GROUP PARTITIONS AND MIXED PERFECT CODES

BY
BERNT LINDSTRÖM

> AbSTRACT. Let G be a finite abelian group of the order p^{r} and type (p, \ldots, p), where p is a prime. A necessary and sufficient condition is determined for the existence of subgroups $G_{1}, G_{2}, \ldots, G_{n}$, one of the order p^{a} and the rest of the order p^{b}, such that $G=G_{1} \cup$ $G_{2} \cup \cdots \cup G_{n}$ and $G_{i} \cap G_{j}=\{\theta\}$ when $i \neq j$.

A group G is said to have a partition of the type $G_{1} \cup G_{2} \cup \cdots \cup G_{n}$ if G is the union of subgroups $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{n}^{\prime}$ which have pairwise only the neutral element G in common and G_{i}^{\prime} is isomorphic to $G_{i}\left(G_{i}^{\prime} \simeq G_{i}\right)$ for $i=1,2, \ldots, n$. If $G_{i}^{\prime}=G_{i}$ for $i=1,2, \ldots, n$ we have a group partition $G=G_{1} \cup G_{2} \cup \cdots \cup G_{n}$.

Let $G^{r}(p)$ denote the elementary abelian group of order p^{r} and type (p, \ldots, p) for a prime p.

The following lemma was proved by M. Herzog and J. Schönheim in [2].
Lemma 1. If a finite abelian group G has a partition $G_{1} \cup G_{2} \cup \cdots \cup G_{n}$, then G is isomorphic to $G^{r}(p)$ for some r, and $G_{i}(i=1,2, \ldots, n)$ is isomorphic to $G^{m_{i}}(p)$ for some m_{i} and a fixed prime p. Moreover

$$
\begin{equation*}
p^{r}=1+\sum_{i=1}^{n}\left(p^{m_{i}}-1\right) \tag{1}
\end{equation*}
$$

The condition (1) is necessary, but not sufficient, for the existence of a partition of G of the type $G^{m_{1}}(p) \cup G^{m_{2}}(p) \cup \cdots \cup G^{m_{n}}(p)$. The following condition (2) is also necessary

$$
\begin{equation*}
m_{i}+m_{j} \leq r, \quad \text { when } 1 \leq i<j \leq n . \tag{2}
\end{equation*}
$$

In order to prove (2) consider the subgroup $H_{i j}$ generated by the elements of $G_{i} \cup G_{j}$. When $h \in H_{i j}$ we have $h=a+b$ for $a \in G_{i}, b \in G_{j}$, which are uniquely determined since $G_{i} \cap G_{j}=\{\theta\}$. The order of $H_{i j}$ is therefore $p^{m_{i}+m_{j}} \leq p^{r}$, and (2) follows.

Some sufficient conditions for the existence of group partitions were found by M. Herzog and J. Schönheim in [2]. Our main result is a necessary and sufficient condition for a special case. We first prove

Lemma 2. If $r=a+b$, where $a \geq b$, then there is a partition of the type

$$
G^{r}(p)=G^{a}(p) \cup G^{b}(p) \cup \cdots \cup G^{b}(p)
$$

Received by the editors November 2, 1973 and, in revised form, March 6, 1974.

Proof. Consider $G^{r}(p), G^{a}(p)$ and $G^{b}(p)$ as vector spaces over the prime field $G F(p) . G^{r}(p)$ is the direct product of $G^{a}(p)$ and $G^{b}(p)$. Since $b \leq a$, we can determine linearly independent $g_{1}, g_{2}, \ldots, g_{b} \in G^{a}(p)$. Let $v_{1}, v_{2}, \ldots, v_{b}$ be a basis of $G^{b}(p)$.

Identify $G^{a}(p)$ and $G F\left(p^{a}\right)$ and consider the products $g g_{i} \in G F\left(p^{a}\right)$, when $g \in$ $G F\left(p^{a}\right)$, as elements of $G^{a}(p)$. In the direct product $G^{r}(p)$ are $\left(g g_{i}, v_{i}\right), i=1, \ldots, b$, a basis of a b-dimensional subspace G_{b}.

If $G^{a}(p)$ is identified with the subspace in $G^{r}(p)$ of all vectors $\left(x_{1}, \ldots, x_{a}\right.$, $0, \ldots, 0)$, then we get $G^{a}(p) \cap G_{b}=\{\theta\}$ easily.

We shall now prove that $G_{g} \cap G_{h}=\{\theta\}$, when $g, h \in G F\left(p^{a}\right)$ and $g \neq h$. If

$$
\sum_{i=1}^{b} x_{i}\left(g g_{i}, v_{i}\right)=\sum_{i=1}^{b} y_{i}\left(h g_{i}, v_{i}\right),
$$

where all $x_{i}, y_{i} \in G F(p)$, then it follows that $x_{i}=y_{i}(i=1, \ldots, b)$ since $v_{1}, v_{2}, \ldots, v_{b}$ are linearly independent. Then we have in $G F\left(p^{a}\right)$

$$
\sum_{i=1}^{b} x_{i}(g-h) g_{i}=0
$$

If we divide by $g-h \neq 0$ and use the linear independence of g_{1}, \ldots, g_{b}, then it follows that $x_{i}=y_{i}=0(i=1, \ldots, b)$, and we have proved that $G_{g} \cap G_{h}=\{\theta\}$. Observe that each subspace G_{g} is isomorphic to $G^{b}(p)$.

The union of $G^{a}(p)$ and all $G_{g}, g \in G F\left(p^{a}\right)$, is $G^{r}(p)$, for the number of elements in the union is $p^{a}+p^{a}\left(p^{b}-1\right)=p^{r}$. This completes the proof.

Theorem 1. A necessary and sufficient condition for the existence of a partition of $G^{r}(p)$ of the type $G^{a}(p) \cup G^{b}(p) \cup j \cup \cup G^{b}(p)$ in n subgroups is that both

$$
\begin{equation*}
p^{r}=p^{a}+(n-1)\left(p^{b}-1\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a+b \leq r, \quad a \geq b \tag{4}
\end{equation*}
$$

Proof. The necessity of (3) follows by (1). The inequality $a+b \leq r$ in (4) is a special case of (2). We shall prove that $a \geq b$ is necessary.
$G^{r}(p)$ is a vector space over $G F(p)$. We choose a basis of $G^{r}(p)$ such that $G^{a}(p)$ will be the subspace of vectors with the last $r-a$ components 0 . Let $\mathrm{E}=e^{2 \pi i / p}$ and define two functions λ and μ from $G^{r}(p)$ into the complex numbers by

$$
\lambda\left(x_{1}, \ldots, x_{r}\right)=\varepsilon^{x_{1}}, \quad \mu\left(x_{1}, \ldots, x_{r}\right)=\varepsilon^{x_{r}} .
$$

We write for brevity $\left(x_{1}, \ldots, x_{r}\right)=\mathbf{x}$ and $G^{r}(p)=G$, and find that

$$
\begin{equation*}
\sum_{\mathbf{x} \in G} \lambda(\mathbf{x})=\sum_{\mathbf{x} \in G} \mu(\mathbf{x})=0 . \tag{5}
\end{equation*}
$$

Let s be the number of subgroups $G_{i} \simeq G^{b}(p)$ in the partition of G with $x_{1}=0$ when $\mathbf{x} \in G_{i}$. Let t be the number of subgroups $G_{i} \simeq G^{b}(p)$ in the partition of G
with $x_{r}=0$ when $\mathbf{x} \in G_{i}$. We find easily that

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda\left(\mathbf{x} \in G_{i}\right)=s p^{b} \text { and } \sum_{i=1 \mathbf{x} \in G_{i}}^{n} \mu(\mathbf{x})=p^{a}+t p^{b} \tag{6}
\end{equation*}
$$

where the sums run over all (n) subgroups in the partition of G. Then we find that the sums are respectively

$$
\sum_{\mathbf{x} \in G} \lambda(\mathbf{x})+(n-1) \lambda(\theta) \text { and } \sum_{\mathbf{x} \in G} \mu(\mathbf{x})+(n-1) \mu(\theta),
$$

and it follows by (5) and (6), and since $\lambda(\theta)=\mu(\theta)=1$, that $(s-t) p^{b}=p^{a}$. Hence $a \geq b$, and the necessity of (3) and (4) is proved.

Then we assume that the conditions (3) and (4) are satisfied. By (3) and since p is a prime it follows that b divides $r-a$. We write $r=a+k b$ for an integer k, with $k \geq 1$ by (4). Since $a \geq b$ by (4), we now find by Lemma 2 a partition of $G^{r}(p)$ of the type

$$
\begin{aligned}
G^{a+k b}(p) & =G^{a+(k-1) b}(p) \cup G^{b}(p) \cup \cdots \cup G^{b}(p)=\cdots(\text { by induction }) \\
& =G^{a}(p) \cup G^{b}(p) \cup \cdots \cup G^{b}(p)
\end{aligned}
$$

which completes the proof of Theorem 1.
We shall indicate briefly the close relationship between group partitions and mixed perfect codes.

Let $G_{1}, G_{2}, \ldots, G_{n}$ be finite groups and $W_{n}=G_{1} \times G_{2} \times \cdots \times G_{n}$ the direct product. A subset C of W_{n} is called a mixed code. When all the groups G_{1}, G_{2}, \ldots, G_{n} are isomorphic the prefix "mixed" is usually omitted. If C is a subgroup of W_{n}, then C is called a group code.

The elements of W_{n} are n-tuples $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i} \in G_{i}$ for $i=1,2, \ldots$, n. If also $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ belongs to W_{n}, then we define a distance $d(\mathbf{x}, \mathbf{y})=$ $\left|\left\{i \mid 1 \leq i \leq n, x_{i} \neq y_{i}\right\}\right|$. A code C in W_{n} is perfect e-error-correcting if for each $w \in W_{n}$ there is precisely one $c \in C$ such that $d(w, c) \leq e$.

The "only if" part of the following theorem was proved in [1].
Theorem 2. Let $G_{1}, G_{2}, \ldots, G_{n}$ be finite abelian groups. There is an abelian group G with a partition of the type $G_{1} \cup G_{2} \cup \cdots \cup G_{n}$ if and only if there is a perfect 1-error-correcting mixed group code C in the direct product $W_{n}=G_{1} \times G_{2} \times \cdots$ $\times G_{n}$.

Proof. Suppose we have a partition $G=G_{1} \cup G_{2} \cup \cdots \cup G_{n}$. Then the group code C is the kernel of the homomorphism

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow x_{1}+x_{2}+\cdots+x_{n}
$$

The details of the proof can be found in [1], p. 366.
Conversely, let C be a perfect 1-error-correcting mixed group code in W_{n}. Let G be the factor group W_{n} / C and h the natural homomorphism $W \rightarrow W_{n} / C$.

We identify G_{i} with the subgroup in W_{n} of all $\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right)$, where $x_{i} \in G_{i}$. Put $h\left(G_{i}\right)=G_{i}^{\prime}$ for $i=1,2, \ldots, n$. If $\mathbf{x} \in G_{i}$ then $d(\mathbf{x}, \theta) \leq 1$. The only $c \in C$ for which $d(c, \theta) \leq 1$ is $c=\theta$. Hence $G_{i} \cap C=\{\theta\}$, and it follows that G_{i} and G_{i}^{\prime} are isomorphic groups, when $i=1,2, \ldots, n$.

It is easy to see that G is the union of all $G_{i}^{\prime}, 1 \leq i \leq n$. For if w is any element in W_{n}, then we can find $c \in C$ and G_{i} such that $w-c \in G_{i}$, since C is a 1-errorcorrecting code. There is only one $c \in C$ such that $d(w, c) \leq 1$, hence it follows that $G_{i}^{\prime} \cap G_{j}^{\prime}=\{\theta\}$ when $i \neq j$.

We have proved that G has a group partition of the type $G_{1} \cup \cdots \cup G_{n}$, which was to be proved.

We omit the proof of the following result on mixed perfect codes, which generalizes Theorem 2 in [3], since Lenstra's proof is valid with minor changes.

Theorem 3. Let $G_{1}, G_{2}, \ldots, G_{n}$ be finite groups (abelian or non-abelian). If there exists a perfect e-error-correcting mixed group code in $G_{1} \times G_{2} \times \cdots \times G_{n}$ and $e<n$, then each G_{i} is abelian and isomorphic to $G^{m_{i}}(p)$ for a fixed prime p and $i=1,2, \ldots, n$.

From the last theorem it follows that the vector covering problem in [2] (on perfect coverings) cannot be solved by the group partition method unless the cardinalities of the sets considered for each coordinate are powers of the same prime.
Finally, observe that Lemma 1 is a consequence of Theorems 2 and 3.

References

1. M. Herzog and J. Schönheim, Linear and nonlinear single-error-correcting perfect mixed codes, Information and Control 18 (1971), 364-368.
2. M. Herzog and J. Schönheim, Group partition, factorization and the vector covering problem, Canad. Math. Bull. 15 (2) (1972), 207-214.
3. H. W. Lenstra, Jr., Two theorems on perfect codes, Discrete mathematics 3 (1972), 125-132.
```
Department of Mathematics,
    University of Stockholm,
    Box 6701,
    S-113 85 STOCKHOLM,
    SwEden
    Emaljvägen 14V
        S-175 73 JÄrfälla
        Sweden
```

