A REMARK ON CONTINUOUS BILINEAR MAPPINGS

by J. W. BAKER and J. S. PYM
(Received 11th May 1970)

The main theorem of this paper is a little involved (though the proof is straightforward using a well-known idea) but the immediate corollaries are interesting. For example, take a complex normed vector space A which is also a normed algebra with identity under each of two multiplications * and \circ. Then these multiplications coincide if and only if there exists α such that $\|a \circ b\| \leqq \alpha\|a * b\|$ for a, b in A. This is a condition for the two Arens multiplications on the second dual of a Banach algebra to be identical. By taking * to be the multiplication of a Banach algebra and \circ to be its opposite, we obtain the condition for commutativity given in (3). Other applications are concerned with conditions under which a bilinear mapping between two algebras is a homomorphism, when an element lies in the centre of an algebra, and a one-dimensional subspace of an algebra is a right ideal. An example shows that the theorem is false for algebras over the real field, but Theorem 2 gives the parallel result in this case.

Let A be a normed algebra, and M a normed vector space over the same scalar field. We shall call M a normed module over A if M is a left module over A for which the mapping $(a, m) \rightarrow a m$ of $A \times M$ into M is continuous. In that case, we can find a constant k so that $\|a m\| \leqq k\|a\|\|m\|$, for $a \in A$, $m \in M$. Suppose A has a bounded approximate identity $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$. We shall call M a unitary module over A if $\lim _{\lambda} e_{\lambda} m=m$, for $m \in M$; this condition is independent of the choice of approximate identity. As the method used in the proof of the following theorem is known-it is a direct generalization of arguments used in (2) and (3) for example-we shall only outline the proof.

Theorem 1. Let A be a complex normed algebra, with bounded approximate identity $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$, let M be a unitary normed module over A, and let X be a complex normed vector space. If h is a bilinear and continuous mapping of $A \times M$ into X, then $h(a, m)=\lim _{\lambda} h\left(e_{\lambda}\right.$, am $)$, for $a \in A, m \in M$, if and only if there is a constant α such that $\|h(a, m)\| \leqq \alpha\|a m\|$ for $a \in A, m \in M$.

Proof. The necessity of the condition is clear. Suppose that the condition is satisfied. Since h extends by continuity to a mapping involving the completions of the spaces concerned, we lose no generality in assuming that all three spaces are complete. If A does not have an identity, denote by A_{e} the algebra A with an identity adjoined. Define $h_{e}: A_{e} \times M \rightarrow X$ by the equation $h(e, m)=\lim _{\lambda} h\left(e_{\lambda}, m\right)$ and linearity; the existence of the limit is guaranteed
by the condition on h and the fact that M is unitary. From this construction it is clear that we may assume that A has an identity element e, and prove that $h(a, m)=h(e, a m)$.

For any complex number z, any $a \in A$, and any $m \in M$ we have

$$
\|h(\exp (-z a), \exp (z a) m)\| \leqq \alpha\|\exp (-z a) \exp (z a) m\| \leqq \alpha k\|m\|
$$

Thus, by Liouville's Theorem, the power series

$$
\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \frac{(-z)^{n}}{n!} \frac{z^{p}}{p!} h\left(a^{n}, a^{p} m\right)=h(\exp (-z a), \exp (z a) m)
$$

is constant. The coefficient of z is therefore zero, i.e.

$$
h(e, a m)-h(a, m)=0
$$

Corollary 1. Let A be a complex normed vector space which is a normed algebra with bounded approximate identity $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$ for each of two multiplications * and \circ. These multiplications coincide if and only if there exists α so that $\|a \circ b\| \leqq \alpha\|a * b\|$ for $a, b \in A$.

Proof. Take $X=M=A$ where A has multiplication *, and put

$$
h(a, b)=a \circ b
$$

Corollary 2. ((2), (3)). A complex normed algebra A with bounded approximate identity is commutative if and only if there exists α so that $\|b a\| \leqq \alpha\|a b\|$ for $a, b \in A$. This holds in particular if $\|a\| \leqq \alpha \rho(a)$ for $a \in A$ (where ρ denotes spectral radius).

Proof. The first result is immediate from Corollary 1 on taking $*$ to be the multiplication of A and \circ its opposite. If the second inequality holds, then for $a, b \in A$,

$$
\|b a\| \leqq \alpha \rho(b a)=\alpha \rho(a b)=\alpha\|a b\|
$$

Corollary 3. ((1)). Let f be a linear functional on a complex normed algebra A with bounded approximate identity so that for some $\alpha,|f(a)| \leqq \alpha \rho(a)$ for $a \in A$ (where ρ is the spectral radius). Then $f(b a)=f(a b)$ for $a, b \in A$.

Proof. Take $h(a, b)=f(b a)$. The argument of Corollary 2 shows that $|h(a, b)| \leqq \alpha\|a b\|$ so that Theorem 1 applies.

Corollary 4. Let A and B be complex normed algebras with identities (e and f). Suppose that T is a continuous linear mapping of A into B for which $T(e)=f$. Then T is a homomorphism if and only if there exists α for which

$$
\left\|T(a) T\left(a^{\prime}\right)\right\| \leqq \alpha\left\|a a^{\prime}\right\| \text { for } a, a^{\prime} \in A
$$

Proof. In Theorem 1 take $M=A$ and $X=B$, and put $h\left(a, a^{\prime}\right)=T(a) T\left(a^{\prime}\right)$.
Corollary 5. Let M_{1}, M_{2} be two unitary normed modules over a normed algebra A with bounded approximate identity $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$. Then a continuous linear mapping $T: M_{1} \rightarrow M_{2}$ is A-linear $\left(T(a m)=a T(m)\right.$ for $\left.a \in A, m \in M_{1}\right)$ if and only if there is a constant α such that $\|a T(m)\| \leqq \alpha\|a m\|$ for $a \in A, m \in M_{1}$.

Proof. In Theorem 1 take $M=M_{1}, X=M_{2}$, and put $h(a, m)=a T(m)$. Then $a T(m)=h(a, m)=\lim _{\lambda} e_{\lambda} T(a m)=T(a m)$.

Corollary 6. Let A be a complex normed algebra, with identity e. Let f be a continuous linear functional on A with $f(e) \neq 0$. Suppose that $a \in A$ is such that $\|f(x) a y\| \leqq \alpha\|x y\|$ for $x, y \in A$. Then the subspace $\{z a: z \in C\}$ is a right ideal of A.

Proof. Take $M=X=A$, and put $h(x, y)=f(x) a y$. The theorem gives $f(e) a x y=f(x) a y$; put $y=e$ and we have $f(e) a x=f(x) a$.

Corollary 7. Let A be a normed algebra with bounded approximate identity $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$. An element a of A is in the centre of A if and only if there exists α so that $\|x a y\| \leqq \alpha\|x y\| f o r x, y \in A$.

Proof. In Theorem 1, take $M=X=A$, and put $h(x, y)=x a y$ for $x, y \in A$. The theorem says that $x a y=\lim _{\lambda} e_{\lambda} a x y=a x y$. Finally,

$$
x a=\lim _{\lambda} x a e_{\lambda}=\lim _{\lambda} a x e_{\lambda}=a x
$$

Theorem 1, and more especially Corollary 1, fails if complex spaces are replaced by real spaces. For example, it is easy to provide R^{4} with two multiplications * and \circ having the same identity and satisfying $\|a * b\|=\|a \circ b\|$ for $a, b \in \boldsymbol{R}^{4}$. We may take $*$ to be the usual quaternion multiplication on \boldsymbol{R}^{4}, and \circ to be the multiplication derived from quaternion multiplication by regarding each element (w, x, y, z) of R^{4} as the quaternion $w+y i+x j+z k$. Then we have $\|a * b\|=\|a\|\|b\|=\|a \circ b\|$ for $a, b \in R^{4}$ and also ($1,0,0,0$) is an identity for both multiplications. The following result appears to be the best analogue of Theorem 1 for the real case.

Theorem 2. Let A, M and X be as in Theorem 1, except that they are real, instead of complex, vector spaces. If h is a bilinear and continuous mapping of $A \times M$ into X then $h(a, m)=\lim _{\lambda} h\left(e_{\lambda}, a m\right)$ for $a \in A, m \in M$, if and only if there exists α so that

$$
\left\|h(a, m)-h\left(a^{\prime}, m^{\prime}\right)\right\| \leqq \alpha\left\|a m-a^{\prime} m^{\prime}\right\| \text { for } a, a^{\prime} \in A, \text { and } m, m^{\prime} \in M
$$

Proof. Let $A_{\boldsymbol{c}}, M_{\boldsymbol{c}}$, and $X_{\boldsymbol{c}}$ be the complexifications of A, M, and X, respectively. Define $h_{\boldsymbol{c}}: A_{\boldsymbol{c}} \times M_{\boldsymbol{C}} \rightarrow X_{\boldsymbol{c}}$ by the equation

$$
h_{c}\left(\left(a, a^{\prime}\right),\left(m, m^{\prime}\right)\right)=\left(h(a, m)-h\left(a^{\prime}, m^{\prime}\right), h\left(a, m^{\prime}\right)+h\left(a^{\prime}, m\right)\right)
$$

Then $h_{\boldsymbol{c}}$ is clearly complex-bilinear and continuous with

$$
\left\|h_{c}\left(\left(a, a^{\prime}\right),\left(m, m^{\prime}\right)\right)\right\| \leqq \alpha\left\|\left(a, a^{\prime}\right)\left(m, m^{\prime}\right)\right\|
$$

(It is clear that $M_{\boldsymbol{c}}$ becomes a module over $A_{\boldsymbol{c}}$.) Theorem 1 says that

$$
h_{c}\left(\left(a, a^{\prime}\right),\left(m, m^{\prime}\right)\right)=\lim _{\lambda} h_{c}\left(\left(e_{\lambda}, 0\right),\left(a, a^{\prime}\right)\left(m, m^{\prime}\right)\right)
$$

Put $a^{\prime}=m^{\prime}=0$. Then

$$
(h(a, m), 0)=\lim _{\lambda}\left(h\left(e_{\lambda}, a m\right), h(a, 0)+h(0, a m)\right)
$$

that is $h(a, m)=\lim _{\lambda} h\left(e_{\lambda}, a m\right)$.

Corollaries similar to those for Theorem 1 can obviously be given. We offer an application to involutions; since these are usually conjugate linear, Theorem 1 will not apply.

Corollary 8. Let $a \rightarrow a^{*}$ be a conjugate linear (i.e. $(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*}$ for $a, b \in A, \lambda, \mu \in C$) mapping of a complex normed algebra A with identity e into itself. Suppose $e^{*}=e$. Then $(a b)^{*}=b^{*} a^{*}$ if and only if there exists α such that
for $a, b, c, d \in A$.

$$
\left\|b^{*} a^{*}-d^{*} c^{*}\right\| \leqq \alpha\|a b-c d\|
$$

Proof. Consider A as an algebra over the real field, and take $h(a, b)=b^{*} a^{*}$.
We would like to thank Professor Bonsall and the referee for suggesting some of these corollaries.

REFERENCES

(1) F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Series, No. 2 (1971).
(2) R. A. Hirschfeld and W. Zelazko, On spectral norm Banach algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 16 (1968), 195-199.
(3) C. Le Page, Sur quelques conditions entraînant la commutativité dans les algèbres de Banach, C. R. Acad. Sci. Paris, Sér. A-B 265 (1967), A235-A237.

University of Sheffield

