2. Alternative characterisation of WUR dual

As in the nondual case, the characterisations are in terms of uniform Gâteaux
differentiability of the norm and continuity of support mappings on the space. But
we need a modified definition of UG on X∗∗.

We say that the norm of X∗∗ is UG on S (X̂) if for each F ∈ S (X∗∗) the limit

lim
λ

‖x̂ + λF‖ − ‖x̂ ‖
λ

is approached uniformly for all x ∈ S (X).

Theorem 2.1. Given a Banach space X, the following are equivalent:

(i) X∗ is WUR;
(ii) there exists a support mapping x 7→ fx of X into X∗ such that for each F ∈ S (X∗∗)

the real-valued mapping x 7→ f̂x(F) is uniformly continuous on S (X);
(iii) X∗∗ is UG on S (X̂).
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Proof. (i)⇒ (ii). For any support mapping x 7→ fx of X into X∗,

4 ≤ ‖ fx + fy‖ ‖x + y‖ + ‖ fx − fy‖ ‖x − y‖ for all x, y ∈ S (X).

Consider any support mapping x 7→ fx of X into X∗. For sequences {xn} and {yn} in
S (X) such that ‖xn − yn‖ → 0, ‖ fxn + fyn‖ → 2. So, if X∗ is WUR, given F ∈ S (X∗∗), we
have F( fxn − fyn )→ 0; that is, the uniform continuity property holds.

(ii) ⇒ (iii). For any F ∈ S (X∗∗), given ε > 0, there exists δ(ε, F) > 0 such that for
x, y ∈ S (X),

|F( fx − fy)| < ε when ‖x − y‖ < δ.

We extend this uniform continuity property from X to a partially uniformly continuous
support mapping on X∗∗. We begin by choosing 0 < δ < ε < 1/2. Consider x ∈ S (X)
and G ∈ S (X∗∗) such that ‖x̂ −G‖ < δ2/8 and FG ∈ D(G). Then

|FG(x̂) − 1| = |FG(x̂) − FG(G)| ≤ ‖x̂ −G‖ < δ2/8.

Consider a σ(X∗∗∗, X∗∗) neighbourhood of FG determined by F, x̂ and δ2/8. Since
B(X̂∗) is σ(X∗∗∗, X∗∗) dense in B(X∗∗∗), there exists f ∈ B(X∗) such that

|FG(x̂) − f (x)| < δ2/8 and |FG(F) − F( f )| < δ2/8,

so
| f (x) − 1| ≤ | f (x) − FG(x̂)| + |FG(x̂) − 1| < δ2/4.

By the Bishop–Phelps–Bollobás theorem [1], there exist y ∈ S (X) and fy ∈ D(y)
such that ‖x − y‖ < δ and ‖ fy − f ‖ < δ. So, by the uniform continuity property,
|F( fx − fy)| < ε. Then

|F( f − fx)| ≤ ‖ f − fy‖ + |F( fx − fy)| < δ + ε < 2ε

and
|(FG − f̂x)(F)| ≤ |(FG − f̂ )(F)| + |F( f − fx)| < δ2/8 + 2ε < 3ε.

So, we have established for the support mapping F 7→ FF of X∗∗ into X∗∗∗ the property
that for any F ∈ S (X∗∗), given ε > 0, there exists δ(ε,F) > 0 such that for any x ∈ S (X)
and G ∈ S (X∗∗),

|(FG − f̂x(F)| < 3ε when ‖x̂ −G‖ < δ2/8.

Now for this support mapping we have the general inequality∣∣∣∣∣‖x̂ + λF‖ − ‖x̂‖
λ

− f̂x(F)
∣∣∣∣∣ ≤ ∣∣∣∣∣( Fx̂+λF

‖x̂ + λF‖
− f̂x

)
(F)

∣∣∣∣∣ for real λ , 0.

By the uniform continuity property,∣∣∣∣∣( Fx̂+λF

‖x̂ + λF‖
− f̂x

)
(F)

∣∣∣∣∣ < 3ε when
∥∥∥∥∥ x̂ + λF
‖x̂ + λF‖

− x̂
∥∥∥∥∥ < δ2/8

and this is so when |λ| < δ2/17. So, the norm of X∗∗ is UG on S (X̂).
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(iii) ⇒ (i). If X∗ is not WUR, then for some F ∈ S (X∗∗) there are some r > 0 and
sequences { fn} and {gn} in S (X∗) such that ‖ fn + gn‖ → 2 but F( fn − gn) > r for all
n ∈ N. Consider a sequence of positive real numbers {λn} with λn → 0 such that
2 − ‖ fn + gn‖ ≤ λn

2 for all n ∈ N. Then

sup
x∈S (X)

‖x̂ + λnF‖ + ‖x̂ − λnF‖ − 2
λn

≥ sup
x∈S (X)

( fn + gn)(x) + λnF( fn − gn) − 2
λn

≥ r − λn > 0 for sufficiently large n.

But this contradicts the norm of X∗∗ being UG on S (X̂). �

The duality between WUR space X and the UG of the norm of its dual X∗ provides
the proof of Proposition 1.1(iv).

It is well known that a Banach space X where the norm satisfies Proposition 1.1(iii)
on S (X) is an Asplund space [8, page 106]. This along with Theorem 2.1(i) ⇔ (ii)
and Hájek’s Asplund result reveals even more structure for a Banach space with WUR
dual.

Corollary 2.2. A Banach space X with WUR dual X∗ is an Asplund space with
Asplund space dual.

3. Implications of WUR for natural embeddings

Given a Banach space X, for each n = 0, 1, 2, . . . we denote by Qn the natural
embedding of the nth dual space X(n) into the (n + 2)th dual space X(n+2).

We need to recall the following fundamental properties:

• for n = 0, 1, 2, . . . , we have Qn−1
∗Qn = In, the identity mapping on X(n);

• Pn = QnQn−1
∗ is the norm-one projection of X(n+2) onto X̂(n) and In+3 − Pn is the

projection of X(n+3) onto X(n)⊥.

Lemma 3.1 [2, page 352]. Given a Banach space X:

(i) ‖I − P0‖ = ‖Q2 − Q0
∗∗‖;

(ii) ‖(Q2 − Q0
∗∗)(F)‖ ≥ d(F, X̂) for all F ∈ X∗∗;

(iii) ‖(Q2 − Q0
∗∗)‖ = 1 if and only if ‖(Q2 − Q0

∗∗)(F)‖ = d(F, X̂) for all F ∈ X∗∗.

Given a nonreflexive Banach space X, for f ∈ S (X∗) not attaining its norm, we
have Q2F f , Q0

∗∗F f , where F f ∈ D( f ) [3, page 70], and from Lemma 3.1 it is
clear that ‖Q2 − Q0

∗∗‖ ≥ 1. Brown [2] demonstrated that the Banach space c0 has
‖Q2 − Q0

∗∗‖ = 1 and that ‖Q3 − Q1
∗∗‖ = 2.

We now show that a Banach space X, where ‖Q2 − Q0
∗∗‖ = 1, has some regular

structure related to WUR. But to explore natural embedding relations associated with
WUR we need to note the effect UG of the norm has on higher duals.

Lemma 3.2 [10, page 325]. Given a Banach space X with UG norm, for each x ∈ S (X)
all elements of D(x̂) have the form f̂x + y⊥, where fx ∈ D(x) and y⊥ ∈ X⊥.
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Proof. We show that if the norm of X is UG, then the norm of X∗∗ is Gâteaux
differentiable at every F ∈ S (X∗∗) in S (X̂) directions. Suppose that the norm of X∗∗

is not Gâteaux differentiable at some F ∈ S (X∗∗) in the direction x̂ ∈ S (X̂). Then there
exist r > 0 and a sequence of positive numbers {λn}, where λn → 0, such that

‖F + λn x̂‖ + ‖F − λn x̂‖ − 2
λn

> r

and sequences { fn} and {gn} in S (X∗) such that

(F + λn x̂)( fn) > ‖F + λn x̂‖ − λn
2 and (F − λn x̂)(gn) > ‖F − λn x̂‖ − λn

2.

Then
F( fn + gn) + λn x̂( fn − gn) − 2 + 2λn

2

λn
> r,

so x̂( fn − gn) + 2λn > r. Now, as n→∞, ‖ fn + gn‖ ≥ |F( fn + gn)| → 2 but x̂( fn − gn)
9 0; that is, X∗ is not W∗UR and so X does not have UG norm. If the norm of X∗∗ is
Gâteaux differentiable at F ∈ S (X∗∗) in the direction x̂ ∈ S (X̂), then

lim
λ→0

‖F + λx̂‖ − ‖F‖
λ

= FF(x̂).

So, for FF ∈ D(F), FF |X̂ is a unique limit, which implies that D(x̂) consists of elements
of the form f̂x + y⊥. �

Theorem 3.3. A nonreflexive Banach space X, where there exists F ∈ S (X∗∗) such that
d(F, X̂) = 1 and where ‖Q2 − Q0

∗∗‖ = 1, cannot be WUR.

Proof. By the Hahn–Banach theorem, there exists x⊥ ∈ S (X⊥) such that x⊥(F) = 1
and ‖x⊥‖ = 1/d(F, X̂). But F ∈ S (X∗∗) was chosen such that d(F, X̂) = 1, so ‖x⊥‖ = 1,
x⊥ ∈ D(F) and F̂ ∈ D(x⊥).

Consider Q2(F) and (Q2 − Q0
∗∗)(F) in X∗∗∗∗. Now ‖Q2(F)‖ = 1 and, by

Lemma 3.1(iii), ‖(Q2 − Q0
∗∗)(F)‖ = 1. However, Q0

∗∗(F)(x⊥) = FQ0
∗(x⊥) = 0 for all

x⊥ ∈ X⊥. So, both Q2(F) and (Q2 − Q0
∗∗)(F) ∈ D(x⊥). But Q0

∗∗(F)Q1(g) = F(g) , 0
for some g ∈ X∗. So, Q0

∗∗(F) < X∗⊥.
By Lemma 3.2, the dual X∗ cannot have UG norm and consequently X cannot be

WUR. �

For the dual X∗, one of the assumptions of Theorem 3.3 is automatically fulfilled.

Lemma 3.4. Given a nonreflexive Banach space X, where ‖Q2 − Q0
∗∗‖ = 1, every

x⊥ ∈ S (X⊥) has the property that

‖x⊥‖ = d(x⊥, X̂∗) = 1.

Proof. We have ‖x⊥‖ = ‖(I − P0)(x⊥ − f̂ )‖ ≤ ‖I − P0‖ ‖x⊥ − f̂ ‖ for all f ∈ X∗. But
Lemma 3.1(i) gives us that ‖I − P0‖ = 1, so ‖x⊥‖ ≤ d(x⊥, X̂∗). However, ‖x⊥‖ ≥
d(x⊥, X̂∗), so ‖x⊥‖ = d(x⊥, X̂∗) = 1. �
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We now see that a nonreflexive Banach space X with WUR dual has its effect on
the natural embedding relations.

Theorem 3.5. A nonreflexive Banach space X, satisfying both ‖Q2 − Q0
∗∗‖ = 1 and

‖Q3 − Q1
∗∗‖ = 1, cannot have WUR dual X∗.

Proof. From Lemma 3.4, we see that ‖Q2 − Q0
∗∗‖ = 1 provides the required

assumption to apply Theorem 3.3 to the dual space X∗. So, we have both Q3(x⊥) and
(Q3 − Q1

∗∗)(x⊥) ∈ D(φ), where φ ∈ D(x⊥) and x̂⊥ ∈ D(φ). But Q1
∗∗(x⊥)Q2(F) = x⊥(F)

for some F ∈ X∗∗, so Q1
∗∗(x⊥) < X∗∗⊥. By Lemma 3.2, this second dual X∗∗ cannot

have UG norm and consequently the dual X∗ cannot be WUR. �

This theorem follows an unpublished argument due to Mark Smith, which can be
found in [11, page 82].
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