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Abstract

Some classes of finitely generated hyperabelian groups defined in terms of semipermutability and S-
semipermutability are studied in the paper. The classification of finitely generated hyperabelian groups
all of whose finite quotients are PST-groups recently obtained by Robinson is behind our results. An
alternative proof of such a classification is also included in the paper.
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1. Introduction

A subgroup H of a group G is said to be permutable in G if HK is a subgroup for every
subgroup K of G. In recent years, some extensions of the concept of permutability,
especially in finite groups, have been extensively studied. One of the most important
is the S-permutability introduced by Kegel in his seminal paper [12]: a subgroup H of
a periodic group G is S-permutable if HP is a subgroup of G for every Sylow subgroup
P of G. S-permutable subgroups of finite groups are subnormal and nilpotent modulo
their core [3, Theorem 1.2.14].

In the general finite universe, permutable subgroups are not subnormal in general.
However, they are always ascendant by a result of Stonehewer [20]. Unfortunately,
S-permutable subgroups of periodic groups are not ascendant in general: there exist
locally nilpotent groups with nonascendant subgroups [11, Example 18.2.2].

Permutability and S-permutability, like normality, are not transitive in general.
A group G is called a T-group (respectively, a PT-group) if normality (respectively,
permutability) is a transitive relation, that is, if H is normal in K and K is normal in
G, then H is normal in G (respectively, permutable). A periodic group G is called a
PST-group if S-permutability is a transitive relation.

The first author has been supported by the grant MTM2014-54707-C3-1-P from the Ministerio de
Economı́a y Competitividad, Spain, and FEDER, European Union. He has also been supported by a
project from the National Natural Science Foundation of China (NSFC, No. 11271085) and a project of
the Natural Science Foundation of Guangdong Province (No. 2015A030313791).
c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

219

https://doi.org/10.1017/S0004972716000885 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000885


220 A. Ballester-Bolinches, J. C. Beidleman and R. Ialenti [2]

By the above result of Kegel, a finite group G is a PT-group (respectively, a PST-
group) if and only if every subnormal subgroup of G is permutable (respectively, S-
permutable) in G. These classes of groups include the class of finite groups in which
every subnormal subgroup is normal and they have been extensively studied in recent
years. Many of the beautiful results on these classes of groups in the finite universe
are presented in [3, Ch. 2]. Infinite soluble T-groups and PT-groups were studied in
[16] and [5, 13, 14]. Locally finite PST-groups were studied in [4, 19].

In this context, Robinson [15] studied the impact of S-permutability in the structure
of polycyclic groups and proved a nice characterisation of the finitely generated
hyperabelian groups all of whose finite quotients are PST-groups.

Theorem 1.1 [15]. Let G be a finitely generated hyperabelian group. Then every finite
quotient of G is a PST-group if and only if G is one of the following:

(i) a finite soluble PST-group;
(ii) a nilpotent group;
(iii) a group of infinite dihedral type.

A group of infinite dihedral type is, by definition, a group G in which the
hypercentre H of G is a finite 2-group and the factor G/H is isomorphic with the
dihedral group Dih(B) on a finitely generated, infinite abelian group B with no
involutions. A useful characterisation for this kind of group is the following lemma
contained in [15].

Lemma 1.2 [15]. A group G is of infinite dihedral type if and only if it has a normal
abelian subgroup A such that:

(i) A is a finitely generated, infinite abelian group containing no involutions;
(ii) G/A is a finite 2-group and |G : CG(A)| = 2;
(iii) elements in G/CG(A) induce inversion in A.

The purpose of this paper is to extend Robinson’s theorem to some other classes of
groups, defined by means of subgroup permutability properties which turned out to be
of interest in the finite universe.

2. Preliminaries

As usual, if G is a periodic group, π(G) denotes the set of the primes that divide
the orders of the elements of G. A subgroup H of a periodic group G is called
semipermutable (respectively, S-semipermutable) if HK is a subgroup of G for every
subgroup K of G such that π(H) ∩ π(K) = ∅ (respectively, HP is a subgroup of
G for every Sylow p-subgroup P of G such that p < π(H)). A group in which
semipermutability is a transitive relation is called a BT-group. In [21], the authors
proved a beautiful theorem characterising the finite soluble BT-groups.

Theorem 2.1 [21]. Let G be a finite group. The following statements are equivalent.
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(i) G is a soluble BT-group.
(ii) Every subgroup of G is semipermutable.
(iii) Every subgroup of G is S-semipermutable.
(iv) G is a soluble PST-group with nilpotent residual L and, if p and q are distinct

primes not dividing the order of L, then [P,Q] = 1 for every P ∈ Sylp(G) and
Q ∈ Sylq(G).

Applying Theorem 2.1, the class of all finite soluble BT-groups is subgroup and
quotient closed.

In general, a semipermutable subgroup of a finite group G is not subnormal.
For instance, in the symmetric group on three letters, a 2-Sylow subgroup is both
semipermutable and S-semipermutable but it is not subnormal.

A group G is called an SP-group (respectively, an SPS-group) if every subnormal
subgroup of G is semipermutable (respectively, S-semipermutable). A subgroup H of a
periodic group G is said to be seminormal if it is normalised by every subgroup K of G
such that π(H) ∩ π(K) = ∅. A group in which every subnormal subgroup is seminormal
is called an SN-group. In [6], Beidleman and Ragland proved the following result.

Theorem 2.2 [6]. Let G be a finite soluble group. Then the following statements are
equivalent.

(i) G is a PST-group.
(ii) G is an SP-group.
(iii) G is an SPS-group.
(iv) G is an SN-group.

A group G is called an SNT-group if seminormality is a transitive relation. Ballester-
Bolinches et al. [2, Theorem F] proved that any finite SNT-group is a PST-group but
the converse does not hold in general [2, Example 1].

A subgroup H of a group G is said to be SS-permutable in G if H has a supplement
K in G such that H permutes with every Sylow subgroup of K. Groups in which SS-
permutability is a transitive relation are called SST-groups. In [8], it is proved that a
finite SST-group is a BT-group but the converse is not true. The following theorem
gives a criterion for a BT-group to be an SST-group.

Theorem 2.3 [8]. Let G be a finite soluble BT-group with nilpotent residual L. Then
the following statements are equivalent.

(i) G is an SST-group.
(ii) For every p-subgroup P of G with p ∈ π(G) \ π(L), G has a subgroup Kp such

that PKp ∈ Sylp(G) and [P,Kp] ≤ Op(G).

A group G is called an MS-group if the maximal subgroups of all the Sylow
subgroups of G are S-semipermutable in G. Ballester-Bolinches et al. studied this
class of groups (see [1]) and, moreover, they showed that the class of BT-groups and
the class of MS-groups are not comparable.
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The relationships between all the classes of groups listed above can be pictured by
the following diagram, with the exception of MS-groups, which are incomparable with
all the other ones.

SST⇒ BT⇒ SNT⇒ SN⇔ SP⇔ SPS⇔ PST

3. Main results

Let X be one of the classes SST, BT, SNT, SN, SP or SPS. In order to extend
Robinson’s theorem to finitely generated hyperabelian groups with all finite quotients
belonging to X, we need to study the finite quotients of groups of infinite dihedral type.
The next lemma shows that their structure is quite transparent.

Lemma 3.1 (see [15]). Let G be a group of infinite dihedral type. If G/N is a finite
quotient of G and L/N is the nilpotent residual of G/N, then L/N is a Hall 2′-subgroup
of G/N.

Proof. By Lemma 1.2, G/N has a normal abelian subgroup T/N such that G/T is a 2-
group, |G/N : CG/N(T/N)| = 2 and the elements in G/N \CG/N(T/N) induce inversion
in T/N. Let B/N = O2′(T/N). Then G/B is a 2-group, so the nilpotent residual L/N of
G/N is contained in B/N. On the other hand, since B/N has odd order and the elements
of G/N \CG/N(T/N) induce inversion in B/N, we have B/N ≤ L/N. Thus, B/N = L/N
is the nilpotent residual of G/N. �

Next, we observe that all the finite quotients of a group of infinite dihedral type are
BT-groups.

Lemma 3.2. If G is a group of infinite dihedral type, then all its finite quotients are
BT-groups.

Proof. By [15, Lemma 3], every finite quotient of G is a soluble PST-group.
Furthermore, if G/N is a finite quotient and L/N is the nilpotent residual of G/N, then
G/L is a 2-group by Lemma 3.1. Therefore, G/N is a BT-group by Theorem 2.1. �

In [15, Proposition 2], it is shown that a group of infinite dihedral type is not a
PST-group. However, the class of all groups of infinite dihedral type is a subclass of
the class of all BT-groups, as shown in the following lemma.

Lemma 3.3. If G is a group of infinite dihedral type, then every subgroup of G is
semipermutable. In particular, G is a BT-group.

Proof. Applying Lemma 1.2, G has a normal finitely generated infinite abelian
subgroup A containing no involutions such that G/A is a finite 2-group, |G : CG(A)| = 2
and the elements in G \CG(A) induce inversion in A.

In particular, every subgroup of A is normal in G and, if D is the torsion subgroup
of A, then π(G) = {2} ∪ π(D). Clearly, if A is torsion-free, every subgroup of G is
semipermutable. Hence, we may assume that D is not trivial.
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Let x, y be elements of G of order pα and qβ, respectively, with p and q different
prime numbers. Since p and q are different, one of them must belong to π(D). Assume
that p ∈ π(D), so that x ∈ A. In this case, 〈x〉 is a normal subgroup of G and therefore
〈x〉〈y〉 = 〈y〉〈x〉. �

Since in a group of infinite dihedral type all finite quotients are BT-groups, we can
prove that its finite quotients are actually SST-groups using Theorem 2.3.

Lemma 3.4. Let G be a finite group with a normal abelian subgroup A such that:

(i) G/A is a 2-group and |G : CG(A)| = 2;
(ii) elements in G \CG(A) induce inversion in A.

Then G is an SST-group.

Proof. By Theorem 2.1, G is a BT-group. Therefore, G = L o M, where M ∈ Syl2(G)
and L is the nilpotent residual of G. In particular, π(G) \ π(L) = {2}. Clearly,
CG(A) ≤ CG(L). If G = CG(L), then G is nilpotent and so G is an SST-group. Hence,
we may assume that G is not nilpotent and CG(A) = CG(L).

First, suppose that O2(G) = 1. Since M ∩ CG(L) is a normal 2-subgroup of M, it
follows that M ∩ CG(L) = {1} and M has order 2. If P is a 2-subgroup of G, then
P ∈ Syl2(G) and choosing K2 = 1 we see that [P,KL

2 ] ≤ O2(G).
Now suppose that O2(G) is not trivial. Since the factor group G/O2(G) satisfies the

same hypotheses as G, it follows from the previous argument that |M : O2(G)| = 2.
Let P be a 2-subgroup of G. Without loss of generality, we may assume that
P ≤ M. If M = PO2(G), then we may choose K2 = O2(G) and clearly [P,KL

2 ] ≤ O2(G).
Otherwise, if P ≤ O2(G), let K2 = M, so that [P,KL

2 ] ≤ [O2(G),ML] ≤ O2(G). �

Corollary 3.5. Let G be a group of infinite dihedral type. Then every finite
homomorphic image of G is an SST-group.

Theorem 3.6. Let G be a finitely generated hyperabelian group. Then every finite
quotient of G is an SST-group if and only if G is one of the following:

(i) a finite soluble SST-group;
(ii) a nilpotent group;
(iii) a group of infinite dihedral type.

Proof. Since any finite soluble SST-group is a PST-group, if every finite quotient of G
is an SST-group, then the result follows by Robinson’s theorem.

Conversely, if G is finite or nilpotent, then trivially G is an SST-group. If G is a
group of infinite dihedral type, the assertion follows from Corollary 3.5. �

Bearing in mind the relation between the classes SST, BT, SNT, SN, SP and SPS in
the finite universe, the following theorem is a direct consequence of Robinson’s result
and Theorem 3.6.
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Theorem 3.7. Let X be one of the classes BT, SNT, SN, SP or SPS and let G be a
finitely generated hyperabelian group. Then every finite quotient of G is an X-group if
and only if G is one of the following:

(i) a finite soluble X-group;
(ii) a nilpotent group;
(iii) a group of infinite dihedral type.

We bring the section to a close by studying the finitely generated hyperabelian MS-
groups.

Lemma 3.8. If G is a group of infinite dihedral type, then all its finite quotients are
MS-groups.

Proof. Let G/N be a finite quotient of G and let L/N be the nilpotent residual of G/N.
By [15, Lemma 3], G/N is a soluble PST-group and, by Lemma 3.1, L/N is a normal
abelian Hall 2′-subgroup of G/N. Then conditions (iv) and (v) of [1, Theorem 3.1] are
trivially satisfied and so G/N is an MS-group by [1, Theorem 3.2]. �

In the proof of the main theorem for MS-groups, we used some results proved in
[10] about polycyclic groups whose finite quotients are T0-groups.

Here, a finite group G is called a T0-group if the factor group G/Φ(G) over the
Frattini subgroup is a T-group.

Theorem 3.9. Let G be a polycyclic group. Then every finite quotient of G is an MS-
group if and only if G is one of the following:

(i) a finite soluble MS-group;
(ii) a nilpotent group;
(iii) a group of infinite dihedral type.

Proof. Assume that every finite quotient of G is an MS-group. If G/Φ(G) is abelian,
then any maximal subgroup of G is normal, so that any finite quotient of G is a
nilpotent group. By [18, 5.4.18], G is nilpotent.

If G/Φ(G) is finite, then only finitely many primes are possible for the indices of
maximal subgroups and so G has no infinite abelian factors. Then G is finite. In
particular, G is a finite MS-group.

Hence, we may assume that G is an infinite polycyclic group, such that the Frattini
quotient group G/Φ(G) is an infinite nonabelian group. By [7, Theorem C], any finite
MS-group is a T0-group. Hence, by [10, Theorem C], G is the semidirect product
of an abelian group A by a cyclic group 〈t〉 of order 2. Let N be a normal subgroup
of G of finite index. Since A is a maximal subgroup of G, we have that G = AN or
N ≤ A. In the first case, the quotient G/N is abelian. So, assume that N ≤ A. In this
case, G/N = A/N o 〈t〉N/N is a finite T0-group whose nilpotent residual is abelian. By
[7, Lemma 4], G/N is a PST-group. Thus, all finite quotients of G are PST-groups
and, therefore, by [15, Theorem], G is either nilpotent or a group of infinite dihedral
type. �
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Theorem 3.10. Let G be a finitely generated hyperabelian group whose finite quotients
are MS-groups. Then G is polycyclic.

Proof. We follow the proof of [15, Theorem] and use the same notation. We may
assume, arguing by contradiction, that G is just nonpolycyclic. Note that the group G
obtained there is, in our case, a finite MS-group whose nilpotent residual is abelian.
Since G is a T0-group, it follows that G is a PST-group by [7, Lemma 4]. Then the
contradiction follows as in [15, Theorem]. �

Corollary 3.11. Let G be a finitely generated hyperabelian group. Then every finite
quotient of G is an SST-group if and only if G is one of the following:

(i) a finite soluble MS-group;
(ii) a nilpotent group;
(iii) a group of infinite dihedral type.

4. A proof of the theorem of Robinson

We propose here an alternative proof for Robinson’s theorem for polycyclic groups
[15, Proposition 3]. Our proof depends on [10, Theorem D] and the following lemma.

Lemma 4.1. Let G be an infinite nonnilpotent supersoluble group whose finite quotients
are PST-groups. Then the hypercentre Z∞(G) of G does not have finite index in G.

Proof. Let F be the Fitting subgroup of G. Applying [18, 5.4.10], G/F is a finite
abelian group. Assume that G/Z∞(G) is finite. Then, by [17, Theorem 4.21], there
exists a positive integer k such that γk(G) = γ∞(G) is finite. Since G is not nilpotent,
there exist a prime p and a positive integer i such that G/F pi

is not nilpotent (otherwise,
γ∞(G) would be contained in every p′-component of F by [15, Lemma 1] and G would
be nilpotent). Then G/F p j

is not nilpotent for all j ≥ i. Let N j be a normal subgroup
of finite index in G which is maximal with respect to F ∩ N j = F p j

. Then G/N j is
not nilpotent. By [3, Theorem 2.1.8], the nilpotent residual of G/N j is an abelian
Hall subgroup of G/N j contained in FN j/N j with noncentral chief factors. Hence,
Z∞(G) ≤ N j and so Z∞(G) ≤ F ∩ N j = F p j

. Thus, Z∞(G) ≤
⋂

j>i F p j
, which is a finite

subgroup of F by [15, Lemma 1]. This contradiction proves the lemma. �

Theorem 4.2. Let G be an infinite polycyclic group and let F be its Fitting subgroup.
If every finite quotient of G is a PST-group, then either G is nilpotent or the following
conditions are satisfied.

(i) Z∞(G) is a 2-group.
(ii) F/Z∞(G) is an abelian group containing no involutions.
(iii) |G : F| = 2 and every element of G \ F induces inversion in F/Z∞(G).

Proof. Assume that G is not nilpotent. Since any finite PST-group is supersoluble, G
is supersoluble by a result of Baer. By [18, 5.4.10], G/F is a finite abelian group.
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Let N be any normal subgroup of G of finite index and let G = G/N. Then G
is a PST-group. By [3, Theorem 2.1.8], the nilpotent residual A of G is an abelian
Hall subgroup of G. Note that A ≤ G

′
≤ F. By [9, Ch. IV, Theorem 5.18], A is

complemented by a Carter subgroup D of G. Let C = F ∩ D; then F = A × C and
C ≤ CD(A). Therefore, C is contained in the hypercentre Z∞(G) of G by [9, Ch. IV,
Theorem 6.14] and G/C is a T-group. Hence, G/Z∞(G) is a T-group and G is a T1-
group.

Applying Lemma 4.1, G/Z∞(G) is infinite. By [10, Theorem D], G/Z∞(G) is an
extension of an abelian group A/Z∞(G) containing no involutions by a cyclic subgroup
of order 2 such that the elements of G \ A invert all the elements of A/Z∞(G). Since
A/Z∞(G) is abelian, A is nilpotent and A = F. In particular, the 2-component F2 of F
is contained in Z∞(G) and |G : F| = 2.

Applying [18, 5.2.10], G/F′ is not nilpotent and F/F′ is the Fitting subgroup of
G/F′. By [18, 5.2.6], F/F′ is infinite. Let p be an odd prime and assume that G/F pi

is
nilpotent for some positive integer i. Let j > i. Since the nilpotent residual of G/F p j

is
a Hall subgroup of G/F p j

contained in F pi
/F p j

, it follows that G/F p j
is nilpotent.

Let N j be a normal subgroup of finite index of G which is maximal with respect
to F ∩ N j = F′F p j

. Then G/N j is nilpotent. Since FN j/NJ is a p-group, it follows
that G/N j is a p-group. Moreover, G = FN j. Since F/F′ is infinite, F/F′ contains a
nontrivial torsion-free subgroup M/F′ such that M is a normal subgroup of G and G/M
is finite. If j ≥ i, [M,G] = [M, N j] ≤ M ∩ N j = Mp j

(mod F′). Then [M/F′,G/F′]
is finite by [15, Lemma 1]. Hence, [M/F′,G/F′] = 1 and M/F′ ≤ Z(G/F′). Then
G/F′/Z(G/F′) is finite, contrary to Lemma 4.1.

Therefore, G/F pi
is a nonnilpotent PST-group and F/F pi

is the nilpotent residual
of G/F pi

for each odd prime p and positive integer i. Since G/F pi
acts on F/F pi

as a power automorphism by conjugation [3, Theorem 2.1.8] and the only power
automorphism of order 2 is the inversion, the elements of G \ F invert all the elements
of F/F pi

. Since
⋂

r>2
(⋂

i>0 Fri)
=

⋂
r>2 Fr′ = F2 by [15, Lemma 2], every element of

G \ F induces inversion on F/F2 so that Z(G/F2) = 1 and F2 = Z∞(G). �
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