ON TOPOLOGIES IN A TOPOS

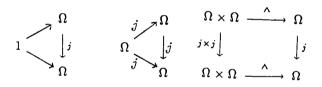
JAVAD TAVAKOLI

Johnstone and Paré have each given a way of constructing the largest topology allowing a given object to be a sheaf. In this paper we use the notion of a partial map to construct such a topology in a simple way.

Throughout this paper, E denotes an elementary topos. The preliminaries and other notation can be found in [1].

PRELIMINARIES

A topology (Lawvere-Tierney) in E is a morphism $j: \Omega \to \Omega$ such that



commute. We write $J \mapsto \Omega$ for the subobject classified by j. Since every topology in E is a closure operator on E, we say $X_0 \mapsto X$ is *j*-dense (*j*-closed) if $jX_0 = \overline{X}_0 = X(jX_0 = \overline{X}_0 = X_0)$. An object $F \in E$ is a *j*-sheaf if for every *j*-dense $X_0 \stackrel{\sigma}{\longrightarrow} X$ and every $X_0 \stackrel{f}{\longrightarrow} F$ there exists a unique $X \stackrel{\overline{f}}{\longrightarrow} F$ such that $\overline{f}\sigma = f$. If $F \in E$, then all partial maps with codomain F are representable, that is, there is a mono $F \stackrel{\eta}{\mapsto} \widetilde{F}$ such that for every $Y_0 \longmapsto Y$ and $Y_0 \stackrel{f}{\longrightarrow} F$, there exists a unique $Y \stackrel{\widetilde{f}}{\longrightarrow} \widetilde{F}$ making

Received 8 June 1989

I am grateful to F.W. Lawvere and R. Street for their advice concerning this work. Partially supported by the Australian Research Grants committee.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

a pullback diagram.

Let I be an object in E and let $X \xrightarrow{f} Y$ be in E/I. We define (see [3]) Iso(f) to be a subobject of I with the following property: $\forall J \in E, \forall J \xrightarrow{\alpha} I, \alpha$ factors through $Iso(f) \iff f$ is an isomorphism in E/J.

LEMMA 1. Let F be an object and $\Omega \xrightarrow{j} \Omega$ a topology in E. Then F is a j-sheaf if and only if

$$\begin{array}{c} F \xrightarrow{\eta} \widetilde{F} \\ \downarrow & \downarrow^{\varphi} \\ J \xrightarrow{\tau} \Omega \end{array}$$

is a pullback, where φ and j are the characteristic morphisms of F and J, respectively.

PROOF: Let F be a *j*-sheaf and T an object of E. Let $\alpha \in \widetilde{F}$, $\beta \in J$ be two T-elements, such that $\varphi \alpha = \tau \beta$, then there exists a *j*-dense $T_0 \stackrel{\sigma}{\rightarrowtail} T$ such that

$$\begin{array}{ccc} T_0 & \stackrel{\sigma}{\longrightarrow} & T \\ \downarrow & & \downarrow^{\alpha} \\ F & \stackrel{\eta}{\longrightarrow} & \widetilde{F} \end{array}$$

is a pullback diagram. However, F is a sheaf, therefore there exists a unique T-element $\gamma \in A$ such that $\eta \gamma = \alpha$. Hence, the required diagram is a pullback.

Conversely, assume that (*) is a pullback and $X_0 \xrightarrow{\sigma} X$ is *j*-dense. If $X_0 \xrightarrow{f} F$, then there exists a unique $X \xrightarrow{\widetilde{f}} \widetilde{F}$ making

$$\begin{array}{ccc} X_0 & \xrightarrow{\sigma} & X \\ \downarrow & & & \downarrow \widetilde{f} \\ F & \xrightarrow{\eta} & \widetilde{F} \end{array}$$

a pullback diagram. However $X_0 \xrightarrow{\sigma} X$ is *j*-dense, therefore the characteristic morphism of σ factors through J, that is we have $X \xrightarrow{g} J$ such that $\varphi \tilde{f} = \tau g$. Therefore there exists a unique $X \xrightarrow{h} F$ such that $h\sigma = f$. Hence F is a *j*-sheaf.

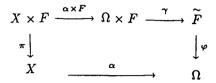
Now, for the identity morphism 1_F and $F \xrightarrow{(t,f)} \Omega \times F$, there exists a unique $\Omega \times F \xrightarrow{\gamma} \widetilde{F}$ such that

$$\begin{array}{ccc} F & \xrightarrow{1_F} & F \\ \hline & & P.B. & \downarrow \\ (t,F) \downarrow & & \downarrow \\ \Omega \times F & \xrightarrow{\gamma} & \widetilde{F} \end{array}$$

Topologies in a topos

is a pullback diagram. If φ is the characteristic morphism for η , then $\varphi\gamma: \Omega \times F \longrightarrow \Omega$ is the projection. Hence $\Omega^*F \xrightarrow{\gamma} \varphi$ is a morphism in E/Ω and therefore $Iso(\gamma)$ is a subobject of Ω . We characterise the elements of $J = Iso(\gamma)$ as follows.

LEMMA 2. Let X be in E and let $X \xrightarrow{\alpha} \Omega$ represent a subobject of X. Then α factors through J if and only if



is a pullback.

PROOF: By the definition of J, α factors through J if and only if

$$X^*F \cong \alpha^*\Omega^*F \xrightarrow{\sim} \alpha^*\varphi$$

which is equivalent to the condition that the required diagram is a pullback. \square

LEMMA 3. Let $J = Iso(\gamma)$ be the above-mentioned object. Then $F \xrightarrow{\eta} \widetilde{F} \xrightarrow{\varphi} \Omega$ factors through J and the diagram

$$\begin{array}{ccc} F & \xrightarrow{\eta} & \widetilde{F} \\ & & \downarrow \\ J & & \downarrow \varphi \\ J & \longrightarrow \Omega \end{array}$$

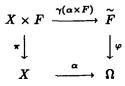
is a pullback.

PROOF: The following diagram is a pullback.

$$\begin{array}{cccc} F \times F & \xrightarrow{\pi} & F & \xrightarrow{\eta} & \widetilde{F} \\ \pi & & & \downarrow P.B. & & \downarrow P.B. & & \downarrow \varphi \\ F & \xrightarrow{\tau} & 1 & \xrightarrow{t} & \Omega \end{array}$$

However, $\eta \pi = \gamma(\varphi \eta \times F)$ and $t\tau = \varphi \eta$. Therefore, by Lemma 2 $\varphi \eta$ factors through J, that is (*) commutes.

Let $X \xrightarrow{\widetilde{f}} \widetilde{F}$, $X \xrightarrow{\alpha} J$ be two morphisms, such that $\varphi \widetilde{f} = \alpha$. Since α factors through J then by Lemma 2,



J. Tavakoli

is a pullback. Therefore there exists a unique $X \xrightarrow{f} F$ such that $\gamma(\alpha, f) = \tilde{f}$. On the other hand, if $X_0 \xrightarrow{\sigma} X$ is classified by α , then we have,

$$\widetilde{f}\sigma = \gamma(lpha, f)\sigma = \gamma(lpha\sigma, f\sigma) = \gamma(t, f\sigma) = \eta f\sigma.$$

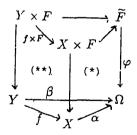
Therefore, by the uniqueness of \widetilde{f} , $\widetilde{f} = \eta g$ and hence (*) is a pullback.

THEOREM 4. Let F be an object in E and let $Iso(\gamma) = J \mapsto \Omega$ be the same subobject as above. If $\Omega \xrightarrow{j} \Omega$ is the characteristic morphism of J, then j is a topology in E.

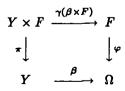
PROOF: Since

is a pullback then, by Lemma 3, the truth value factors through J, that is jt = t. Suppose $X \xrightarrow{\alpha} \Omega$ factors through J. If α classifies the subobject $X_0 \xrightarrow{\sigma} X$, and $Y \xrightarrow{f} X$ is a morphism, then we show that $Y \xrightarrow{\beta} \Omega$, the characteristic morphism of $f^*X_0 \xrightarrow{\sigma'} Y$, factors through J.

Consider



In this diagram, by assumption, (*) is a pullback. However, $\alpha f = \beta$, so the two triangles are commutative. Also (**) is a pullback therefore

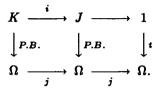


0

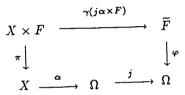
[4]

Topologies in a topos

is a pullback, that is β factors through J. Hence J is stable under pullbacks. It remains to show that $j^2 = j$. Consider the diagram



We will show that $K \cong J$. Let $X \xrightarrow{\alpha} J$ be an X-element of J. Then $j\alpha = t$ so $jj\alpha = jt = t$. Therefore, α is an X-element of K. Conversely, suppose $X \xrightarrow{\alpha} K$ is an X-element of K, then $i\alpha = j\alpha \in J$. Therefore, by Lemma 2,



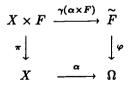
is a pullback. On the other hand $j\varphi = \varphi$, because

$$F \longrightarrow J \longrightarrow 1$$

$$\eta \downarrow P.B. \qquad \downarrow P.B. \qquad \downarrow t$$

$$\widetilde{F} \xrightarrow{\varphi} \Omega \xrightarrow{j} \Omega$$

is a pullback. Also, by Lemma 3, $J \times F \cong F$ hence $\gamma(j \times F) = \gamma$ and $\gamma(j\alpha \times F) = \gamma(\alpha \times F)$. Therefore,



is a pullback diagram, that is $\alpha \in J$. Hence $K \cong J$, that is $j^2 = j$, and j is a topology.

THEOREM 5. Let j be the topology of Theorem 4. Then F is a j-sheaf and j is the largest topology allowing F to be a sheaf.

PROOF: By Lemmas 1 and 3, F is a *j*-sheaf. Now suppose that $X_0 \xrightarrow{\sigma} X$ is a subobject of X with characteristic morphism $X \xrightarrow{\alpha} \Omega$. Let $X_0 \xrightarrow{f} F$ be a morphism.

J. Tavakoli

Then f can be extended uniquely to X if and only if

$$\begin{array}{ccc} X \times F & \xrightarrow{\gamma(\alpha \times F)} & \widetilde{F} \\ \pi & & & \downarrow \varphi \\ X & \xrightarrow{\alpha} & \Omega \end{array}$$

is a pullback, that is if and only if α factors through J. Or equivalently if and only if σ is j-dense. Therefore j is the largest topology.

References

- [1] P. Johnstone, Topos Theory (LMS Mathematical Monographs No.10, Academic Press, New York, 1977).
- [2] R. Paré, 'Indexed categories and generated topologies', J. Pure Appl. Algebra 19 (1980), 385-400.
- [3] R. Paré and D. Schumacher, Abstract Families and the Adjoint Functor Theorems, Lecture Notes in Mathematics, 661 (Springer-Verlag, Berlin, Heidelberg, New York, 1978).

Department of Mathematics University of Shahid Beheshty Eveen, Tehran Iran