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SOME REMARKS ON ROTORS IN LINK THEORY 

GYO TAEK JIN AND DALE ROLFSEN 

ABSTRACT. We present examples showing that certain results on the invariance of 
link polynomials under generalized mutation are the best possible. They show, more­
over, that this generalized mutation cannot be effected by a sequence of ordinary muta­
tions. One of the examples also shows that the reduced Jones polynomial can be a more 
sensitive invariant than the Jones polynomial itself. 

Mutation of knots and links, introduced by J. H. Conway [C], provides a means of 
creating examples of different links having the same polynomial invariants. Achieving 
the same effect, a more complicated procedure was described in [APR], involving rotors 
in a link. The idea is that one assumes that some part of a link diagram (the rotor) has 
n-fold rotational symmetry, n > 3, and then gives that part a dihedral flip, forming the 
rotant link. Unless the rotor itself has dihedral symmetry, the rotant is generally a differ­
ent link than the original (but with the same number of components), and it was shown 
in [APR] that under certain assumptions, they have equal polynomial invariants. In par­
ticular, mutual rotants have the same Jones polynomial when n < 5, the same Homfly 
polynomial when n < 4, and the same Kauffman polynomial when n = 3. The three 
examples below show that these assumptions on n cannot be improved. 

The Kauffman polynomial is defined in [K]. A basic reference for the others is 
[FYHLMO], but since there are several versions in the literature, we give the formu­
lae defining the versions used here for the reader's convenience: 

Jones polynomial: rlV+(t) - tV-(t) = (t1'2 - rl'2)V0(t) 
Homfly polynomial: IP+(1, m) + /_1P_(/, m) + mPo(l, m) = 0 

^unknot ~ 'unknot ~ *• 

We also recall that the reduced Jones polynomial of the fc-component link L = L\ U 
• • • U Lk is the quotient of its polynomial by the product of those of the individual com­
ponents. 

VL(t) 
VL(t) = 

vUt)--vLk(t) 
It is noted in [Rl] that this rational function, and reduced versions of the other polyno­
mials as well, are invariant under (nonambient) PL isotopy of the link L. They are also 
invariant under mutation. 
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L4- ^ 4 

FIGURE 1 

EXAMPLE 1. Figure 1 illustrates two 2-component links, L4 and M4. (The subscripts 
here refer to the fact that they are rotants of order 4, not to components as above). Instead 
of flipping the rotor, for visual clarity we instead flip the complementary tangle (the 
stator), an equivalent move. The equality of their Jones polynomials is expected: 

Vu(t) = VM4(t) = 
_ ,-41/2 + ?r39/2 _ 26r37/2 + ^,-35/2 _ 139r33/2 

+ 237r31/2 - 348r29/2 + 45or27/2 - 5isr25/2 

+ 533r23/2 - 494r21/2 + 4iorX9'2 - 302r17/2 

+ i95r15/2 - i09r13/2 + sor n / 2 - \9r9'2 + sr7'2 - r5'2. 

Both links have one unknotted component and one knotted one. The knotted compo­
nent of L4 is of type 920 in the table of [R2] and has Jones polynomial: 

-r9 + 3r8 - 5r7 + 6f6 - ir5 + ir4 - sr3 + 4r2 - irx +1 

The knotted component of M4, on the other hand, is (the reverse of) IO72 with polynomial 

r1 0 - 4f9 + 7r8 - ior7 + I2r6 - I2r5 + n r 4 - 8r3 + sr2 - 2rl +1 

and we see that L4 and M4 have different reduced Jones polynomials. Similarly, these 
links have the same Alexander polynomials, but different reduced Alexander polynomi­
als. It follows that they are not related by any sequence of ordinary mutation, which is 
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also verified by the fact that their Kauffman polynomials differ: 

Fu(a,z) = (~2a9 - 4an - 4a13 - 3a15 - axl)z~x 

+ (2a10 + 2a12 + 4a14 + 5a16 + 2a18) 

+ (-2a7 + 18a9 + 37a11 + 36a13 + 24a15 + 4a17 - al9)z 

+ 0(z2) 

FM4(a,z) = (-2a9 - 4a11 - 4a13 - 3a15 - axl)z~x 

+ ( a 1 0 - 2 a 1 2 - 2 a 1 4 + a1 6+a1 8) 

+ (-2a7 + 18a9 + 37a11 + 37a13 + 27a15 + 7a17)z 

+ OU2) 

and 

Fu(a,z) - FMMZ) = (al0 + 4a12 + 6au +4a16 + a18) 

+ (-a1 3 - 3a15 - 3a17 - al9)z + O(^) 

It may also be worth noting that, although the knots of L4 and M4 both have Mura-
sugi signature 9, they are not cobordant. A cobordism between them would imply their 
Alexander polynomials agree after multiplying by factors of the formf(t)f(rl). But this 
contradicts the fact that their determinants are, respectively, 41 and 73, and there is no 
integral solution to the equation 73.x2 = 41}2. 

L5 rAF 

FIGURE 2 

EXAMPLE 2. The links L5 and M5 in Figure 2 are 5-rotants with different Homfly 
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polynomials: 

-23x - 1 pL5(i,m) = (6r31 + 22r29 + 24r27 + 5r2 5 - 3r23> 
+ (2r35 + 24r33 + 45r31 - 89r29 - 23on27 - 53r25 + 69r23 - ir2l)m 
+ 0(m3). 

pMs(i,m) = (r3 3 + i i r 3 1 + 32r29 + 34r27 + ior2 5 - 2r23)m~1 

+ (2r35 + 23r33 + 35r31 - i i4r 2 9 - 255r27 - 63r25 + 68r23 - 2r21)m 

+ 0(m3) 

Their difference is, more precisely, 

PL5(/,m)-PM5(/,m) 

= ( _ r 3 3 - 5/-31 - ior2 9 - ior2 7 - sr25 - r23)m-1 

+ (r3 3 + ion31 + 25r29 + 25r27 + ior2 5 + r23)m 
+ ( -6r3 1 - 22/~29 - 22r27 - 6l~25)m3 

+ (r3 1 + s r 2 9 + s r 2 7 + r25)m5 + ( - r 2 9 - r27)m7 

LG M£ 
Figure 3 

EXAMPLE 3. The links L^ and Me of Figure 3 are 6-rotants with different Jones poly-

https://doi.org/10.4153/CMB-1991-077-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-077-1


484 G. T. JIN AND D. ROLFSEN 

nomials: 

Vu(t) = rl - 8 + 42* - 168/2 + 552r3 - \555t4 + 3846^ - 8481f6 

+ 16863/7 - 30459f8 + 50275f9 - 76164f10 + 106279*11 

- 136966?12 + 163352r13 - 180517f14 + 184917*15 

- 175495r16 + 154062f17 - 124748*18 + 92778f19 

- 63004^° + 38756*21 - 21367*22 + 10408r23 - 4392J24 

+ 1561*25 - 448*20 + 97^7 - 14*28 + t29 

VMb(t) = r 1 - 8 + 42* - 168/2 + 552*3 - 1555r4 + 3845^ - 8478*6 

+ 16856*7 - 30445*8 + 50253*9 - 76134*10 + 106247/11 

- 136939*12 + 163337*13 - 180519*14 + 184934*15 

- 175524;16 + 154095*17 - 124778*18 + 92800*19 

- 63016*20 + 38761*21 - 21368*22 + 10408*23 - 4392J24 

+ 1561/25 - 448J26 + 97^7 - 14*28 + t29 

Therefore 

Vu(t)-VM6(t) 

= t5 - 3t6 + 111 - 14r8 + 22*9 - 30*10 + 32tn - 27*12 

+ 15*13 + 2tu - lit15 + 29*16 - 33/17 + 30*18 - 22*19 

+ 12/ 2 0 -5 / 2 1 +/ 2 2 

We close with the question of whether the Alexander and Conway polynomials must 
agree for n-rotants of all orders n. We have not discovered any examples to contradict 
this possibility. 
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