CYCLIC p-GROUPS OF SYMMETRIES OF SURFACES
 by RAVI S. KULKARNI AND COLIN MACLACHLAN

(Received 31 January, 1990)

1. Introduction. Let Σ_{g} denote a compact orientable surface of genus $g \geqslant 2$. We consider finite groups G acting effectively on Σ_{g} and preserving the orientation-for short, G acts on Σ_{g} or G is a symmetry group of Σ_{g}. Each surface Σ_{g} admits only finitely many symmetry groups G and the orders of these groups are bounded by Wiman's bound of $84(g-1)$. This bound is attained for infinitely many values of g [12], see also [9], and all values of $g \leqslant 10^{4}$ for which it is attained are known [4].

More detailed information on symmetry groups has been obtained by investigating this general set-up from different view points. First of all, the problem of determining all possible groups G acting on Σ_{g} for fixed g has been completed for $g \leqslant 5$ (e.g. [17], [13], [10], [11]). Secondly the problem of determining the minimum genus g on which a given group G acts has been solved for various groups G ranging from cyclic to alternating (e.g. [7], [14], [6], [3]). Also, if for a class of groups \mathscr{C} one defines

$$
M(\mathscr{C}, g)=\max \left\{o(G) \mid G \text { acts on } \Sigma_{g}, G \in \mathscr{C}\right\}
$$

upper and/or lower bounds for $M(\mathscr{C}, g)$ as linear functions of g have been obtained for various classes of groups ranging from all groups and cyclic groups through to solvable groups (e.g. [1], [15], [7], [8], [18], [2]).

Recently Kulkarni [8] has shown that for any given group G there is an integer $n_{0}(G)$ such that if G acts on Σ_{g} then $g \equiv 1\left(\bmod n_{0}(G)\right)$ and for all but a finite number of g such that $g \equiv 1\left(\bmod n_{0}(G)\right), G$ acts on Σ_{g}. There is thus a minimum (reduced) stable g_{0} (see §2) such that for all $g \geqslant g_{0}$ of the given form G acts on Σ_{g} and a gap sequence where G does not act, between the minimum (reduced) genus and the minimum (reduced) stable genus. Those groups G for which $n_{0}(G)=1$ and so G acts on almost all Σ_{g} have been characterized [8] and include cyclic groups. For related problems on groups acting on non-closed surfaces see [16].

In this paper, given a prime power p^{e}, we determine necessary and sufficient conditions on g, in terms of p-adic expansion, for Σ_{g} to admit a cyclic group of order p^{e}. From this one can deduce the minimum stable genus and in the case of prime order, a closed formula for the gap sequence, thereby determining all compact surfaces on which a given cyclic group of prime order acts. In the reverse direction, for a fixed genus g, we determine all primes p such that a cyclic group of order p acts on Σ_{g}. As will be seen the methods employed can be readily extended to other classes of p-groups and these problems will be taken up elsewhere. The computation of the gap sequence for small order cyclic groups and certain gaps for cyclic groups of prime order has recently played a role in determining "unstable" torsion in the cohomology of the mapping class group of genus g. [5]
2. Basic Definitions. Let G_{p} denote a finite p-group of exponent $p^{e_{p}}$ and order $p^{n_{p}}$. The cyclic p-deficiency of G_{p} is defined to be $n_{p}-e_{p}$ and let

$$
f_{p}= \begin{cases}n_{p}-e_{p} & \text { if } p \text { is odd or } p=2 \text { and } n_{2}=e_{2} \\ n_{2}-e_{2}-1 & \text { if } p=2 \text { and } n_{2}>e_{2}\end{cases}
$$

Glasgow Math. J. 33 (1991) 213-221.

In addition G_{2} is said to be type I if either it is cyclic or the elements of order $<2^{e_{2}}$ do not form a subgroup of index 2 , otherwise G_{2} is of type II.

Then for any finite group G, define

$$
n_{0}=n_{0}(G)=\eta \prod_{p} p^{f_{p}}
$$

where the product is over all primes p dividing $o(G), f_{p}$ being defined as above for any Sylow p-subgroup G_{p} of G, and $\eta=1$ or 2 according as G_{2} is of type I or II.

Theorem [8]. If G acts on $\Sigma_{g}, g \geqslant 2$, then $g \in n_{0} \mathbb{N}$ and conversely, for all but a finite number of integers

$$
g \in 1+n_{0} N, G \text { acts on } \Sigma_{g} .
$$

If G acts on Σ_{g} with $g=1+n_{0} g_{0}$, then we call g_{0} a reduced genus of G. Also $\mu_{0}=\mu_{0}(G)$ will denote the minimum reduced genus of G and $\sigma_{0}=\sigma_{0}(G)$ the minimum stable reduced genus of G i.e. minimal with the property that all $g_{0} \geqslant \sigma_{0}$ are reduced genera of G. In addition, the integers in the interval [μ_{0}, σ_{0}] which do not occur as reduced genera of G will constitute the reduced gap-sequence of G.

Those groups G for which $n_{0}=1$ are classified in [8] and these include all cyclic groups. Note that in that case, the actual values g such that G acts on Σ_{g} are related to the reduced genera g_{0} by $g=1+g_{0}$.

By expressing an integer g_{0} in its " p-adic form" we obtain necessary and sufficient conditions on this form so that g_{0} should be a reduced genus for a cyclic p-group. As a consequence we obtain formulae for the invariant σ_{0} for these cyclic p-groups (the invariant μ_{0} is already known [7]) and for the gap-sequence for cyclic groups of prime order.

Now let $G=G_{p}$ be a finite p-group with $e=e_{p}$ and $n=n_{p}$. If G acts on Σ_{g} then $\Sigma_{g} / G \simeq \Sigma_{h}$ for some $h \geqslant 0$ and $\pi: \Sigma_{g} \rightarrow \Sigma_{h}$ is a branched covering with branch indices dividing p^{e}. If there are x_{i} branch points on Σ_{h} with branching index $p^{i}, i=1,2, \ldots, e$, then the Riemann-Hurwitz relation gives

$$
\begin{equation*}
2(g-1)=p^{n}\left[2(h-1)+\sum_{i=1}^{e} x_{i}\left(1-p^{-i}\right)\right] \tag{1}
\end{equation*}
$$

Since $g \geqslant 2$, the right hand side of (1) must be positive. Conversely, given integers $h \geqslant 0$, $x_{i} \geqslant 0$ such that the right hand side of (1) is positive, one can construct a (Fuchsian) group of signature

$$
\left(h ; p^{\left(x_{1}\right)}, p^{2\left(x_{2}\right)}, \ldots, p^{e\left(x_{e}\right)}\right)
$$

i.e. having a presentation of the form

$$
\begin{gathered}
\text { Generators: } a_{1}, b_{1}, \ldots, a_{h}, b_{h}, t_{11}, t_{12}, \ldots, t_{1 x_{1}}, t_{21}, \ldots, t_{e x_{e}} \\
\text { Relations; } \quad t_{i j}^{p_{i}^{i}}= \\
1\left(i=1,2, \ldots, e ; j=1,2, \ldots, x_{i}\right) \\
\prod_{k}\left[a_{k}, b_{k}\right] \prod_{i, j} t_{i j}=1
\end{gathered}
$$

Furthermore, if there exists a homomorphism of Γ onto G with torsion-free kernel such that (1) holds, then G acts on Σ_{g}. In that case, we say that the data $\left\{h, x_{i}\right\}$ corresponds to an action.
3. Fundamental equation for p odd. Let p be an odd prime. From equation (1), it becomes necessary to examine in detail, for all p-groups, the solutions of the diophantine equation

$$
\begin{equation*}
N=p^{e} h+\sum_{i=1}^{e} x_{i} \frac{1}{2}\left(p^{e}-p^{e-i}\right) \tag{2}
\end{equation*}
$$

Let $\Omega_{e}=\Omega_{e}(p)$ denote the set of solutions N of (2) ${ }_{c}$ for which $h \geqslant 0$ and $x_{i} \geqslant 0$ all i. We will describe Ω_{e} in terms of a p-adic expansion of N. Given p and e, let

$$
2 N=a_{0}+a_{1} p+\ldots+a_{e} p^{e}
$$

where $0 \leqslant a_{i}<p$ for $i=0,1, \ldots, e-1$ and $a_{e} \geqslant 0$. There is a unique expansion of this form. The results are expressed in terms of the sum of the coefficients of this expansion and so for brevity write

$$
S_{e}(2 N)=\sum_{k=0}^{e} a_{k}
$$

Theorem 3.1. $\Omega_{e}=\left\{N \in \mathbb{N} \mid S_{e}(2 N) \geqslant(e-i)(p-1)\right.$ where a_{i} is the first non-zero coefficient $\}$.
Proof. If Ω_{e}^{\prime} denotes the set described in the statement, we will prove by induction on e that $\Omega_{e}=\Omega_{e}^{\prime}$.

Let $N \in \Omega_{1}$ so that $2 N=2 p h+x_{1}(p-1)$. Furthermore let $x_{1}=c_{0}+c_{1} p$ with $0 \leqslant c_{0}<$ p. Then

$$
\begin{aligned}
2 N & =\left\{\begin{array}{lll}
{\left[2 h+c_{1}(p-1)+c_{0}-1\right] p+\left(p-c_{0}\right)} & \text { if } & c_{0}>0 \\
{\left[2 h+c_{1}(p-1)\right] p} & \text { if } & c_{0}=0
\end{array}\right. \\
S_{1}(2 N) & =\left\{\begin{array}{lll}
2 h+\left(c_{1}+1\right)(p-1) & \text { if } & a_{0} \neq 0 \\
2 h+c_{1}(p-1) & \text { if } & a_{0}=0 .
\end{array}\right.
\end{aligned}
$$

Thus $N \in \Omega_{1}^{\prime}$.
Now suppose $N \in \Omega_{1}^{\prime}$. Hence

$$
S_{1}(2 N) \geqslant\left\{\begin{array}{lll}
p-1 & \text { if } & a_{0} \neq 0 \\
0 & \text { if } & a_{0}=0
\end{array}\right.
$$

In the second case, clearly $N \in \Omega_{1}$. In the first case, set

$$
S_{1}(2 N)=(p-1)+2 k
$$

Thus $N \in \Omega_{1}$ with $h=k$ and $x_{1}=p-a_{0}$.
Now assume that $\Omega_{e-1}=\Omega_{e-1}^{\prime}$, and let

$$
2 N=a_{0}+a_{1} p+\ldots+a_{e} p^{e}
$$

with a_{i} the first non-zero coefficient. Define $N^{\prime} \in \mathbb{N}$ by

$$
N^{\prime}=\frac{1}{p}\left[N-m\left(p-a_{0}\right)\left(\frac{p^{e}-1}{2}\right)\right]
$$

where $m=\min \left\{a_{0}, 1\right\}$.
Let $N \in \Omega_{e}$ and so from equation (2) ${ }_{\mathrm{e}}$ we deduce that $x_{e}=\left(p-a_{0}\right)+p x_{e}^{\prime}$ with $x_{e}^{\prime} \geqslant 0$.

Then we obtain that $N^{\prime} \in \Omega_{e-1}=\Omega_{e-1}^{\prime}$. Now let

$$
2 N^{\prime}=b_{0}+b_{1} p+\ldots+b_{e-1} p^{e-1}
$$

so that $S_{e-1}\left(2 N^{\prime}\right) \geqslant(e-1-i)(p-1)$ where b_{i} is the first non-zero coefficient. But then

$$
\begin{aligned}
2 N= & a_{0}+(p-1) p+(p-1) p^{2}+\ldots+(p-1) p^{i}+\left(b_{i}-1\right) p^{i+1} \\
& +b_{i+1} p^{i+2}+\ldots+b_{e-2} p^{e-1}+\left(b_{e-1}+\left(p-a_{0}\right)\right) p^{e} \\
S_{e}(2 N)= & a_{0}+i(p-1)+S_{e-1}\left(2 N^{\prime}\right)-1+p-a_{0} \\
S_{e}(2 N) \geqslant & (i+1)(p-1)+(e-1-i)(p-1)=e(p-1) .
\end{aligned}
$$

Now suppose that $N \in \Omega_{e}^{\prime}$ so that $S_{e}(2 N) \geqslant e(p-1)$.

$$
2 N^{\prime}=\left(a_{1}+1\right)+a_{2} p+\ldots+a_{e-1} p^{e-2}+\left(a_{0}+a_{e}-p\right) p^{e-1}
$$

Since each of the coefficients $a_{1}, a_{2}, \ldots, a_{e-1} \leqslant p-1$ it follows that $a_{0}+a_{e} \geqslant p-1$ with equality only in the case $a_{1}=\ldots=a_{e-1}=p-1$. In that exceptional case, $2 N^{\prime}=\left(a_{0}+\right.$ $\left.a_{e}+1-p\right) p^{e-1}$ so $N^{\prime} \in \Omega_{n-1}^{\prime}$. Let k be the first integer so that $k \geqslant 1$ and $a_{k} \neq p-1$. Then we obtain the p-adic expansion

$$
\begin{aligned}
2 N^{\prime} & =\left(a_{k}+1\right) p^{k-1}+a_{k+1} p^{k}+\ldots+a_{e-1} p^{e-2}+\left(a_{0}+a_{e}-p\right) p^{e-1} \\
S_{e-1}\left(2 N^{\prime}\right) & =\sum_{j=k}^{e} a_{j}+1+a_{0}-p=S_{e}(2 N)+1-p-(k-1)(p-1) \\
& \geqslant[(e-1)-(k-1)](p-1) .
\end{aligned}
$$

Thus $N^{\prime} \in \Omega_{e-1}^{\prime}=\Omega_{e-1}$ and it then follows easily that $N \in \Omega_{e}$.
Definition. Let $\sigma_{e}(p)$ denote the smallest stable solution of (2) $)_{\mathrm{c}}$ i.e. $\sigma_{e}(p)$ is minimal with the property that all $N \geqslant \sigma_{e}(p)$ lie in $\Omega_{e}(p)$.

Corollary 3.2. $\sigma_{e}(p)=\frac{1}{2}\left[e(p-1) p^{e}-3\left(p^{e}-1\right)\right]$.
Proof. From the above description of Ω_{e} it is clear that the largest integer which fails to lie in Ω_{e} occurs when $S_{e}(2 N)=e(p-1)-2$ and $a_{0} \neq 0$. Taking $a_{0}=1$ and $a_{e}=$ $e(p-1)-3$ gives the result.
4. The Fundamental equation for $p=2$. The presence of the factors 2 in equation (1) leads to a slightly different diophantine equation in the case of $p=2$.

$$
\begin{equation*}
N=2^{e} h+\sum_{i=1}^{e-1} x_{i}\left(2^{e-1}-2^{e-1-i}\right) \tag{3}
\end{equation*}
$$

Let Ω_{e} (2) denote the set of solutions N of (3) c_{c} for which $h, x_{i} \geqslant 0$. This is only defined for $e \geqslant 2$ and for $e=2, \Omega_{2}=\mathbb{N}$. Thus assume throughout that $e \geqslant 3$. For fixed e, consider the 2-adic expansion

$$
N=a_{0}+a_{1} 2+\ldots+a_{e-1} 2^{e-1}
$$

where $a_{i}=0,1$ for $i=0,1, \ldots, e-2$ and $a_{e-1} \geqslant 0$. Let $S_{e}(N)$ denote the sum of the coefficients in this expansion. In a manner analogous to Theorem 3.1 we obtain

Theorem 4.1. $\Omega_{e}=\left\{N \in \mathbb{N} \mid S_{e}(N) \geqslant e-1-i\right.$ where a_{i} is the first non-zero coefficient $\}$.

Corollary 4.2. The least stable solution of $(3)_{e}, \sigma_{e}(2)$ is given by

$$
\sigma_{e}(2)=(e-3) 2^{e-1}+2
$$

5. Cyclic p-groups, p odd. In this section, we obtain necessary and sufficient conditions on an integer g_{0} in terms of its p-adic expansion in order that it should be a reduced genus for a $Z_{p} e$ action, p an odd prime. From this one readily deduces $\sigma_{0}\left(Z_{p} e\right)$ the minimum stable reduced genus and a formula for the gap sequence for Z_{p} actions.

One readily sees that every $g_{0} \geqslant 1$ is a reduced genus for Z_{3}. Thus throughout this section we assume that $p^{e}>3$.

Let integers $h \geqslant 0, x_{i} \geqslant 0, i=1,2, \ldots, e$ be given. For this data $\left\{h, x_{i}\right\}$ define $M=\min \left\{n: x_{j}=0\right.$ for each $\left.j>n\right\}$. By the criterion given at the end of $\S 2$, we deduce in this case that the data $\left\{h, x_{i}\right\}$ corresponds to an action of $Z_{\rho} e$ with reduced genus $g_{0}=g-1 \geqslant 1$ if and only if g satisfies equation (1) and the data satisfies at least one of the conditions in the table below

	h	M	x_{M}
1	$\geqslant 2$	0	
2	$\geqslant 1$	$\geqslant 1$	$\geqslant 2$
3	$\geqslant 0$	e	$\geqslant 2$ and r.h.s. of (1) positive.

From equation (1) it follows that $g_{0}=p^{e-M} g_{0}^{\prime}$ and

$$
2 g_{0}^{\prime}=2 p^{M}(h-1)+\sum_{i=1}^{M} x_{i}\left(p^{M}-p^{M-i}\right)
$$

Condition 1 is equivalent to $g_{0}^{\prime} \geqslant 1$.
Condition 2 is equivalent to $g_{0}^{\prime}-\left(p^{M}-1\right) \in \Omega_{M}$
Condition 3 is equivalent to $g_{0}+1 \in \Omega_{e} \backslash\{0\}$. Note that $g_{0}+1-p^{e} \in \Omega_{e}$ implies that $g_{0}+1 \in \Omega_{e}$. Thus

Theorem 5.1. Let $g_{0} \geqslant 1$. Then g_{0} is a reduced genus for $Z_{p} e$ if and only if
(i) $g_{0}+1 \in \Omega_{e}$,
or (ii) for some $1 \leqslant M<e, g_{0}=p^{e-M} g_{0}^{\prime}$ and $g_{0}^{\prime}+1-p^{M} \in \Omega_{M}$,
or (iii) $g_{0}=p^{e} g_{0}^{\prime}$.
Theorem 5.2. Let $g_{0} \geqslant 1$. Let $2 g_{0}=a_{0}+a_{1} p+\ldots+a_{e} p^{e}$ where $0 \leqslant a_{i}<p$ for $i=$ $0,1, \ldots, e-1$ and $a_{e} \geqslant 0$. Let i be the first integer so that $a_{i} \neq 0$ and let j be the first integer $\geqslant i$ such that $a_{j} \neq p-1$ or $j=e$. Then g_{0} is a reduced genus for $Z_{p} e$ if and only if
A) $i=0$ and $S_{e}\left(2 g_{0}\right) \geqslant(e+j)(p-1)-2$
B) $0<i=j \leqslant e$ and $S_{e}\left(2 g_{0}\right) \geqslant(e-i)(p-1)$
C) $1<i<j \leqslant e$ and $S_{e}\left(2 g_{0}\right) \geqslant(e-i+1)(p-1)$
D) $1=i<j \leqslant e$ and $S_{e}\left(2 g_{0}\right) \geqslant e(p-1)-2$.

Proof. A) $i=0$ so that $g_{0} \neq 0(\bmod p)$. Now

$$
2\left(g_{0}+1\right)=\left(a_{0}+2\right)+a_{1} p+\ldots+a_{e} p^{e}
$$

If $a_{0} \neq p-2, p-1$, so that $j=0$, the inequality follows immediately from 5.1 and 3.1. If $a_{0}=p-2$, so that $j=0$, let $m \geqslant 1$ be the first integer so that $a_{m} \neq p-1$ or $m=e$. Thus

$$
2\left(g_{0}+1\right)=\left(a_{m}+1\right) p^{m}+a_{m+1} p^{m+1}+\ldots+a_{e} p^{e}
$$

It thus follows from 3.1 that

$$
S_{e}\left(2 g_{0}\right) \geqslant(e-m)(p-1)-1+(p-2)+(m-1)(p-1)=e(p-1)-2
$$

If $a_{0}=p-1$ so that $j>0$, from 3.1 it follows that

$$
S_{e}\left(2 g_{0}\right) \geqslant(e+j)(p-1)-2
$$

B) $0<i=j \leqslant e$. So we have

$$
2 g_{0}=a_{i} p^{i}+\ldots+a_{e} p^{e}
$$

with $a_{i} \neq p-1$. Note if $i=e$ all such $g_{0}(\geqslant 1)$ are reduced genera and the inequality agrees.

For all M such that $e-M \leqslant i, g_{0} \equiv 0\left(\bmod p^{e-M}\right)$. Thus g_{0} is a reduced genus if and only if either (i) $g_{0}+1 \in \Omega_{e}$ or (ii) for some such $M, g_{0} / p^{e-M}+1-p^{M} \in \Omega_{M}$ i.e. if and only if one of the following four conditions holds:
$(\alpha) S_{e}\left(2 g_{0}\right) \geqslant e(p-1)-2$
(β) $e-M<i$ and $S_{e}\left(2 g_{0}\right) \geqslant M(p-1)$
(γ) $e-M=i, a_{i} \neq p-2$ and $S_{e}\left(2 g_{0}\right) \geqslant M(p-1)$
(δ) $e-M=i, a_{i}=p-2$ and

$$
S_{e}\left(2 g_{0}\right) \geqslant(M-m)(p-1)-1+(p-2)+(m-1)(p-1)+2=M(p-1)
$$

where m is the first integer $>i$ such that $a_{m} \neq p-1$ or $m=e$. (The conditions and inequalities in cases β), γ), δ) all imply that $a_{e} \geqslant 2$). Thus g_{0} is a reduced genus if and only if either $S_{e}\left(2 g_{0}\right) \geqslant e(p-1)-2$ or $S_{e}\left(2 g_{0}\right) \geqslant(e-i)(p-1)$. Since $i \geqslant 1$, the first inequality implies the second and the result follows.
C) and D) follow by a similar analysis.

Corollary 5.3. $\sigma_{0}\left(Z_{p} e\right)=\sigma_{e}(p)-1=\frac{1}{2}\left[(e(p-1)-3) p^{e}+1\right]$.
Proof. By Theorem 5.1, $\sigma_{0}\left(Z_{p} e\right) \leqslant \sigma_{e}(p)-1$. Now let $g_{0}=\sigma_{e}(p)-2$ so that

$$
2 g_{0}=(p-1)+(p-1) p+\ldots+(p-1) p^{e-1}+[e(p-1)-4] p^{e}
$$

so that, in the notation of Theorem $5.2, i=0$ and $j=e$. But the inequality given under A) then fails.

Now consider the particular case of Z_{p}. For $p=3, Z_{3}$ acts on all surfaces of genus $g \geqslant 2$. Otherwise from Theorem 5.2 we can read off the reduced minimum genus $\mu_{0}=\frac{1}{2}(p-3)$, (but this is already known for all cyclic groups [7]) and the reduced minimum stable genus $\sigma_{0}=\sigma_{1}(p)-1=\frac{1}{2}[p(p-4)+1]$.

Corollary 5.4. The gap sequence for Z_{p} is

$$
\left\{\left.\frac{1}{2}(p-1)+\varepsilon\left(\frac{p+3}{2}\right)+i+k p \right\rvert\, \varepsilon=0,1, i, k \geqslant 0,0 \leqslant i+k \leqslant\left(\frac{p-5}{2}\right)-2 \varepsilon\right\}
$$

Proof. If $2 g_{0}=a_{0}+a_{1} p$, then C) and D) of Theorem 5.2 do not apply in this case and the other cases reduce to (i) $a_{0}=0$ all a_{1} (ii) $a_{0} \neq 0, a_{0}=p-1, a_{0}+a_{1} \geqslant 2(p-2)$ (iii) $a_{0} \neq 0 a_{0} \neq p-1 a_{0}+a_{1} \geqslant p-3$.

Let $g_{0}=\frac{1}{2}(p-1)+b_{0}+b_{1} p$ where $0 \leqslant b_{0}<p$ and $b_{1} \geqslant 0$.
A) $b_{0}=(p+1) / 2$. All such g_{0} are reduced genera.
B) $b_{0}=0$. Then $b_{1} \geqslant(p-3) / 2$.
C) (i) $1 \leqslant b_{0} \leqslant(p-1) / 2$. Then $2 g_{0}=\left(2 b_{0}-1\right)+\left(2 b_{1}+1\right) p$ so that $b_{0}+b_{1} \geqslant(p-3) / 2$
(ii) $(p+3) / 2 \leqslant b_{0} \leqslant p-1$. Then $2 g_{0}=\left(2 b_{0}-1-p\right)+\left(2 b_{1}+2\right) p$ so that $b_{0}+b_{1} \geqslant p-2$.
6. Cyclic 2-groups. The results and methods are similar to those in the preceding section and so only an outline is given.

Using the same notation as in $\S 5$, the data $\left\{h, x_{i}\right\}$ corresponds to an action of $Z_{2} e$ if and only if at least one of the conditions set out in the table below holds.

	h	M	x_{M}
1	$\geqslant 2$	0	
2	$\geqslant 1$	$\geqslant 1$	Even
3	$\geqslant 0$	e	Even and r.h.s. of (1) positive.

Theorem 6.1. All $g_{0} \geqslant 1$ are reduced genera for Z_{2} and Z_{4}. Let $g_{0} \geqslant 1$ and $e \geqslant 3$. Then g_{0} is a reduced genus for $Z_{2} e$ if and only if
(i) $g_{0}+1 \in \Omega_{e}$
or (ii) for some $2 \leqslant M<e, g_{0}=2^{e-M} g_{0}^{\prime}$ and $g_{0}^{\prime}+1-2^{M} \in \Omega_{M}$
or (iii) $g_{0}=2^{e-1} g_{0}^{\prime}$.
Theorem 6.2. Let $g_{0} \geqslant 1$ and $e \geqslant 3$. Let

$$
g_{0}=a_{0}+a_{1} 2+\ldots+a_{e-1} 2^{e-1}
$$

where $a_{i} \in\{0,1\}$ for $i=0,1, \ldots, e-2$ and $a_{e-1} \geqslant 0$. Let i be the first integer so that $a_{i} \neq 0$ and let j be the first integer $\geqslant i$ such that $a_{j}=0$ or $j=e-1$. Then g_{0} is a reduced genus for $Z_{2} e$ if and only if
A) $i=0$ and $S_{e}\left(g_{0}\right) \geqslant e-2$
B) $1<j \leqslant j \leqslant e-1$ and $S_{e}\left(g_{0}\right) \geqslant e-i$
C) $1=i<j \leqslant e-1$ and $S_{e}\left(g_{0}\right) \geqslant e-2$.

Corollary 6.3. $\sigma_{0}\left(Z_{8}\right)=1$ and for $e \geqslant 4$

$$
\sigma_{0}\left(Z_{2} e\right)=5+(e-4) 2^{e-1}
$$

7. Primes dividing the order of a symmetry group. In the preceding sections, starting with a cyclic group of order p^{e} we have determined conditions on g such that the group acts on Σ_{g}. In this section, we consider the opposite problem of: given g, determine the primes which divide $o(G)$ where G is a symmetry group of Σ_{g}. Note that the earlier results were in terms of the reduced genus g_{0}, while here the results are in terms of the actual genus $g\left(=g_{0}+1\right)$.

220

Definition. Let $\pi_{g}=\left\{\right.$ primes $p: Z_{p}$ acts on $\left.\Sigma_{g}\right\}$.
The cyclic groups of order 2 and 3 act on surfaces of all genera, so that $2,3 \in \pi_{g}$ for all g. The minimum genus of a surface on which a cyclic group of prime order p acts is $\frac{1}{2}(p-1)$ (e.g. [7]) so that $p \leqslant 2 g+1$. In addition, for every genus g, there are surfaces of genus g which admit cyclic symmetry groups of orders $2(2 g+1)[7], 2(g+1)[\mathbf{1}][\mathbf{1 5}]$ and $4 g$. [This last arising from a triangle group of signature ($0 ; 2,4 g, 4 g$)]. Similarly one easily obtains that, if $g \equiv 0(\bmod 2)(g \equiv 0(\bmod 3))$ then Σ_{g} admits cyclic groups of order $g+2$ ($2 g+3$ resp), the corresponding group having signature ($\left.0 ; \frac{1}{2}(g+2), \frac{1}{2}(g+2), g+2, g+2\right)$ $\left(\left(0 ; \frac{1}{3}(2 g+3), 2 g+3,2 g+3\right)\right.$ resp $)$. From theorem 5.2B) we see that if $p \mid g-1$ then $p \in \pi_{g}$. From 5.3, $p \in \pi_{g}$ whenever $g \geqslant \frac{1}{2}[p(p-4)+3]$ so that π_{g} includes all primes $p \leqslant \sqrt{2 g+1}+2$. Let S_{g} be the set of primes p that satisfy at least one of the following

$$
\begin{gather*}
p \leqslant \sqrt{2 g+1}+2 \tag{1}\\
p \mid g\left(g^{2}-1\right)(2 g+1) \tag{2}\\
p \mid g+2(2 g+3) \text { if } g \equiv 0(\bmod 2)(g \equiv 0(\bmod 3)) . \tag{3}
\end{gather*}
$$

Theorem 7.1. With notation as above, $\pi_{g}=S_{g} \cup T_{g}$ where

$$
\begin{aligned}
T_{g}= & \left\{\text { primes } p \left\lvert\, p<\frac{g}{2}\right. \text { and } 2 g-2=a_{0}+a_{1} p\right. \\
& \text { with } \left.0<a_{0}<p-1 \text { and } a_{0}+a_{1} \geqslant p-3\right\} .
\end{aligned}
$$

Proof. If $a_{0}=p-1$, and $p \in \pi_{g}$, by 5.2A), $a_{1} \geqslant p-3$. This implies that $p \leqslant \sqrt{2} g+1$ and so $p \in S_{g}$.

If $p \geqslant g / 2$, then $2 g-2 \leqslant 4 p-2$ so that $a_{1} \leqslant 3$. If $a_{1}=3$, then $a_{0} \geqslant p-6$ and $2 g-2=4 p-6,4 p-4,4 p-2$. But that implies that $p \in S_{g}$, these cases being covered in (2) and (3). Otherwise if $a_{1}=2$, then $2 g-2=3 p-5,3 p-3$ again both cases giving $p \in S_{g}$. Similarly we reject $a_{1}=1,0$.

REFERENCES

1. R. D. M. Accola, On the number of automorphisms of a closed Riemann surface. Trans. Amer. Math. Soc. 131 (1968), 398-408.
2. B. P. Chetiya, On genuses of compact Riemann surfaces admitting solvable automorphism groups. Indian J. Pure appl. Math. 12 (1981), 1312-1318.
3. M. D. E. Conder, Generators for alternating and symmetric groups. J. London Math. Soc. 22 (1980), 75-86.
4. M. D. E. Conder, The genus of Compact Riemann surfaces with Maximal Automorphism Group. J. of Algebra 108 (1987), 204-247.
5. H. Glover and G. Mislin, Torsion in the mapping class group and its cohomology. J. of Pure \& Appl. Algebra 44 (1987), 177-189.
6. H. Glover and D. Sjerve, The genus of $\mathrm{PSL}_{2}(q)$ J. Reine und Angew Math. 380 (1987), 59-86.
7. W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. 17 (1966), 86-97.
8. R. S. Kulkarni, Symmetries of surfaces. Topology 26 (1987), 195-203.
9. R. S. Kulkarni, Normal subgroups of fuchsian groups. Quart. J. Math. Oxford 36 (1985), 325-344.
10. A. Kuribayashi and H. Kimura, On Automorphism Groups of Compact Riemann surfaces of Genus 5. Proc. Japan Academy 63 Ser A (1987), 126-130.
11. I. Kuribayashi and A. Kuribayashi, On Automorphism groups of a Compact Riemann Surface of genus 4 as subgroups in GL(4, C). Bull. Facul. Sc. Eng. Chuo Univ. 28 (1985), 11-28.
12. A. M. Macbeath, On a Theorem of Hurwitz Proc. Glasgow Math. Assoc. 5 (1961), 90-96.
13. C. Maclachlan, Groups of Automorphisms of compact Riemann surfaces Ph.D. Thesis Birmingham Univ. 1966.
14. C. Maclachlan, Abelian groups of automorphisms of compact Riemann surfaces. Proc. London Math. Soc. 15 (1965), 699-712.
15. C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface. J. London Math. Soc. 44 (1969), 265-272.
16. D. McCullough, A. Miller and B. Zimmermann, Group actions on non-closed 2-manifolds (to appear).
17. A. Wiman, Uber die hyperelliptischen Kurven und diejenigen vom Geschlechte $p=3$, welche eindeutigen Transformationen in sich Zulassen Bihang. Till Kongl. Svenska VeienskapsAkademiems Hadlingar (Stockholm 1895-6), 21, 1-23.
18. R. Zomorrodian, Nilpotent automorphism groups of Riemann surfaces, Trans. Amer. Math. Soc. 288 (1985), 241-255.

Inst. Mittag-Leffler
Department of Mathematical Sciences
Auravägen 17
5-182 62 Djursholm
Sweden

University of Aberdeen
Aberdeen
Scotland

