
JFP 27, e2, 43 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000307

1

Programming with ornaments

HSIANG-SHANG KO

Information Systems Architecture Research Division, National Institute of Informatics, Japan

(e-mail: hsiang-shang@nii.ac.jp)

JEREMY GIBBONS

Department of Computer Science, University of Oxford, UK

(e-mail: jeremy.gibbons@cs.ox.ac.uk)

Abstract

Dependently typed programming advocates the use of various indexed versions of the same

shape of data, but the formal relationship amongst these structurally similar datatypes usually

needs to be established manually and tediously. Ornaments have been proposed as a formal

mechanism to manage the relationships between such datatype variants. In this paper, we

conduct a case study under an ornament framework; the case study concerns programming

binomial heaps and their operations — including insertion and minimum extraction — by

viewing them as lifted versions of binary numbers and numeric operations. We show how

current dependently typed programming technology can lead to a clean treatment of the

binomial heap constraints when implementing heap operations. We also identify some gaps

between the current technology and an ideal dependently typed programming language that

we would wish to have for our development.

1 Introduction

Dependently typed programming is characterised by the use of more informative

types, in particular inductive families (Dybjer, 1994) — or indexed datatypes —

to guarantee program correctness by construction. Having various versions of the

same kind of data, however, causes a management problem. For example, there are

various kinds of list datatype, such as vectors (with embedded length constraints)

and ordered lists; but formally these list datatypes and their operations are unrelated,

and whenever a new variant of lists is invented, similar operations for the new variant

must be developed from scratch, along with conversions to and from existing list-like

datatypes. This work is tedious, and can make the programmer hesitant to employ

informative types so as to avoid the hassle of managing them.

To address the variant-management problem, McBride (2011) proposed ornaments

as a framework for relating structurally similar datatypes. An ornament specifies a

particular way of relating two datatype definitions intensionally, and stating that

one of them is more informative than the other; from an ornament, we can compute

a forgetful function converting the more informative datatype to the less informative

one. McBride also proposed algebraic ornaments, which provide a systematic way

to synthesise new datatypes by adding indices to existing ones. McBride’s work

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

2 H.-S. Ko and J. Gibbons

spawned a number of subsequent developments: The ornament-induced forgetful

function was extended by Ko & Gibbons (2013a) to an isomorphism for promoting

less informative datatypes to more informative ones; at the heart of the construction

of the promotion isomorphism is a parallel composition operation on ornaments that,

in general, can be used to combine multiple constraints on a datatype and synthesise

a new variant of the datatype with all those constraints embedded at once. Dagand

& McBride (2014) then proposed functional ornaments, generalising ornaments to

work also for functions. Algebraic ornamentation has also been generalised to a

relational setting, and shown to work with relational calculation techniques (Ko &

Gibbons, 2013b).

In this paper, we set out to do an experiment to evaluate how effective the current

ornament framework is in assisting the development of dependently typed programs,

by working out a small yet complete library of binomial heaps in Agda (Norell,

2007; Bove & Dybjer, 2009; Norell, 2009). Our experiment is tied to Agda to some

extent, as we employ Agda-specific features like interactive programming support,

pattern synonyms, and instance arguments (Devriese & Piessens, 2011), but we

believe that the experiment has broader applicability since Agda is representative of

many dependently typed languages. The case study is based on Okasaki’s (1999) idea

of numerical representations, lifting operations on binary numbers such as increment

and decrement to operations on binomial heaps such as insertion and extraction —

this lifting is well supported by the ornament framework. Interestingly, the nu-

merically developed extraction operation leads us to an algorithm for minimum

extraction that is conceptually simpler than the standard one.

Before presenting the case study in Section 5, we will first give a tour of

related constructions used in this paper, including index-first inductive families and

their encodings in Section 2, ornaments for relating index-first inductive families

in Section 3, and an extensible function-promoting mechanism that works in

conjunction with ornaments in Section 4. We gloss over many technical details about

the theory of ornaments and about alternative universes for them, since we intend

this paper to provide a more operational/pragmatic understanding of ornaments

without touching their theoretical side; more comprehensive discussions of such

details can be found in the first author’s DPhil thesis (Ko, 2014). Throughout the

paper, there are special Gap paragraphs that suggest what still needs to be developed

in the ornament framework or for dependently typed programming languages in

general so as to give better support for dependently typed programming; Section 6

will give a summary of these gaps, and, along with other remarks, concludes this

paper. Most of the code presented in this paper is collected in two supplementary

Agda source files, which have been checked with Agda version 2.5.1.1 and standard

library version 0.12.

2 Descriptions: encoding index-first inductive families

We first look at index-first inductive families (Chapman et al., 2010), which are

a variant of inductive families (Dybjer, 1994) that can naturally yield efficient

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 3

representations. This ability will turn out to be important for the ornamental

constructions in Section 3.3 to be useful in practice.

2.1 Index-first inductive families

A good starting point for understanding index-first inductive families is a comparison

between the usual inductive families (as supported by Agda) and inductively defined

type-computing functions. Consider vectors (length-indexed lists). In Agda, there

are two approaches to define vectors, one as an inductive family:

data Vec (A : Set) : Nat → Set where

[] : Vec A zero

:: : A → {n : Nat} → Vec A n → Vec A (suc n)

and the other as a type-computing function:

Vec : (A : Set) → Nat → Set

Vec A zero = �
Vec A (suc n) = A × Vec A n

In the first definition, choice of constructor determines the index in the type of the

constructed vector, whereas in the second definition, the index determines which

constructors are valid (i.e., whether we can construct an empty vector of type � or

a non-empty one of type A × Vec A n). The two approaches have their own pros

and cons:

• The inductive family comes with an induction principle, which, roughly

speaking, means that in Agda the programmer can perform dependent pattern

matching on vectors, making some subsequent programs like vector append

as natural as their list counterparts. Without any optimisations (like those

proposed by Brady et al. (2004)), however, the inductive family leads to an

inefficient representation of vectors, having to store the constructor choices

(whether a vector starts with nil or cons) and also the length of the tail in

every cons constructor, despite the fact that the constructor choices and the

tail lengths are determined by the indices.

• In contrast, the type-computing function yields an (almost) optimal represen-

tation of vectors — a vector of length n is an n-tuple (ending with tt) and

does not need to store constructor choices and tail lengths. Most interestingly,

the optimisation of representation is achieved by directly expressing how the

structure of a vector depends on its length, i.e., the index in its type (instead

of relying on any compiler optimisations): If the index is zero, the vector

must be empty; if the index is suc n , the vector must have a head element

and a tail indexed by n . The approach has two drawbacks, though: This

definition of vectors is dependent on the length, so whenever we want to

analyse a vector we need to analyse its length first, making vector programs

more verbose to write. In other words, the vectors do not come with their own

induction principle, and must be analysed by induction on the natural number

index. More seriously, this approach works only for situations where the type

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

4 H.-S. Ko and J. Gibbons

indices grow strictly as the data grow; otherwise, the recursive definition is not

well-founded.

Index-first inductive families can be regarded as reconciling type-computing

functions with the usual inductive families, allowing the index of a type to influence

what information can be provided to construct an element of that type, and at

the same time removing the restriction that the definition should be inductive on

the index. Dagand & McBride (2013; 2014) proposed a new syntax for datatype

declarations mimicking type-computing functions, with which we can (choose to)

do case analysis on the index and decide what constructor(s) are available for each

case. For example, they would define vectors as an index-first inductive family by

data Vec [A : Set] (n : Nat) : Set where

VecA n ⇐ Nat-case n

VecA 0 � nil

VecA (suc m) � cons (a : A) (vs : VecA m)

This syntax strongly depends on Epigram’s pattern matching mechanism (McBride

& McKinna, 2004). In this paper, we informally adopt a more Agda-like variation.

For example, we describe index-first vectors in the following syntax:

indexfirst data Vec (A : Set) : Nat → Set where

Vec A zero � []

Vec A (suc n) � :: A (Vec A n)

We start the definition with the keyword indexfirst to mark explicitly that this is not

valid Agda. The definition says that a Vec A zero can be constructed only by [],

whilst a Vec A (suc n) can be constructed only by :: , which takes two arguments

of types A and Vec A n . In effect, this is the same as the type-computing function,

and does not really show the full power of index-first inductive families. A more

compelling example is the type family of λ-terms indexed with the number of free

variables:

indexfirst data Term : Nat → Set where

Term n � var (Fin n)

| lam (Term (suc n))

| app (Term n) (Term n)

This definition is valid even though n never decreases. In contrast, the equivalent

type-computing function

Term : Nat → Set

Term n = Fin n � Term (suc n) � (Term n × Term n)

is obviously non-terminating, and would be rejected by Agda.

2.2 Universe construction

We have not really explained what index-first inductive families are; below we will

do so by constructing a model of index-first inductive families with the help of

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 5

a universe (Martin-Löf, 1984). This makes it possible to carry out (part of) our

experiment with index-first datatypes without extending Agda, but ultimately we

would hope that such datatypes can be natively supported.

The standard way of constructing inductive families is to take the least fixed point

of base functors of type (I → Set) → I → Set, where I : Set is the index set.

For example, the base functor we use for index-first vectors (parameterised by the

element type) is

VecF : Set → (Nat → Set) → Nat → Set

VecF A X zero = �
VecF A X (suc n) = A × X n

This closely resembles the type-computing function except that the recursive refer-

ence to Vec A is replaced by an invocation of the extra argument X . Vec A is then

defined as the least fixed point of VecF A, implying that Vec A and VecF A (Vec A)

are isomorphic. In particular, Vec A zero is isomorphic to VecF A (Vec A) zero =

�, and Vec A (suc n) is isomorphic to VecF A (Vec A) (suc n) = A × Vec A n ,

exactly corresponding to how we defined index-first vectors previously.

Not all functions of type (I → Set) → I → Set are valid base functors,

and we will constrain ourselves by fixing the ways in which functions of type

(I → Set) → I → Set can be constructed. This is where universe construction

can help: By defining a datatype whose elements encode ways to construct valid

base functors, and later quantifying over this datatype, we will be able to carry out

our subsequent constructions for only the encoded base functors. For index-first

inductive families, it turns out that we can encode just the “response” part of base

functors: Using the base functor for vectors as an example, after swapping the index

and recursive reference arguments:

VecF ′ : Set → Nat → (Nat → Set) → Set

VecF ′ A zero = λX �→ �
VecF ′ A (suc n) = λX �→ A × X n

the parts on the right-hand side of the equations are referred to as “responses”,

suggesting an interactive interpretation of base functors — VecF ′ A receives and

analyses an index before it responds with what information is required to construct

an element whose type has the given index. We will shortly define a universe RDesc

whose elements — called response descriptions — encode a range of such responses:

RDesc : Set → Set1
[[]] : {I : Set} → RDesc I → (I → Set) → Set

Base functors will then be encoded by

Desc : Set → Set1
Desc I = I → RDesc I

F : {I : Set} → Desc I → (I → Set) → (I → Set)

F D X i = [[D i]] X

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

6 H.-S. Ko and J. Gibbons

and we can take the least fixed point of the encoded base functors by

data μ {I : Set} (D : Desc I) : I → Set where

con : F D (μ D) ⇒ μ D

where X ⇒ Y abbreviates {i : I } → X i → Y i .

The datatype of response descriptions and its decoding function determine the

range of base functors we can describe. For this paper, we focus on inductive families

that are finitely branching, captured by the following definition:

data RDesc (I : Set) : Set1 where

v : (is : List I) → RDesc I

σ : (S : Set) (D : S → RDesc I) → RDesc I

[[]] : {I : Set} → RDesc I → (I → Set) → Set

[[v is]] X = P is X -- see below

[[σ S D]] X = Σ[s ∈ S] [[D s]] X

The operator P computes the product of a finite number of types in a type family,

whose indices are given in a list:

P : {I : Set} → List I → (I → Set) → Set

P [] X = �
P (i :: is) X = X i × P is X

Thus, in a response, given X : I → Set, we are allowed to form dependent sums

(by σ) and the product of a finite number of types in X (via v, suggesting variable

positions in the base functor). We will informally refer to the index part of a σ as a

field of the datatype. For convenience, we define an abbreviation:

syntax σ S (λ s �→ D) = σ[s ∈ S] D

so as to use σ as a binder.

2.3 Encoding datatypes as descriptions

Let us now look at several kinds of datatype and how they can be encoded as

descriptions.

Non-indexed datatypes. A non-indexed datatype can be seen as an inductive family

trivially indexed by �, and hence can be encoded as an inhabitant of Desc �. For

example, the datatype of natural numbers

indexfirst data Nat : Set where

Nat � zero

| suc Nat

can be encoded as follows:

data ListTag : Set where

‘nil : ListTag

‘cons : ListTag

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 7

NatD : Desc �
NatD tt = σ ListTag λ { ‘nil �→ v []

; ‘cons �→ v (tt :: []) }

The index request is necessarily tt, and we respond with a field of type ListTag

representing the constructor choices. (Any two-element set can be used to represent

the constructor choices; the reason that we choose the names ListTag, ‘nil, and

‘cons will become clear when we relate natural numbers with lists in Section 3.) A

pattern-matching lambda function follows, which computes the trailing responses

to the two possible values ‘nil and ‘cons for the field: If the field receives ‘nil, then

we are constructing zero, which takes no recursive values, so we write v [] to end

this branch; if the ListTag field receives ‘cons, then we are constructing a successor,

which takes a recursive value at index tt, so we write v (tt :: []).

To see that we have indeed defined the type of natural numbers, we can try to

construct an inhabitant of μ NatD tt interactively:

n : μ NatD tt

n = {μ NatD tt }0

The shaded box is called an interaction point, or informally a hole in the program.

Shown in the hole is the goal type, for which we have to construct an appropriate

value. The subscript number is used to disambiguate when there are multiple holes.

To construct a μ-value, a natural — indeed, a forced — choice is to use the only

constructor con:

n : μ NatD tt

n = con {F NatD (μ NatD) tt }1

The goal type computes to [[NatD tt]] (μ NatD), which, if we compute under lambda,

normalises to

Σ ListTag λ { ‘nil �→ �
; ‘cons �→ μ NatD tt × � }

Goal 1 thus expects a (dependent) pair whose first component has type ListTag,

indicating whether this con node is a zero node or a successor node. Here, we choose

to construct a successor by supplying ‘cons, which determines the type of the second

component:

n : μ NatD tt

n = con (‘cons , {μ NatD tt × �}2)

Now, we should construct an inner inhabitant of μ NatD tt (paired with a tt) by

going through the above process again. We can choose to supply ‘cons several times,

but eventually we should choose to supply ‘nil to end the construction:

n : μ NatD tt

n = con (‘cons , con (‘cons , con (‘cons , con (‘nil , {�}3) , tt) , tt) , tt)

Filling tt into Goal 3 ends the construction. It should be evident now that inhabitants

of μ NatD tt indeed represent natural numbers, with con (‘nil , tt) : μ NatD tt being

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

8 H.-S. Ko and J. Gibbons

zero and λm �→ con (‘cons , m , tt) : μ NatD tt → μ NatD tt being the successor

function.

Parameterised datatypes. Parameterised datatypes can simply be encoded as func-

tions mapping parameters to descriptions. For example, the datatype of lists is

parameterised by the element type:

indexfirst data List (A : Set) : Set where

List A � []

| :: A (List A)

This can be encoded as a function mapping element types to descriptions:

ListD : Set → Desc �
ListD A tt = σ ListTag λ { ‘nil �→ v []

; ‘cons �→ σ[∈ A] v (tt :: []) }

ListD A is the same as NatD except that, in the ‘cons case, we use σ to insert a field

of type A for storing an element.

Indexed datatypes. When a datatype is non-trivially indexed, we can perform

arbitrary computation on the index request to produce suitable responses, but

for most situations, the kind of computation we need is just pattern matching. For

example, the datatype of vectors is encoded as

VecD : Set → Desc Nat

VecD A zero = v []

VecD A (suc n) = σ[∈ A] v (n :: [])

which is directly comparable to the index-first base functor VecF ′.

There are more sophisticated scenarios requiring extra information to be supplied

in the descriptions. For example, consider the following variant of finite sets:

indexfirst data Fin′ : Nat → Set where

Fin′ n � zero

Fin′ (suc n) � suc (Fin′ n)

The inhabitants of Fin′ n are natural numbers less than or equal to n: Regardless of

what n is, zero is always an available constructor; if we know that n is a successor,

then we can also choose to construct an inhabitant by suc. One way to encode this

kind of datatype is to distinguish the responses that are always available from those

that are available subject to the result of pattern matching, and the distinction can

be encoded as an implicit constructor tag (not appearing explicitly in the datatype

declaration):

data ConMenu : Set where

‘always : ConMenu

‘indexed : ConMenu

Fin ′D : Desc Nat

Fin ′D n = σ ConMenu λ { ‘always �→ v []

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 9

; ‘indexed �→ case n of λ { zero �→ Σ ⊥ λ ()

; (suc m) �→ v (m :: []) } }

Note that the empty response Σ ⊥ λ () produced in the case where n is pattern-

matched with zero is also implicitly inserted to make the function total.

Gap 1 (elaboration of datatype declarations to descriptions)

Dagand & McBride (2013) presented an elaboration mechanism for encoding index-

first datatype declarations to descriptions, but that mechanism needs to be further

extended to deal with more sophisticated cases like always-available constructors

and incomplete pattern matching on the index. To circumvent the gap in this paper,

we will present an index-first datatype declaration side by side with its encoding as

a description, leaving the formal connection between them unspecified.

2.4 Functions on index-first datatypes

There is no problem defining functions on the encoded datatypes, except that it has

to be done with the raw representation. This is easy when the datatypes are not

defined by pattern matching on their index. For example, list append can be defined

by

++ : μ (ListD A) tt → μ (ListD A) tt → μ (ListD A) tt

con (‘nil , tt) ++ ys = ys

con (‘cons , x , xs , tt) ++ ys = con (‘cons , x , xs ++ ys , tt)

To improve readability, we can define the following abbreviations, exploiting Agda’s

ability to define “pattern synonyms”:

List : Set → Set

List A = μ (ListD A) tt

pattern [] = con (‘nil , tt)

pattern :: a as = con (‘cons , a , as , tt)

List append can then be rewritten in the usual form:

++ : List A → List A → List A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

The situation gets trickier when the datatypes are defined by pattern matching on

their index. Consider vector append, for example:

++ : {m n : Nat} → μ (VecD A) m → μ (VecD A) n → μ (VecD A) (m + n)

con xs ++ ys = { }0

We cannot further decompose xs because its type gets stuck at [[VecD A m]]

(μ (VecD A)). In other words, before m is known to have a more specific form,

we cannot determine which vector constructor is applicable here. We thus need to

perform pattern matching on m before we can proceed:

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

10 H.-S. Ko and J. Gibbons

++ : {m n : Nat} → μ (VecD A) m → μ (VecD A) n → μ (VecD A) (m + n)

++ {m = zero } (con tt) ys = ys

++ {m = suc m} (con (x , xs , tt)) ys = con (x , xs ++ ys , tt)

This is obviously inferior to what we can already do with Agda’s native datatypes:

The append program for the vectors defined as a native Agda datatype is exactly

the same as the list append program, using patterns corresponding to the declared

constructors, whereas the above definition has to deal with indices first.

Gap 2 (elaboration of pattern matching on index-first data)

Type-theoretically, pattern matching can be explained in terms of the elimination

rule, i.e., the induction principle, as done by McBride & McKinna (2004), Goguen

et al. (2006), and Cockx et al. (2014). There is a generic induction principle for

index-first datatypes (see, e.g., Section 5.1 of Chapman et al. (2010)), but that

induction principle does not directly correspond to “proper” pattern matching

(against declared constructors, rather than having to analyse the index first), resulting

in a gap to be bridged. It is possible to simulate in Agda proper pattern matching

for the encoded index-first datatypes to some extent by, e.g., employing McBride and

McKinna’s view idiom, but the syntax is still far from transparent. In Section 5.5, we

will experiment with writing more complex programs; to employ a natural pattern

matching notation (and also get more readable type information at interaction

points), these programs are actually implemented on Agda’s native versions of the

datatypes in the experimental code.

3 Ornaments: relating structurally similar datatypes

Informally, ornaments relate one datatype with another that has the same recursive

structure but is more informative. Here, “more informative” refers to two things:

having more fields and more refined indices. For example, there is an ornament

from natural numbers to lists, as the latter has an extra field associated with the

cons constructor; and there is also an ornament from lists to vectors, as the latter

partitions the type of lists into a family of types indexed by length. On the other hand,

there is no ornament from Peano-style natural numbers to binary trees, because they

have different recursive structures, one being linear and the other branching.

More formally, ornaments are typed as

Orn : {I J : Set} (e : J → I) (D : Desc I) (E : Desc J) → Set1

An ornament of type Orn e D E is a relation from a less informative description

D : Desc I to a more informative description E : Desc J . Logically prior to forming

the ornaments, a refining relation on the index sets I and J is first specified, in the

form of a function e of type J → I (which appears in the type of the ornaments),

so every J -index is related to exactly one I -index. Since D and E are collections of

response descriptions, an ornament from D to E is actually a J -indexed collection

of refining relations from D (e j) to E j . For technical (and partly historical) reasons,

we use an auxiliary datatype Inv (defined in Figure 1) to index this collection, such

that Inv e i contains those elements of J that are mapped to i by e:

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 11

Fig. 1. Definitions for response ornaments.

Orn : {I J : Set} (e : J → I) (D : Desc I) (E : Desc J) → Set1
Orn {I } e D E = {i : I } (j : Inv e i) → ROrn e (D i) (E (und j))

The datatype ROrn of response ornaments, which is where we place the actual

definition of how two datatypes are related, is shown in Figure 1. (This figure is

intended to provide type information for the constructors. In Section 3.1 below, we

will explain the constructors by going through concrete examples and showing how

to use the constructors to relate datatypes, when the type information will become

helpful.) One construction derived from an ornament is a forgetful function that

turns an inhabitant of the more informative datatype to one of the less informative

datatype, retaining the recursive structure:

ornForget : {I J : Set} {e : J → I } {D : Desc I } {E : Desc J }
(O : Orn e D E) → μ E ⇒ (μ D ◦ e)

For example, the forgetful function derived from the ornament from natural numbers

to lists is the length function, and the forgetful function derived from the ornament

from lists to vectors computes the underlying list of a vector. Note that the type of

ornForget gives a reason for the index-refining relation to be specified as a function e:

For any index j , an inhabitant of type μ E j can be transformed into μ D (e j).

3.1 Understanding ornaments by examples

The most interesting feature of ornaments is their intensional (syntactic) nature: An

ornament can be seen as a field-by-field comparison between two datatypes, akin

to a “diff” between two descriptions of types Desc I and Desc J . When writing

an ornament, imagine that we are consuming the two descriptions being compared,

relating them field-by-field and index-by-index. Below, we will go through some

examples to bring out this intuition, and also explain how the constructors of ROrn

are intended to be used.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

12 H.-S. Ko and J. Gibbons

Our first example is an ornament from natural numbers to lists whose elements

are of a given type A. To specify the type of the ornament, first we need to determine

the refining relation on the index sets; in this case, there is only one choice, namely

! = λ �→ tt, because naturals are trivially indexed.

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)

NatD-ListD A = {Orn ! NatD (ListD A) }0

An ornament is a collection of response ornaments indexed by the more informative

indices; in this case, again, there is only one such index, namely tt.

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)

NatD-ListD A (ok tt) = {ROrn ! (NatD tt) (ListD A tt) }1

Now, we should relate the response descriptions NatD tt and ListD A tt, shown as

indices in the goal type. Both response descriptions (shown in Section 2.3) start with

a common field of type ListTag. To indicate that the field is a common one in both

response descriptions, we use the σ constructor of ROrn:

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)

NatD-ListD A (ok tt) = σ ListTag { (t : ListTag) → ROrn ! (D ′ t) (E ′ t) }2

-- where D ′ = λ {‘nil �→ v []; ‘cons �→ v (tt :: [])}
-- and E ′ = λ {‘nil �→ v []; ‘cons �→ σ[∈ A] v (tt :: [])}

To make D ′ t and E ′ t reduce, we pattern-match on t , splitting the goal into two:

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)

NatD-ListD A (ok tt) =

σ ListTag λ { ‘nil �→ {ROrn ! (v []) (v []) }3

; ‘cons �→ {ROrn ! (v (tt :: [])) (σ[∈ A] v (tt :: [])) }4 }

Let us look at Goal 4 first. There is a field of type A (for storing list elements) only

on the more informative side and not on the less informative side; to indicate this,

we use the Δ constructor:

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)

NatD-ListD A (ok tt) =

σ ListTag λ { ‘nil �→ {ROrn ! (v []) (v []) }3

; ‘cons �→ Δ[∈ A] {ROrn ! (v (tt :: [])) (v (tt :: [])) }5) }

Here, again we regard Δ as a binder and write Δ[t ∈ T] O t for Δ T (λ t �→ O t).

Now, both goals require us to relate variable positions, which is done by the

v constructor of ROrn:

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)

NatD-ListD A (ok tt) =

σ ListTag λ { ‘nil �→ v {E ! [] [] }6

; ‘cons �→ Δ[∈ A] v {E ! (tt :: []) (tt :: []) }7 }

The datatype E e js is is just a more structured representation of the equality

map e js ≡ is , guaranteeing that the recursive structure is the same (i.e., the two

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 13

index lists have the same length) and that the corresponding pairs of indices respect

the refining relation e. Here, the lists in each goal are indeed of the same length,

and the indices in Goal 7 are trivial, so both goals can be automatically discharged.

NatD-ListD : (A : Set) → Orn ! NatD (ListD A)

NatD-ListD A (ok tt) =

σ ListTag λ { ‘nil �→ v []

; ‘cons �→ Δ[∈ A] v (refl :: [])) }

The forgetful function ornForget (NatD-ListD A) discards the A-typed element

associated with each cons node (because the field is marked using Δ as being

exclusive to the description of lists) and keeps everything else, including the recursive

structure (a series of ‘cons nodes ending with a ‘nil node). That is, it computes the

length of a list.

Our second example is an ornament from lists to vectors, starting from the

following ornament type:

ListD-VecD : (A : Set) → Orn ! (ListD A) (VecD A)

ListD-VecD A (ok n) = {ROrn ! (ListD A tt) (VecD A n) }0

An ornament is a collection of response ornaments, one for each index of the more

informative datatype — in this case, vectors, which are indexed by natural numbers.

To make VecD A n reduce, we pattern-match on n:

ListD-VecD : (A : Set) → Orn ! (ListD A) (VecD A)

ListD-VecD A (ok zero) = {ROrn ! (ListD A tt) (v []) }1

ListD-VecD A (ok (suc n)) = {ROrn ! (ListD A tt) (σ[∈ A] v (n :: [])) }2

This time there is a field of type ListTag that appears only on the less informative

side, namely in ListD A tt. The value for this field, however, should be fixed for both

goals: For Goal 1, it should be ‘nil, and for Goal 2 it should be ‘cons (otherwise,

the goals will be unachievable). To indicate so, we use the

Δ

constructor:

ListD-VecD : (A : Set) → Orn ! (ListD A) (VecD A)

ListD-VecD A (ok zero) =

Δ

[‘nil] {ROrn ! (v []) (v []) }3

ListD-VecD A (ok (suc n)) =

Δ

[‘cons] {ROrn ! (σ[∈ A] v (tt :: []))

(σ[∈ A] v (n :: [])) }4

Even though

Δ

is not a binder, we write

Δ

[s] O for

Δ

s O to avoid the parentheses

around O when O is a complex expression. Goal 3 is easily discharged using v. As

for Goal 4, we use σ to relate the element field on both sides, and then use v to end

the ornament.

ListD-VecD : (A : Set) → Orn ! (ListD A) (VecD A)

ListD-VecD A (ok zero) =

Δ

[‘nil] v []

ListD-VecD A (ok (suc n)) =

Δ

[‘cons] σ[∈ A] v (refl :: [])

The forgetful function ornForget (ListD-VecD A) erases the index, reinstalls the

constructor tags ‘nil and ‘cons, and keeps everything else. That is, it computes the

underlying list of a vector.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

14 H.-S. Ko and J. Gibbons

Fig. 2. Definitions for ornamental descriptions.

3.2 Ornamental descriptions

Often we want to define a more informative datatype that is an ornamentation of an

existing datatype. Ornamental descriptions are provided for conveniently writing both

the description and the ornament in a single definition. If an ornament is a “diff”

between two descriptions, then an ornamental description is a “patch” specified

using an existing description as a template, and this patch can be “applied” to

produce a more informative description. The definitions are shown in Figure 2. Note

that OrnDesc is indexed by only one template description. Historically, ornamental

descriptions were in fact McBride’s (2011) original formulation of ornaments, but

we needed to formulate ornaments as binary relations between descriptions (Ko &

Gibbons, 2013a) in order to define parallel composition (Section 3.3) as a categorical

pullback.

Suppose we wish to write an ornamental description of ordered lists indexed

by a lower bound, using the description of lists as a template. Also, suppose

that the list elements are of type Val , on which there is an ordering relation

� : Val → Val → Set. Eventually, this ornamental description should give us the

following datatype:

indexfirst data OrdList : Val → Set where

OrdList b � nil

| cons (x : Val) (b � x) (OrdList x)

OrnDesc, like Orn, is an indexed collection of response ornamental descriptions of

type ROrnDesc. We start by assuming that the lower bound is b:

OrdListOD : OrnDesc Val ! (ListD Val)

OrdListOD (ok b) = {ROrnDesc Val ! (ListD Val tt) }0

The first field of ListD Val tt is ListTag, which we should keep by using the

σ constructor of ROrnDesc:

OrdListOD : OrnDesc Val ! (ListD Val)

OrdListOD (ok b) = σ ListTag

{ (t : ListTag) →
ROrnDesc Val ! ((λ { ‘nil �→ v [] ; ‘cons �→ σ[∈ Val] v (tt :: []) }) t) }1

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 15

Again we should pattern-match on t to reveal the two cases for the two list

constructors:

OrdListOD : OrnDesc Val ! (ListD Val)

OrdListOD (ok b) =

σ ListTag λ { ‘nil �→ {ROrnDesc Val ! (v []) }2

; ‘cons �→ {ROrnDesc Val ! (σ[∈ Val] v (tt :: [])) }3 }

Goal 2 can be met using the v constructor of ROrnDesc. Goal 3, which corresponds

to the refinement of the cons constructor, is more interesting. We first use σ to keep

the element field:

OrdListOD : OrnDesc Val ! (ListD Val)

OrdListOD (ok b) =

σ ListTag λ { ‘nil �→ v tt

; ‘cons �→ σ[x ∈ Val] {ROrnDesc Val ! (v (tt :: [])) }4 }

We should not close Goal 4 just yet, because we should require that the element x

is bounded below by b. This is done by inserting a new field of type b � x by using

the Δ constructor of ROrnDesc:

OrdListOD : OrnDesc Val ! (ListD Val)

OrdListOD (ok b) =

σ ListTag λ { ‘nil �→ v tt

; ‘cons �→ σ[x ∈ Val] Δ[∈ (b � x)]

{ROrnDesc Val ! (v (tt :: [])) }5 }

Now, we can refine the index for the tail to x , meaning that the tail should be

bounded below by x :

OrdListOD : OrnDesc Val ! (ListD Val)

OrdListOD (ok b) =

σ ListTag λ { ‘nil �→ v tt

; ‘cons �→ σ[x ∈ Val] Δ[∈ (b � x)] v (ok x , tt) }

Note that the argument to v is a tuple containing exactly as many indices as those in

the index list in the template description, keeping the recursive branching structure

by construction.

We can interpret an ornamental description using �
 to extract a description of

type Desc Val of the new datatype:

�OrdListOD
 b =

σ ListTag λ { ‘nil �→ v []

; ‘cons �→ σ[x ∈ Val] σ[∈ (b � x)] v (x :: []) }

Alternatively, we can interpret the ornamental description using � � to extract an

ornament of type Orn ! (ListD Val) �OrdListOD
 from the template description to

the new description:

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

16 H.-S. Ko and J. Gibbons

�OrdListOD � (ok b) =

σ ListTag λ { ‘nil �→ v []

; ‘cons �→ σ[x ∈ Val] Δ[∈ (b � x)] v (refl :: []) }

Gap 3 (interactive support for constructing of ornaments and ornamental descriptions)

Both Dagand & McBride (2014) and Williams et al. (2014) propose concrete syntax

for defining ornamental descriptions, and Williams et al. also devise an “ornament

from” mechanism for defining ornaments (between two existing datatypes, rather

than creating a new datatype on top of an existing one) in terms of forgetful

functions, which should conform to some syntax restrictions. We have shown that

the construction of ornaments (and ornamental descriptions) can be performed in an

interactive manner, so perhaps ornaments can also be constructed in a special tactic

language, in which the programmer can go through the interactive construction

process by giving instructions linking two existing datatype declarations, and get

valid ornaments by construction.

3.3 Ornamental promotion isomorphisms

The syntactic nature of ornaments allows us to compute from them things other

than the forgetful function. Indeed, the forgetful function can be seen as part of

an isomorphism connecting the two datatypes related by an ornament: From an

ornament O : Orn e D E , we can compute an optimised promotion predicate

OptP O : {i : I } (j : Inv e i) → μ D i → Set that captures the necessary

information for augmenting an inhabitant of the less informative datatype to an

inhabitant of the more informative datatype. More precisely, for every j : Inv e i

there is an isomorphism

μ E (und j)∼= Σ (μ D i) (OptP O j)

which says that an inhabitant of the more informative datatype is interconvertible

with an inhabitant of the less informative datatype paired with a proof that it satisfies

the optimised promotion predicate. A representative example is the ornament from

lists to ordered lists. In this case, the optimised promotion predicate computed from

the ornament is

indexfirst data Ordered : Val → List Val → Set where

Ordered b [] � nil

Ordered b (x :: xs) � cons (leq : b � x) (ord : Ordered x xs)

An inhabitant of Ordered b xs is exactly a series of inequality proofs that chains

together the lower bound b and all the elements of xs in order. Given such a series

of inequality proofs, we can promote xs to an OrdList b; conversely, any OrdList b

can be separated into a list xs and a series of inequality proofs of type Ordered b xs .

That is, for every b, there is an isomorphism

OrdList b ∼= Σ (List Val) (Ordered b)

We call this the ornamental promotion isomorphism.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 17

We could construct the optimised promotion predicate and the isomorphism

directly, as Dagand & McBride (2014) do with “reornaments”, but in fact there is

a more general construction — parallel composition of ornaments. If we think of

ornaments as diffs, then parallel composition is analogous to three-way merging:

Given two ornaments O : Orn e D E and P : Orn f D F with the same less

informative end D , we can compute an ornamental description O ⊗ P relative to D

that incorporates all modifications to D recorded in O and in P . For example, we

can compose in parallel the ornaments from lists to ordered lists and to vectors to

get ordered vectors:

indexfirst data OrdVec : Val → Nat → Set where

OrdVec b zero � nil

OrdVec b (suc n) � cons (x : Val) (leq : b � x) (xs : OrdVec x n)

With parallel composition, the optimised promotion predicate for an ornament O :

Orn e D E can easily be defined as the parallel composition of O and the singleton

ornamentation for D . Here, we give only a quick and intuitive explanation. (For a

more detailed account, see Section 3.3.1 of Ko (2014).) The singleton ornamentation

for D gives the singleton datatype (Sheard & Linger, 2007) indexed by μ D , and each

type in the family has exactly one inhabitant. For example, the singleton datatype

for lists is

indexfirst data ListS (A : Set) : List A → Set where

ListS A [] � nil

ListS A (x :: xs) � cons (ListS A xs)

This datatype can be obtained from the following ornamental description:

ListSOD : (A : Set) → OrnDesc (List A) ! (ListD A)

ListSOD A (ok []) =

Δ

[‘nil] v tt

ListSOD A (ok (x :: xs)) =

Δ

[‘cons]

Δ

[x] v (ok xs , tt)

Note that all the fields are deleted. What ornamental description do we get if we

compose this ornament in parallel with the one from lists to ordered lists? The

extra field for ordered lists storing inequality proofs will be inserted, but the fields

for lists storing constructor choices and elements will be deleted. Thus, the resulting

datatype Ordered is left with only the extra field for ordered lists, and inhabitants

of Ordered store only the inequality proofs.

We do not give the construction of the ornamental isomorphism in this paper,

but instead refer the reader to Chapter 4 of Ko (2014), where parallel composition

is shown to be a categorical pullback. The ornamental isomorphism can then be

constructed from the pullback property, independently of the choice of universe

encoding. It is worth mentioning that an arbitrary choice of encoding may make it

impossible to establish the pullback property: Indeed, the encoding used in Ko &

Gibbons (2013a) does not satisfy the pullback property because there is a product

constructor ∗ : RDesc I → RDesc I → RDesc I that turns out to be

problematic; we thus switched to the version presented by Ko (2014) in this paper,

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

18 H.-S. Ko and J. Gibbons

in particular enforcing that all the recursive positions are grouped in a list, so that

the pullback property can be proved.

4 Promotions and upgrades: lifting ornaments for function types

Ornaments give rise to constructions for promoting an element of a basic datatype

to a structurally similar element of a more informative datatype. Having such

constructions only for datatypes, however, is not enough — we need to promote

operations on these datatypes too. Lifting of ornaments for function types has been

considered by Ko & Gibbons (2013a) and more systematically developed by Dagand

& McBride (2014). Here, we propose another systematic lifting mechanism, which is

less complicated and more easily extensible than Dagand and McBride’s approach.

4.1 Promotions: axiomatising the ornamental relationship

Since the ornamental constructions can be summarised as the promotion isomor-

phisms — for instance, OrdList b ∼= Σ (List Val) (Ordered b) — it is natural to

axiomatise promotability as the existence of such isomorphisms. It turns out that

we require only a part of the inverse properties to make the function-promoting

mechanism work. Hence, we dismantle the promotion isomorphism and include only

the necessary inverse property in the axiomatisation:

record Promotion (X Y : Set) : Set1 where

field

Predicate : X → Set

forget : Y → X

complement : (y : Y) → Predicate (forget y)

promote : (x : X) → Predicate x → Y

coherence : (x : X) (p : Predicate x) → forget (promote x p)≡ x

In prose, when we say that X : Set can be promoted to Y : Set, we mean

that there is a promotion predicate P : X → Set such that Y and Σ X P are

interconvertible by forget

�

complement : Y → Σ X P (where

�

is defined by

(f

�

g) x = (f x , g x)) and uncurry promote : Σ X P → Y . We might think of

every element y : Y as consisting of a “core” element forget y : X extended with

some additional information of type P (forget y). Consequently, when we construct

an element y : Y by promoting x : X , we expect that its core, forget y , is

exactly x — this is the coherence property that we impose on promote and forget .

From every ornamental promotion isomorphism, we can construct a promotion for

which Predicate is the optimised promotion predicate, forget is the forgetful function,

and the remaining three components are drawn from the appropriate parts of the

isomorphism. For example, the promotion induced by the ornament from lists to

ordered lists with lower bound b has type Promotion (List Val) (OrdList b); it uses

Ordered b as its Predicate component and the forgetful function of the ornament

as its forget component.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 19

Whilst promotions are defined to be an abstraction of the ornamental relationship,

we do not strive to strengthen the definition so as to rule out other unintended

instantiations. What matters to us is that the function-promoting mechanism works

as expected when the basic promotions used are induced by ornaments. To see

the generality of promotions, note that promotions can be seen as a variant of

bidirectional transformations, a subject that has been extensively explored. (See,

e.g., Czarnecki et al. (2009) for a comprehensive survey.) In a promotion from

X to Y , Y is the source type and X is the view type, with forget and promote

being respectively the forward (get) and backward (put) transformations. The

promotion predicate corresponds to the idea of view complement, which represents

the information that is present in the source but not in the view. (In fact, we chose

the name complement with this analogy in mind.) Finally, the coherence property is

exactly the PutGet property, one of the two inverse-like properties that constitute

well-behavedness of bidirectional transformations.

4.2 Towards promotions for function types

Let us first explain the idea of function promotion with a small example. Since

there is an ornament from natural numbers to lists, we can induce a promotion

p : Promotion Nat (List A) (for some fixed A : Set), which we will use throughout

this example. The promotion predicate of p is Vec A: To promote a natural number n

to a list, we need to supply n elements, i.e., a vector of type Vec A n . With respect

to this promotion p, we can promote the following function:

double : Nat → Nat

double zero = zero

double (suc n) = suc (suc (double n))

to a “similarly behaving” function g : List A → List A. By “similarly behaving”, we

mean that g and double map similar arguments to similar results. Since, as specified

by p, we regard natural numbers and lists as similar when they have the same

recursive structure, g should process the recursive structure (i.e., nil and cons nodes)

of its input in the same way as double , i.e.,

(xs : List A) → double (length xs)≡ length (g xs)

or as a commutative diagram:

List A List A

Nat Nat

g

double

length length

Dagand & McBride (2014) called this the coherence property. (Note that it is stated

in terms of length , i.e., the forget function of p.)

By analogy with the data promotion mechanism offered by ornaments, rather than

explicitly writing a coherent function g , we can instead show that double satisfies a

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

20 H.-S. Ko and J. Gibbons

promotion predicate. We already know that g should produce lists whose lengths

are computed by double; the missing information for constructing g , then, is how

g processes the list elements whilst respecting the length constraint. The natural

promotion predicate to use in this case is thus

λ f �→ (n : Nat) → Vec A n → Vec A (f n)

(Note, again, that this is defined in terms of the promotion predicate of p, i.e.,

Vec A.) Given a promotion proof for double, say

duplicate′ : (n : Nat) → Vec A n → Vec A (double n)

duplicate′ zero [] = []

duplicate′ (suc n) (x :: xs) = x :: x :: duplicate′ n xs

we can synthesise a function duplicate : List A → List A by

duplicate : List A → List A

duplicate = uncurry promote ◦ (double ∗ duplicate′) ◦ (forget � complement)

where open Promotion p

(where (f ∗ g) (x , y) = (f x , g y)). That is, we decompose the input list into

the underlying natural number and a vector of elements, process the two parts

separately with double and duplicate′, and finally combine the results back to a list.

The sketch above suggests that we can construct promotions on function types

from smaller promotions. The actual story has a few twists, though, as we will show

below.

4.2.1 A failed attempt

A first attempt might be to write a promotion combinator of type

Promotion X Y → Promotion Z W → Promotion (X → Z) (Y → W)

We can argue that this combinator does not make sense, however: Consider the

ornament-induced promotion from Nat to List Nat. Having the above combinator

would mean that we can construct a promotion from Nat → Nat to List Nat →
List Nat. We have seen in the double–duplicate example that the natural choice of

the promotion predicate is

λ f �→ (n : Nat) → Vec Nat n → Vec Nat (f n)

The problem arises when we try to define forget and complement . Being able to define

these two functions means that every function of type List Nat → List Nat can

be decomposed into an underlying function of type Nat → Nat acting exclusively

on the recursive structure and a complement function on the list elements. This is

clearly not the case, though, as we can easily find functions which manipulate the

recursive structure in a way that depends on the list elements — for example, we

can sum the elements of the input list and then produce a list of zeros whose length

is the sum (and does not depend on the length of the input list at all).

We should note that the above argument is not rigorous, since it does not

really show that a combinator of the given type cannot exist — we could have

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 21

chosen other promotion predicates and/or constructed “strange” yet passable

forget and complement functions. (Note that there is no law in the definition of

promotions that puts restrictions on complement .) The argument merely shows

that a combinator of the type does not match well with our intention. Also note

that taking variance into account (changing the type of the first argument to the

combinator to Promotion Y X) does not help: In the case of double and duplicate,

for example, we want to uniformly promote Nat to List Nat in the type of double,

regardless of variance.

4.2.2 Promoting to evidently coherent functions only

The attempt in Section 4.2.1 fails because not every function of type List Nat →
List Nat behaves like a function of type Nat → Nat. One way out is to restrict the

promotion to only those functions on lists that do behave like functions on natural

numbers. In general, we could aim for an alternative combinator of the following

type:

(p : Promotion X Y) (q : Promotion Z W) →
Promotion (X → Z) (Σ[f ∈ Y → W] Σ[g ∈ X → Z] FCoherent p q f g)

where

FCoherent : Promotion X Y → Promotion Z W →
(Y → W) → (X → Z) → Set

FCoherent p q f g = (y : Y) → Promotion.forget

q (f y)≡ g (Promotion.forget p y)

That is, we promote X → Z to only the subset of Y → W that are evidently

coherent with some function of type X → Z . This combinator is easy to define,

and works reasonably well in simple cases: The promote function now produces a

triple consisting of the promoted function, the input core function, and a coherence

proof for the two functions. After a promotion, we do a projection to get either the

promoted function or the coherence proof.

This combinator does not work so well for curried functions, however. For

example, composing three promotions respectively from basic types X0 , X1 , and X2

to more informative types Y0 , Y1 , and Y2 using the combinator in the right order,

we get a promotion from X0 → X1 → X2 to

Σ[f ∈ Y0 → Σ[f ′ ∈ Y1 → Y2] Σ[g ′ ∈ X1 → X2] FCoherent f ′ g ′]

Σ[g ∈ X0 → X1 → X2] FCoherent f g

with which it is inconvenient to extract even just the promoted functions, let alone

the coherence proofs.

In general, this trick of “promoting to an evidently coherent subset” could be

used to develop a variety of promotion combinators, but these combinators do not

work well when they are used to construct promotions between more complex types.

For a different example, sometimes we want to promote X to (i : I) → Y i

provided that X can be promoted to Y i for every i : I . This is useful when, for

example, promoting List A → List A to (n : Nat) → Vec A n → Vec A n , where

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

22 H.-S. Ko and J. Gibbons

the promoted function type has an additional argument n for indexing the vectors.

Again, there is no forgetful function from (i : I) → Y i to X , and we must restrict

the promoted type to Σ[f ∈ (i : I) → Y i] Σ[x ∈ X] ((i : I) → forget (f i)≡ x).

This combinator, like the one for function types above, can greatly complicate the

extraction of promoted functions and coherence proofs. We will develop a better

solution next, in which this trick will still play a role though.

4.3 Upgrades: lifting promotions for function types

(Part of) the problem with promotions for function types in Section 4.2.1 was that

we cannot define a sensible forget . In typical use cases, however, after we promote a

basic function, there is no need to apply forget to the promoted function to retrieve

the basic function — we already have the basic function in the first place. This

suggests that we use a slightly different formulation of promotion for function types,

which does not support forget:

record Upgrade (X Y : Set) : Set1 where

field

Predicate : X → Set

Coherence : X → Y → Set

complement : (x : X) (y : Y) → Coherence x y → Predicate x

promote : (x : X) → Predicate x → Y

coherence : (x : X) (p : Predicate x) → Coherence x (promote x p)

An upgrade does not require the existence of a forget function, but includes a

Coherence property which is used to reformulate the types of complement and

coherence. The relationship between promotions and upgrades is most clearly shown

by the following combinator toUpgrade, which says that promotions are special cases

of upgrades, namely those whose Coherence property is stated in terms of forget:

toUpgrade : {X Y : Set} → Promotion X Y → Upgrade X Y

toUpgrade p = record

{ Predicate = Promotion.Predicate p

; Coherence = λ x y �→ Promotion.forget p y ≡ x

; complement = λ {. y refl �→ Promotion.complement p y }
; promote = Promotion.promote p

; coherence = Promotion.coherence p }

We can then formulate in general terms the promoting construction in the double–

duplicate example:

⇀ : {X Y Z W : Set} →
Promotion X Y → Upgrade Z W → Upgrade (X → Z) (Y → W)

⇀ {X} {Y } p u = record
{Predicate =

λ f �→ (x : X) → Promotion.Predicate p x → Upgrade.Predicate u (f x)
; Coherence =

λ f g �→ (y : Y) → Upgrade.Coherence u (f (Promotion.forget p y)) (g y)

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 23

; complement = . . .
; promote =

λ f com �→ uncurry (Upgrade.promote u) ◦ (f ∗ com) ◦
(Promotion.forget p � Promotion.complement p)

; coherence = . . . }

In particular, promote does exactly what we did in the double–duplicate example:

Given f : X → Z and its complement function com , we construct a function of

type Y → W by separating the argument of type Y into its core of type X and a

complement, processing them respectively using f and com , and invoking promote

of the upgrade u to combine the processed pair. The double–duplicate example can

now be handled by the upgrade:

Nat-List A ⇀ toUpgrade (Nat-List A) : Upgrade (Nat → Nat) (List A → List A)

where Nat-List : (A : Set) → Promotion Nat (List A) encapsulates the

promotion isomorphism induced by the ornament from natural numbers to lists.

Note that the computed coherence property looks exactly as we want it to, and that

computation works nicely for curried functions too, solving one problem mentioned

in Section 4.2.2.

The promotion-upgrade mechanism is easily extensible, since the combinators are

shallowly embedded (cf. Dagand & McBride’s (2014) approach, which uses deep

embedding). For example, the other problem mentioned in Section 4.2.2 is additional

arguments in promoted function types. We can extend the mechanism to deal with

additional arguments by writing a new combinator:

new : (I : Set) {X : Set} {Y : I → Set}
(u : (i : I) → Upgrade X (Y i)) → Upgrade X ((i : I) → Y i)

new I u = record

{ Predicate = λ x �→ (i : I) → Upgrade.Predicate (u i) x

; Coherence = λ x y �→ (i : I) → Upgrade.Coherence (u i) x (y i)

; complement = λ x y coh i �→ Upgrade.complement (u i) x (y i) (coh i)

; promote = λ x com i �→ Upgrade.promote (u i) x (com i)

; coherence = λ x com i �→ Upgrade.coherence (u i) x (com i) }
syntax new I (λ i �→ u) = ∀+[i ∈ I] u

The promotion mentioned in Section 4.2.2 can then be handled by the upgrade:

∀+[n ∈ Nat] (List-Vec A n ⇀ toUpgrade (List-Vec A n)) :

Upgrade (List A → List A) ((n : Nat) → Vec A n → Vec A n)

where List-Vec : (A : Set) (n : Nat) → Promotion (List A) (Vec A n) is induced

by the ornament from lists to vectors. The upgrade itself looks like a dependent

function type, thanks to the mixfix binder ∀+[n ∈ Nat] .

Higher-order functions. It might seem that we lose the ability to promote higher-

order functions, as ⇀ requires a promotion as its first argument, which does not

seem to be able to relate function types. But in fact, we can deal with higher-order

functions surprisingly straightforwardly, by injecting upgrades back into promotions:

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

24 H.-S. Ko and J. Gibbons

fromUpgrade : {X Y : Set} (u : Upgrade X Y) →
Promotion X (Σ[y ∈ Y] Σ[x ∈ X] Upgrade.Coherence u x y)

fromUpgrade u = record

{ Predicate = Upgrade.Predicate u

; forget = proj1 ◦ proj2
; complement = λ { (y , x , coh) �→ Upgrade.complement u x y coh }
; promote = λ x com �→ Upgrade.promote u x com , x ,

Upgrade.coherence u x com

; coherence = λ �→ refl }

This is a general formulation of the trick of “promoting to evidently coherent

subsets” used in Section 4.2.2.

Here, we give a non-trivial but not perfect example of promoting a higher-order

function. Consider a version of concatMap specialised to lists whose elements are

themselves lists:

concatMap : (List A → List B) → List (List A) → List B

concatMap f = concat ◦ map f

If we know that the function f preserves a particular length, and that all lists in the

input list have that length, then we can determine the length of the output list in

advance. Formally:

(n : Nat) (f : List A → List B) →
((xs : List A) → length xs ≡ n → length (f xs)≡ n) →

(m : Nat) (xss : List (List A)) →
length xss ≡m × All (λ xs → length xs ≡ n) xss →

length (concatMap f xss)≡m ∗ n

This is exactly the type of promotion proof computed by the upgrade

∀+[n ∈ Nat] (fromUpgrade (List-Vec A n ⇀ List-Vec A n) ⇀

∀+[m ∈ Nat] (List2-Vec2 A m n ⇀ toUpgrade (List-Vec B (m ∗ n))) :
Upgrade ((List A → List B) → List (List A) → List B)

((n : Nat) → (Σ[g ∈ Vec A n → Vec A n] Σ[f ∈ List A → List A]
((xs : Vec A n) → toList (g xs)≡ f (toList xs))) →

(m : Nat) → Vec (Vec A n) m → Vec B (m ∗ n))

whose type shows the promoted function type, which works on vectors. (We omit the

definition of List2-Vec2 : (A : Set) (m n : Nat) → Promotion (List (List A)) (Vec

(Vec A n) m), which can be constructed either in an ad hoc way or somehow

compositionally.) A promoted function, say concatMapV , will satisfy the coherence

property:

(n : Nat) (g : Vec A n → Vec B n) (f : List A → List B)

(c : (xs : Vec A n) → toList (g xs)≡ f (toList xs)) →
(m : Nat) (xss : Vec (Vec A n) m) →

toList (concatMapV (g , f , c) xss)≡ concatMap f (map toList (toList xss))

which is also computed, and proved, by the upgrade.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 25

Fig. 3. Left: A binomial heap of size 3 consisting of two binomial trees storing

elements 2, 5, and 8. Right: The result of inserting 11 into the heap. (Note that the

digits of the underlying binary numbers are ordered with the least significant digit

first.)

The (g , f , c)-triple argument to concatMapV looks rather bulky — why can it

not just be g? This has to do with the semantic way in which we promote functions:

Note that a function of type Vec A n → Vec A n (which should be distinguished

from {n : Nat} → Vec A n → Vec A n) is less general than a function of

type List A → List A. Since concatMapV computes by calling concatMap , it must

somehow supply an extension of g — i.e., a function f : List A → List A such that

toList (g xs)≡ f (toList xs) for all xs : Vec A n — to concatMap; here concatMapV

simply requires such an extension as an additional argument. (This might not be as

problematic as it seems: If we consistently use function promotion, that is, functional

arguments to promoted functions are themselves promoted functions, then we can

simply bundle the promoted functions with the basic functions and coherence proofs

and pass the triples around.)

5 Case study: binomial heaps

Having gone through the previous sections on index-first inductive families, orna-

ments, and function promotion, we are now ready for our case study on implementing

binomial heaps and their operations by relating them to binary numbers and numeric

operations.

Every schoolchild is familiar with the idea of positional number systems, in which

a number is represented as a list of digits. Each digit is associated with a weight,

and the interpretation of the list is the weighted sum of the digits. For example, the

weights used for binary numbers are powers of 2. Some container data structures

and associated operations strongly resemble positional representations of natural

numbers and associated operations. For example, a binomial heap (illustrated in

Figure 3) can be thought of as a binary number in which every 1-digit stores a

binomial tree — the actual vehicle for storing elements — whose size is exactly

the weight of that digit. The number of elements stored in a binomial heap

is therefore exactly the value of the underlying binary number. Inserting a new

element into a binomial heap is analogous to incrementing a binary number,

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

26 H.-S. Ko and J. Gibbons

Fig. 4. Left: Inductive definition of binomial trees. Right: Decomposition of

binomial trees of ranks 1 to 3.

with carries corresponding to combining smaller binomial trees into larger ones.

Okasaki (1999) thus proposed to design container data structures by analogy

with positional representations of natural numbers, and called such data structures

numerical representations. Using an ornament, it is easy to express the relationship

between a numerically represented container datatype (e.g., binomial heaps) and

its underlying numeric datatype (e.g., binary numbers). But the ability to express

the relationship alone is not too surprising. What is more interesting is that the

ornament can give rise to upgrades such that

• the coherence properties of the upgrades semantically characterise the resem-

blance between container operations and corresponding numeric operations,

and

• the promotion predicates give the precise types of the container operations

that guarantee such resemblance.

In this section, we show how ornaments induce insertion and extraction operations

on binomial heaps, given increment and decrement operations on binary numbers.

The induced extraction operation is not quite what is usually wanted, though, since

the element it extracts is not necessarily the minimum element. We also show how

to build a derived operation to extract the minimum element, by identifying a

more refined datatype of binomial heaps, and we show how ornaments induce the

conversions to and from this more refined datatype.

5.1 Binomial trees

The basic building blocks of binomial heaps are binomial trees, in which elements

are stored. We assume that elements are drawn from a set Val on which there is a

decidable ordering

� : Val → Val → Set

with comparison function

�? : (x y : Val) → (x � y) � (y � x)

Binomial trees are defined inductively on their rank, which is a natural number (see

Figure 4):

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 27

• A binomial tree of rank 0 is a single node storing an element of type Val , and

• a binomial tree of rank suc r consists of two binomial trees of rank r, with

one attached under the other’s root node.

From this definition, we can readily deduce that a binomial tree of rank r has

2r elements. To actually define binomial trees as a datatype, however, an alternative

view is more helpful: A binomial tree of rank r is a root node and a forest of

binomial trees of ranks 0 to r − 1. (Figure 4 shows how binomial trees of ranks

1 to 3 can be decomposed according to this view.) We could thus define a datatype

BTree : Nat → Set of binomial trees — which is indexed with the rank — as

follows: For any rank r : Nat, the type BTree r has a field of type Val , namely

the root node, and r recursive positions indexed from r − 1 down to 0. For our

experiment, it is not necessary to encode the BTree datatype as a description, since

we do not need any ornamental constructions involving BTree; but BTree turns out

to be an interesting example, so we present the encoding anyway:

BTreeD : Desc Nat

BTreeD r = σ[∈ Val] v (descend r)

indexfirst data BTree : Nat → Set where

BTree r � node Val (P (descend r) BTree)

This is an interesting example since we are exploiting the full computational power

of Desc, computing the list of recursive indices from the index request r by descend r ,

which yields a list from r − 1 down to 0:

descend : Nat → List Nat

descend zero = []

descend (suc n) = n :: descend n

For use in min-heaps, however, we should also ensure that elements in binomial

trees are in heap order, i.e., the root of any binomial tree (including subtrees) is the

minimum element in the tree. As demonstrated earlier with ordered lists (Section 3.2),

ordering invariants can be easily encoded with inductive families. Here, we go for a

slightly more space-efficient variant: Instead of a lower bound, we index the BTree

datatype by a given root stored elsewhere. A more appropriate name for the revised

datatype is thus BForest, since an inhabitant of the datatype now defines only a

forest of binomial trees that are considered attached under the root specified as the

index (which is not stored in the inhabitant itself):

indexfirst data BForest : Nat → Val → Set where

BForest r x � forest (P (descend r) (λ i → ΣI [t ∈ Σ Val (BForest i)]

x � proj1 t))

(ΣI is a special dependent pair type former, which will be introduced below.) A

binomial tree, then, is just a pair of its root and the forest of subtrees. We thus

redefine BTree as a dependent pair type:

BTree : Nat → Set

BTree r = Σ Val (BForest r)

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

28 H.-S. Ko and J. Gibbons

For clarity, we give alternative names to the two projection functions:

root : {r : Nat} → BTree r → Val

root = proj1
children : {r : Nat} (t : BTree r) → BForest r (root t)

children = proj2

As an aside, the encoding of the BForest datatype as a description requires a bit

of twist, but can still be done fairly easily. We can even define BForest as an

ornamentation of the BTree datatype from the previous paragraph, but (again)

this is not essential since we will exclusively use the BForest and BTree datatypes

defined in this paragraph from now on, making no use of the relationship between

BForest and the first version of BTree.

The most important operation on binomial trees is combining two smaller

binomial trees of the same rank into a larger one, corresponding to carries in

positional arithmetic. Given two binomial trees of the same rank r, one can be

attached under the root of the other, forming a single binomial tree of rank suc r ,

corresponding exactly to the inductive definition of binomial trees. To establish heap

ordering, we should also require a proof that that the root of the first tree is no

less than the root of the second tree, and put this proof into the new tree. Here,

we adopt (a variation of) the technique (McBride, 2014) of using Agda’s instance

arguments (Devriese & Piessens, 2011) to pass around such proofs implicitly. We

define a special dependent pair type whose second component can be suppressed

and automatically taken care of by Agda’s instance searching mechanism:

record ΣI (A : Set) (B : A → Set) : Set where

constructor 〈 〉
field

fst : A

{{snd}} : B fst

syntax ΣI A (λ x → B) = ΣI [x ∈ A] B

Typically, we deconstruct a ΣI-typed element by matching it against the constructor

〈 〉 without naming (and thus explicitly using) its second component, which will

nevertheless be considered as an available instance during instance searching. On

the other hand, when we construct a new ΣI-typed element using the constructor

〈 〉, supplying only its first component, its second component will be automatically

determined to be the unique available instance having the right type. (Typechecking

fails unless there is exactly one available instance having the right type.) This special

dependent pair type was used to define BForest, and allows ordering proofs in

elements of BForest to be handled implicitly by instance searching. We can now

define attach , which takes two trees of the same rank and a proof of ordering of

their roots, by

attach : {r : Nat} (t u : BTree r) {{ : root u � root t}} → BTree (suc r)

attach t (y , forest us) = y , forest (〈 t 〉 , us)

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 29

Using attach requires that we know how the roots of two trees are ordered in

advance. To write a more general combining function, we first define the following

proof-relevant version of if then else :

if then else : {A B C : Set} → A � B → ({{ : A}} → C) → ({{ : B}} →
C) → C

if inj1 a then t else u = t {{a}}
if inj2 b then t else u = u {{b}}

and then we can compare the roots of two binomial trees to decide which will be

attached under the other:

link : {r : Nat} → BTree r → BTree r → BTree (suc r)

link t u = if root t �? root u then attach u t else attach t u

Instance searching manages all ordering proofs behind the scenes, and makes

it impossible to get the two branches the wrong way around, as remarked by

McBride (2014) for his development.

5.2 From binary numbers to binomial heaps

The datatype Bin : Set of binary numbers is just a specialised datatype of lists of

binary digits:

indexfirst data Bin : Set where

Bin � nil

| zero Bin

| one Bin

This datatype can be encoded as follows:

data BinTag : Set where

‘nil : BinTag

‘zero : BinTag

‘one : BinTag

BinD : Desc �
BinD tt = σ BinTag λ { ‘nil �→ v []

; ‘zero �→ v (tt :: [])

; ‘one �→ v (tt :: []) }

The intended interpretation of binary numbers is given by

toNat : Bin → Nat

toNat nil = 0

toNat (zero b) = 0 + 2 × toNat b

toNat (one b) = 1 + 2 × toNat b

That is, binary numbers of type Bin are written least significant bit first, and the i th

digit (counting from zero) has weight 2i . We refer to the position of a digit as its

rank, i.e., the i th digit is said to have rank i .

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

30 H.-S. Ko and J. Gibbons

As stated in the opening of Section 5, binomial heaps are binary numbers whose

1-digits are decorated with binomial trees of matching rank, and they can be

expressed straightforwardly as an ornamentation of binary numbers. To ensure

that the binomial trees in binomial heaps have the correct rank, the datatype

BHeap : Nat → Set is indexed with the starting rank: If a binomial heap of type

BHeap r is non-empty (i.e., not nil), then its first digit has rank r (and stores a

binomial tree of rank r when the digit is one), and the rest of the heap is indexed

with suc r:

indexfirst data BHeap : Nat → Set where

BHeap r � nil

| zero (BHeap (suc r))

| one (BTree r) (BHeap (suc r))

This datatype can be encoded as

BHeapOD : OrnDesc Nat ! BinD

BHeapOD (ok r) = σ BinTag λ { ‘nil �→ v tt

; ‘zero �→ v (ok (suc r) , tt)

; ‘one �→ Δ[t ∈ BTree r] v (ok (suc r) , tt) }

In applications, we would use binomial heaps of type BHeap zero, since this type

encompasses binomial heaps of all sizes.

5.3 Increment and insertion

The increment operation on binary numbers is defined by

incr : Bin → Bin

incr nil = one nil

incr (zero b) = one b

incr (one b) = zero (incr b)

The corresponding operation on binomial heaps is insertion of a binomial tree into

a binomial heap (of matching rank), whose direct implementation is

- - Later this function will be synthesised using function promotion

insT : {r : Nat} → BTree r → BHeap r → BHeap r

insT t nil = one t nil

insT t (zero h) = one t h

insT t (one u h) = zero (insT (link t u) h)

Conceptually, incr puts a 1-digit into the least significant position of a binary

number, triggering a series of carries, i.e., summing 1-digits of smaller ranks into

1-digits of larger ranks; insT follows the pattern of incr , but since 1-digits now

have to store a binomial tree of matching rank, insT takes an additional binomial

tree as input and links binomial trees of smaller ranks into binomial trees of larger

ranks whenever carries occur. Having defined insT , inserting a single element into

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 31

a binomial heap of type BHeap zero is then inserting, by insT , a rank-0 binomial

tree (i.e., a single node) storing the element into the heap.

insV : Val → BHeap zero → BHeap zero

insV x = insT (x , forest tt)

It is apparent that the program structure of insT strongly resembles that of

incr — they manipulate the list-of-binary-digits structure in the same way. But

can we characterise the resemblance semantically? It turns out that the coherence

property of the following upgrade from the type of incr to that of insT is an

appropriate answer:

upg : Upgrade (Bin → Bin)
({r : Nat} → BTree r → BHeap r → BHeap r)

upg = ∀+[[r ∈ Nat]] ∀+[∈ BTree r] Bin-BHeap r ⇀ toUpgrade (Bin-BHeap r)

The upgrade upg says that, compared to the type of incr , the type of insT has two

new arguments — the implicit argument r : Nat (declared using ∀+[[r ∈ Nat]] ,

which is the same as ∀+[r ∈ Nat] except that the new argument in the upgraded

function type is implicit) and the explicit argument of type BTree r — and that the

two occurrences of BHeap r in the type of insT refine the corresponding occurrences

of Bin in the type of incr using the promotion

- - Induced from the ornament �BHeapOD �
Bin-BHeap : (r : Nat) → Promotion Bin (BHeap r)

induced by the ornament �BHeapOD � (ok r) from Bin to BHeap r . The upgrade

computes a coherence property, which instantiates for incr and insT to

- - Computed by Upgrade.Coherence upg incr insT

{r : Nat} (t : BTree r) (b : Bin) (h : BHeap r) →
(toBin h ≡ b) → (toBin (insT t h)≡ incr b)

where toBin extracts the underlying binary number of a binomial heap:

toBin : {r : Nat} → BHeap r → Bin

toBin = ornForget �BHeapOD �

That is, given a binomial heap h : BHeap r whose underlying binary number is

b : Bin, after inserting a binomial tree into h by insT , the underlying binary number

of the result is incr b. This says exactly that insT manipulates the underlying binary

number in the same way as incr .

We have seen that the coherence property computed by upg is appropriate for

characterising the resemblance of incr and insT ; proving that it holds for incr and

insT is a separate matter, though. We can, however, avoid doing the implementation

of insertion and the coherence proof separately: Instead of implementing insT

directly, we can implement insertion with a more precise type in the first place such

that, from this more precisely typed version, we can derive automatically a function

insT that satisfies the coherence property. This process is fully supported by the

mechanism of upgrades. Specifically, the more precise type for insertion is given by

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

32 H.-S. Ko and J. Gibbons

the promotion predicate of upg (applied to incr), the more precisely typed version of

insertion acts as a promotion proof of incr (with respect to upg), and the promotion

gives us insT , accompanied by a proof that insT is coherent with incr .

Let BHeapU be the optimised promotion predicate for the ornament from Bin to

BHeap r:

indexfirst data BHeapU : Nat → Bin → Set where

BHeapU r nil � nil

BHeapU r (zero b) � zero (h : BHeapU (suc r) b)

BHeapU r (one b) � one (t : BTree r) (h : BHeapU (suc r) b)

BHeapU : Nat → Bin → Set

BHeapU r b = OptP �BHeapOD � (ok r) b

Here, a more helpful interpretation is that BHeapU is a datatype of binomial heaps

additionally indexed with the underlying binary number. The type of promotion

proofs for incr then expands to

- - Computed by Upgrade.Predicate upg incr

{r : Nat} → BTree r → (b : Bin) → BHeapU r b → BHeapU r (incr b)

A function of this type is explicitly required to transform the underlying binary

number structure of its input in the same way as incr . Insertion can now be

implemented as

insTU : {r : Nat} → BTree r → (b : Bin) → BHeapU r b → BHeapU r (incr b)

insTU t nil nil = one t nil

insTU t (zero b) (zero h) = one t h

insTU t (one b) (one u h) = zero (insTU (link t u) b h)

which is very similar to the original insT . It is interesting to note that all the

constructor choices for binomial heaps in insTU are actually completely determined

by the types. This fact is easier to observe if we desugar insTU to its raw

representation:

insTU : {r : Nat} → BTree r → (b : Bin) → BHeapU r b → BHeapU r (incr b)

insTU t (con (‘nil , tt)) (con tt) = con (t , con tt , tt)

insTU t (con (‘zero , b , tt)) (con (h , tt)) = con (t , h , tt)

insTU t (con (‘one , b , tt)) (con (u , h , tt)) = con (insTU (link t u) b h , tt)

in which no constructor tags for binomial heaps are present. This means that

the types would determine which constructors to use when programming insTU ,

establishing the coherence property by construction. Indeed, when programming

insTU in Agda interactively, most of insTU can be directly generated by Agda

(upon instruction by the programmer). Finally, since insTU is a promotion proof

for incr , we can invoke the promoting operation of upg and get insT :

insT : {r : Nat} → BTree r → BHeap r → BHeap r

insT = Upgrade.promote upg incr insTU

which is automatically coherent with incr:

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 33

incr-insT -coherence : {r : Nat} (t : BTree r) → toBin (insT t h)≡ incr (toBin h)

incr-insT -coherence = Upgrade.coherence upg incr insTU

To sum up: We define Bin, incr , and then BHeap as an ornamentation of Bin,

describe in upg how the type of insT is an upgraded version of the type of incr ,

and implement insTU , whose type is supplied by upg . We can then derive insT , the

coherence property of insT with respect to incr , and its proof, all automatically using

upg . Compared to Okasaki’s implementation (1999), besides rank-indexing, which

elegantly transfers the management of rank-related invariants to the type system,

the only extra work is the straightforward marking of the differences between Bin

and BHeap (in BHeapOD) and between the type of incr and that of insT (in upg).

The reward is large in comparison: We get a coherence property that precisely

characterises the structural behaviour of insertion with respect to increment, and

an enriched function type that guides the implementation of insertion such that the

coherence property is satisfied by construction.

Similar to lifting increment to insertion, addition on binary numbers can also be

lifted to merging of two heaps. The lifting process is the same, though, and is thus

omitted from this paper.

5.4 Decrement and extraction

Binomial heaps would be useless if we could only insert but not extract elements.

Thinking in terms of numerical representations, element extraction on binomial

heaps corresponds to decrement on binary numbers. Decrement is slightly more

complicated than increment since it is inherently a partial operation, applicable to

non-zero numbers only. (Defining the result of decrementing zero as zero counts

as a workaround at best, as it destroys the natural property that increment is left

inverse to decrement.) We will explore the simplest approach, weakening the result

type to Maybe Bin:

decr : Bin → Maybe Bin

decr nil = nothing

decr (zero b) = mapMaybe one (decr b)

decr (one b) = just (zero b)

where mapMaybe : {A B : Set} → (A → B) → Maybe A → Maybe B is the

usual functorial map for Maybe.

Following the route taken in Section 5.3, we will promote decr : Bin → Maybe Bin

to a function:

extract : {r : Nat} → BHeap r → Maybe (BTree r × BHeap r)

which divides a non-empty binomial heap of given rank r into a tree of rank r and

a smaller heap of the same rank; if the heap has a rank-r zero digit, then the tree

has to be “borrowed” from a higher rank one digit.

The first step is to write an upgrade relating the types of decr and extract . The

language of promotions and upgrades presented in Section 4 cannot deal with the

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

34 H.-S. Ko and J. Gibbons

Fig. 5. Two more promotion combinators for upgrading decrement.

sub-upgrade from Maybe Bin to Maybe (BTree r × BHeap r), but we can easily

extend the language with two combinators:

+× : (X : Set) {Y Z : Set} → Promotion Y Z → Promotion Y (X×Z)

MaybeP : {A B : Set} → Promotion A B → Promotion (Maybe A) (Maybe B)

to support that, as shown in Figure 5. (The most important information in Figure 5

is how the Predicate and forget fields are defined for the two combinators; the rest

of the code is presented simply to show that it is easy to complete the definitions.)

These may not be the most generic combinators that we can define, but they show

that the framework can be easily extended. The upgrade we write is then

upg : Upgrade (Bin → Maybe Bin)

({r : Nat} → BHeap r → Maybe (BTree r × BHeap r))

upg = ∀+[[r ∈ Nat]] (Bin-BHeap r ⇀

toUpgrade (MaybeP (BTree r +×Bin-BHeap r)))

The promotion predicate for decr with respect to this upgrade, or rather, a more

informative type for extraction, is

- - Computed by Upgrade.Predicate upg decr

{r : Nat} {b : Bin} →
BHeapU r b → Maybe′ (λ b′ �→ BTree r × BHeapU r b′) (decr b)

where the result is nothing when decr b = nothing, or just p for some pair

p : BTree r × BHeapU r b′ when decr b = just b′. (See Figure 5 for the definition

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 35

of Maybe′.) A function of this type is guaranteed to produce a tree and a heap

(wrapped in just as a pair) if and only if decr executes successfully on the underlying

number of the input heap, and when that is the case, the underlying number of the

resulting heap will be the result of decr .

extractU : {r : Nat} (b : Bin) →
BHeapU r b → Maybe′ (λ b′ �→ BTree r × BHeapU r b′) (decr b)

extractU nil nil = nothing

extractU (zero b) (zero h) = mapMaybe′ (λ { ((x , t � ts) , h) �→ (x , forest ts),

one t h })
(extractU b h)

extractU (one b) (one t h) = just (t , zero h)

where we introduce a pattern synonym pattern � t ts = forest (〈 t 〉 , ts) for

separating the leftmost tree from a forest, and mapMaybe′ is a carefully indexed

version of functorial map on Maybe′:

mapMaybe′ : {A B : Set} {C : A → Set} {D : B → Set} {f : A → B} →
({a : A} → C a → D (f a)) →
{ma : Maybe A} → Maybe′ C ma → Maybe′ D (mapMaybe f ma)

mapMaybe′ g nothing = nothing

mapMaybe′ g (just c) = just (g c)

We now get a coherent-by-construction definition of extract via the upgrade:

extract : {r : Nat} → BHeap r → Maybe (BTree r × BHeap r)

extract = Upgrade.promote upg decr extractU

where coherence is witnessed by

decr-extract-coherence :
{r : Nat} (h : BHeap r) → mapMaybe (toBin ◦ proj2) (extract h)≡ decr (toBin h)

decr-extract-coherence = Upgrade.coherence upg decr extractU

5.5 Minimum extraction

The type of the extract operation guarantees that it extracts from a heap of rank r

a subtree of rank r , but places no constraints on which particular subtree of that

rank. (In fact, the implementation picks the subtree containing the root out of the

“first” tree present in the heap, that is, the one with lowest rank; but that fact is

not captured in the type.) A more useful operation on min-heaps is to extract the

minimum element of the heap. Because of the heap ordering property, this minimum

element will be the root of some tree, but not necessarily of the first tree. But we

can preprocess the heap to ensure that the minimum element is the root of the first

tree; then extract will indeed return a subtree containing the minimum element as

its root.

We say that a heap is normalised if the minimum element is the root of the first

tree. A normalised heap is of course a heap; we express the normalisation property

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

36 H.-S. Ko and J. Gibbons

as a refined datatype BHeapN of heaps, carrying an extra boolean index stating

whether the heap is normalised. The relationship between ordinary heaps BHeap

and this refinement is an ornamentation. Actually, we do the ornamentation in two

steps: First to a datatype BHeapM that indexes a heap by its minimum element, and

second to BHeapN to state whether the root of the first tree has this minimum value.

We can normalise a heap by swapping the first tree with an equally sized subtree of

the tree with the minimum root. Finally, we get for free the forgetful mapping back

from BHeapN via BHeapM to BHeap, which allows us to apply extract .

Compare this with the standard algorithm for extracting the minimum element

from a binomial heap, namely (i) to find the tree with minimum root, (ii) separate

it from the heap, (iii) extract its root, and (iv) merge its children back into the

heap. This would have no connection with our extract function, though; since we

have this operation at our disposal, it is appealing to be able to reuse it. With

the standard algorithm, on the other hand, step (i) has no direct analogue in the

numerical representation, so would need to be defined from first principles; and

steps (ii) and (iv) amount to implementing numerical operations to set a specified

1-digit (say, the k th digit) to 0 and then to add back 2k − 1. Our algorithm is

arguably conceptually simpler, as well as benefitting from the leverage provided by

ornaments.

In the interests of brevity, we will provide less detail from now on — as

foreshadowed on page 10, we present this section as a kind of thought experiment,

and rather than defining the ornaments and deriving from them the refined datatypes

and the forgetful functions, we will directly present the results that would have arisen.

We start by refining BHeap to be indexed by its minimum element. A heap of

type BHeapM r mv is essentially a BHeap r; but the additional index mv is nothing

iff the heap is empty, and otherwise mv = just v where v is the minimum element

of the heap. The nil and zero constructors are analogous to those for BHeap. But

the one constructor of BHeap is refined here into three constructors: min indicates

that the minimum element is the root of the first tree, and there are more trees to

follow; sin indicates that the minimum element is again the root of the first tree, but

that there are no more trees to follow; and one indicates that the minimum element

is the root of a higher ranked tree, not the first tree. Note that in the min and sin

cases, the element v is not duplicated: Instead of storing the original tree, they store

only its forest of children.

indexfirst data BHeapM : Nat → Maybe Val → Set where

BHeapM r nothing
 nil

BHeapM r (just v)
 min (BForest r v) {v ′ : Val} {{v � v ′}}
(BHeapM (suc r) (just v ′))

| sin (t : BForest r v) (BHeapM (suc r) nothing)

| one (t : BTree r) {{v � root t}} (BHeapM (suc r) (just v))

BHeapM r mv
 zero (BHeapM (suc r) mv)

The function toBHeapM lifts an ordinary BHeap to a more informative BHeapM:

toBHeapM : {r : Nat} → BHeap r → Σ (Maybe Val) (BHeapM r)

toBHeapM nil = 〈〈 nil 〉〉

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 37

toBHeapM (zero h) = let 〈〈 h ′ 〉〉 = toBHeapM h in 〈〈 zero h ′ 〉〉
toBHeapM (one t h) with toBHeapM h

toBHeapM (one t h) | nothing , h ′ = 〈〈 sin (children t) h ′ 〉〉
toBHeapM (one t h) | just v , h ′ = if root t �? v then 〈〈 min (children t) h ′ 〉〉

else 〈〈 one t h ′ 〉〉

We use the pattern synonym pattern 〈〈 〉〉 b = , b to hide the first components,

which are indices in the types of the heaps and are inferable. Note that the dependent

pair representation Σ (Maybe Val) (BHeapM r) provides constant-time access to

the minimum element, by first projection from the dependent pair. The function

toBHeapM does some real work, refining the original one constructor into three,

and cannot be expected to be automatically derivable; on the other hand, if we

had expressed BHeapM as an ornamentation of BHeap, we would have been able to

derive for free the following forgetful function:

- - Derivable from an ornament from BHeap to BHeapM

fromBHeapM : {r : Nat} {mv : Maybe Val} → BHeapM r mv → BHeap r

fromBHeapM nil = nil

fromBHeapM (min ts h) = one 〈〈 ts 〉〉 (fromBHeapM h)

fromBHeapM (sin ts h) = one 〈〈 ts 〉〉 (fromBHeapM h)

fromBHeapM (one t h) = one t (fromBHeapM h)

fromBHeapM (zero h) = zero (fromBHeapM h)

The reader may have noticed that the sin constructor of BHeapM takes a trailing

heap which is necessarily empty because of the index of its type. Could we not just

get rid of this seemly redundant argument? This, in fact, points out a limitation of

the ornament framework (by design): Ornamentation does not change the recursive

structure. The sin constructor is a refinement of the one constructor of BHeap, and

has to take the same number of recursive arguments as the latter. In a sense, this

problem is not one inherent to the ornament framework, but originates from our

initial choice of allowing binomial heaps to be represented with redundant zeros;

that is, if we started with a non-redundant representation, then sin would not have

to take that argument. On the other hand, the ornament framework is indeed limited,

and cannot help us to refine a redundant representation into a non-redundant one.

The next step is to introduce a further ornamentation so we can tell from the

index in the type whether a binomial heap is normalised or not — in fact, it is

normalised iff the first non-zero constructor is not one:

indexfirst data BHeapN : Nat → Maybe Val → Bool → Set where

BHeapN r nothing true � nil

BHeapN r (just v) true � min (BForest r v) {v ′ : Val} {{v � v ′}}
{norm : Bool} (BHeapN (suc r) (just v ′) norm)

| sin (t : BForest r v) {norm : Bool}
(BHeapN (suc r) nothing norm)

BHeapN r (just v) false � one (t : BTree r) {{v � root t}}
{norm : Bool} (BHeapN (suc r) (just v) norm)

BHeapN r mv norm � zero (BHeapN (suc r) mv norm)

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

38 H.-S. Ko and J. Gibbons

As before, if we had defined BHeapN as an ornamentation of BHeapM, then we

would have got for free the forgetful function:

- - Derivable from an ornament from BHeapM to BHeapN

fromBHeapN : {r : Nat} {mv : Maybe Val} {norm : Bool} →
BHeapN r mv norm → BHeapM r mv

fromBHeapN nil = nil

fromBHeapN (min ts h) = min ts (fromBHeapN h)

fromBHeapN (sin ts h) = sin ts (fromBHeapN h)

fromBHeapN (one t h) = one t (fromBHeapN h)

fromBHeapN (zero h) = zero (fromBHeapN h)

In addition, the relationship between BHeapM and BHeapN (at least in a non-

indexed-first variant on the boolean index) turns out to be an algebraic ornamenta-

tion (McBride, 2011; Ko & Gibbons, 2013b), so we could get not only the forgetful

function from BHeapN to BHeapM but also its converse:

- - Derivable from an algebraic ornament from BHeapM to BHeapN

toBHeapN : {r : Nat} {mv : Maybe Val} → BHeapM r mv → Σ Bool (BHeapN r mv)

toBHeapN nil = 〈〈 nil 〉〉
toBHeapN (min t h) = let 〈〈 h ′ 〉〉 = toBHeapN h in 〈〈 min t h ′ 〉〉
toBHeapN (sin t h) = let 〈〈 h ′ 〉〉 = toBHeapN h in 〈〈 sin t h ′ 〉〉
toBHeapN (one t h) = let 〈〈 h ′ 〉〉 = toBHeapN h in 〈〈 one t h ′ 〉〉
toBHeapN (zero h) = let 〈〈 h ′ 〉〉 = toBHeapN h in 〈〈 zero h ′ 〉〉

Gap 4 (representation optimisation for algebraic ornamentation)

None of the existing formulations of general algebraic ornamentation (McBride,

2011; Dagand & McBride, 2014; Ko & Gibbons, 2013b) takes representation

optimisation into account — they all work by inserting some equality constraints

as fields into descriptions, and cannot further classify constructors in an index-first

manner, which happened for BHeapN. (Dagand & McBride (2014)’s reornaments,

whilst being algebraic and achieving representation optimisation, are specialised

only to the ornamental algebras.) Ko & Gibbons (2013b) noted that, in order to

fully exploit the optimising power of index-first inductive families, we might need to

switch to coalgebraic ornamentation (for inductive datatypes), which remains to be

investigated.

Now, normalisation takes a binomial heap with information about ordering

amongst the roots of the binomial trees and turns it into a normalised binomial

heap. Note that working on BHeapM instead of BHeap means that all ordering

information is reified through different constructors, so we can simply use pattern

matching to determine whether we are looking at a binomial tree whose root is the

minimum, instead of having to perform comparisons and deal with ordering proofs

on the fly.

normalise : {r : Nat} {mv : Maybe Val} → BHeapM r mv → BHeapN r mv true

normalise nil = nil

normalise (min t h) = let 〈〈 h ′ 〉〉 = toBHeapN h in min t h ′

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 39

normalise (sin t h) = let 〈〈 h ′ 〉〉 = toBHeapN h in sin t h ′

normalise (one t h) with normalise-aux h

normalise (one t h) | us , f with f t

normalise (one t h) | us , | 〈〈 〈 h ′ 〉 〉〉 = min us h ′

normalise (zero h) = zero (normalise h)

We introduce another pattern synonym pattern 〈 〉 b = b , to hide inferable

second components. The only complicated case in normalise is for the one construc-

tor, where the root of the first tree is not the minimum; this case is handled by an

auxiliary function normalise-aux . This function takes the trailing heap, extracts the

forest under the minimum root (which is determined by the index), and also returns

the rest of the heap but with a hole into which the first tree can be inserted. The

size and ordering constraints are carefully encoded in the type of the function and

kept track of by Agda; with some effort we can hide all this extra information to

some extent, and present the program almost as if it were simply typed.

normalise-aux :

{r : Nat} {v : Val} → BHeapM (suc r) (just v) →
BForest r v ×
((u : BTree r) {{ : v � root u}} →

Σ (Val × Bool) λ {(v ′ , norm) → ΣI [∈ BHeapN (suc r) (just v ′) norm] v � v ′})
normalise-aux (min (t � ts) {v ′} h) =

forest ts , λ u �→ let 〈 u ′ 〉 = link ′ t u

〈〈 h ′ 〉〉 = toBHeapN h
in if root u ′ �? v ′ then 〈〈 〈 min (children u ′) h ′ 〉 〉〉

else 〈〈 〈 one u ′ h ′ 〉 〉〉
normalise-aux (sin (t � ts) h) =

forest ts , λ u �→ let 〈 u ′ 〉 = link ′ t u

〈〈 h ′ 〉〉 = toBHeapN h
in 〈〈 〈 sin (children u ′) h ′ 〉 〉〉

normalise-aux (one t h) with normalise-aux h
normalise-aux (one t h) | (t ′ � ts) , f =

forest ts , λ u �→ let 〈 u ′ 〉 = link ′ t ′ u
((v ′ ,) , 〈 h ′ 〉) = f u ′

in if root t �? v ′ then 〈〈 〈 min (children t) h ′ 〉 〉〉
else 〈〈 〈 one t h ′ 〉 〉〉

normalise-aux (zero h) with normalise-aux h
normalise-aux (zero h) | (t � ts) , f =

forest ts , λ u �→ let 〈 u ′ 〉 = link ′ t u
〈〈 〈 h ′ 〉 〉〉 = f u ′

in 〈〈 〈 zero h ′ 〉 〉〉

Here, link ′ is a more informative version of the function link from Section 5.1, not

only linking together two trees of some rank r to a single tree of rank suc r , but

also combining lower bounds for the two input roots into a lower bound for the

output root:

link ′ : {r : Nat} (t t ′ : BTree r) {v : Val} {{ : v � root t}}
{{ : v � root t ′}} → ΣI [u ∈ BTree (suc r)] v � root u

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

40 H.-S. Ko and J. Gibbons

When used in the context of normalise (one t h), the type of normalise-aux declares

that it takes h and returns a pair, whose first component is the children of the

minimum-rooted tree, and whose second component is a heap with a hole able

to accommodate t . We will not go through the implementation, but the rank and

ordering constraints implicit in the uses of the 〈 〉 constructor and the 〈〈 〉〉 pattern

synonym mean that it would be hard to make mistakes; the only constraints that

are not currently expressed are that the output is a permutation of the input, for

which some kind of linear typing seems appropriate, as noted by McBride (2014).

Gap 5 (hiding inferable terms)

The most important result that function normalise-aux returns is a BHeapN, but this

is buried inside several levels of nested tuples, which provide type indices and ordering

proofs. Similar things can be said for link ′ and toBHeapN . To prevent the program

from being cluttered by these indices and proofs, we have used the 〈 〉 constructor

and the 〈〈 〉〉 pattern synonym to make them less noticeable typographically. This

points to the need for some mechanism for eliding such ancillary data, and a nice

implementation of dependent intersection types (Kopylov, 2003) could be helpful

here. Bernardy & Moulin’s work on “type theory in colour” (2013) might also be

helpful, but it does not solve our problem directly, because in our index-first setting

the indices are used in a computationally relevant way.

Finally, we can implement extract-min by turning a BHeap into a BHeapM (i.e.,

establishing ordering amongst the roots), normalising it to a BHeapN, and erasing

it to a BHeap, whose first tree contains the minimum as its root, and then applying

extract .

extract-min : {r : Nat} → BHeap r → Maybe (BTree r × BHeap r)

extract-min = extract ◦ fromBHeapM ◦ fromBHeapN ◦ normalise ◦ proj2 ◦ toBHeapM

We remark that, up to now, we have not actually proved that the value extracted

by extract-min is indeed the minimum. That would require us to start from basic

definitions such as “the minimum element in a heap”; the whole proof does not

have much to do with ornamentation, so we omit it here (but include it in the

supplementary code). But it is worth noting that the sophisticated use of indexed

datatypes does facilitate the proof — the indices carry enough information for

most properties to be established by straightforward induction on them (i.e., simple

recursive programs defined by pattern matching).

6 Discussion

This paper stems from a part of Chapter 3 of the first author’s DPhil dissertation (Ko,

2014), which in turn is partly based on both authors’ paper in Progress in Infor-

matics (Ko & Gibbons, 2013a). The definition of the optimised promotion predicate

in terms of parallel composition first appeared in Ko & Gibbons (2013a), and the

mechanism of promotions and upgrades is inspired by Dagand & McBride (2014)

and developed in Ko (2014) as a more straightforward and flexible alternative. In

this paper, we make a slight simplification of the function promotion mechanism,

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 41

and present one way to deal with higher order functions. Ko (2014) uses insertion

into binomial heaps as an example; that example is fully developed in this paper,

by also lifting decrement to extraction and then to minimum extraction via adding

a normalising step.

Williams et al. (2014) have also conducted a case study on ornaments, lifting

OCaml library functions semi-automatically to more informative datatypes. Their

case study is larger, but mainly deals with only non-dependent types. The real power

of ornaments lies in its ability to relate inductive families, and we believe that the

case study about binomial heaps — which tries to push programming with inductive

families to an extreme — has helped to point out how ornaments can help in a

full dependently typed setting, and what conveniences are still lacking to support

programming with ornaments.

We have seen that, in the case study on binomial heaps, the ornament framework

is capable of generating all sorts of types and operations that help the programmer to

move between more informative and less informative variants of datatypes, namely

Bin (binary numbers), BHeap (binomial heaps indexed with starting rank), BHeapU

(BHeap indexed additionally with the underlying binary number), BHeapM (BHeap

indexed additionally with the minimum element), and BHeapN (BHeapM indexed

additionally with a normalisation flag). The ornament framework also effectively

guides the lifting of increment and decrement to insertion and extraction, and

establishes coherence by construction. Finally, by carefully designing the datatypes

BHeapM and BHeapN and employing McBride (2014)’s instance argument technique

for managing ordering witnesses, we are able to express the heap normalisation

algorithm (for minimum extraction) in a syntactically simple program which is

nevertheless guaranteed by its type to maintain the rank and ordering constraints.

During our development, we have also encountered some inconveniences, which

we identify as “gaps”. Of the five gaps we identify (on pages 9, 10, 16, 38, and 40),

Gaps 1, 2, and 3 are about higher level presentation of index-first inductive families

and ornaments, and Gap 5 is about hiding inferable terms in programs — these all

call for better language support, so that we could read and write dependently typed

programs more easily. The remaining Gap 4 concerns coalgebraic ornamentation,

which calls for further investigation into programming methodology. We look

forward to advances that can fill these gaps.

Acknowledgments

Most of this work was done whilst the first author was in Oxford, supported by

a Clarendon Scholarship and by the UK EPSRC-funded project Reusability and

Dependent Types (EP/G034516/1). The first author then relocated to Japan and is

supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid

for Scientific Research (A) No. 25240009. We are indebted to Conor McBride for

inspiration, not least in introducing us to ornaments and index-first datatypes. We

would also like to thank Ralf Hinze and Venanzio Capretta for their insightful

comments on the binomial heaps development during the first author’s DPhil viva.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

42 H.-S. Ko and J. Gibbons

Thanks are also due to the anonymous referees for their thorough reviewing and

invaluable comments.

Supplementary Material

To view supplementary material for this article, please visit https://doi.10.1017/

S0956796816000307.

References

Bernardy, J.-P. & Moulin, G. (2013) Type theory in color. In Proceedings of International

Conference on Functional Programming, Tarmo Uustalu (ed), ICFP’13. New York, NY,

USA: ACM, pp. 61–72.

Bove, A. & Dybjer, P. (2009) Dependent types at work. In Language Engineering and Rigorous

Software Development, Ana Bove, Luı́s Soares Barbosa, Alberto Pardo, and Jorge Sousa

Pinto (eds), Lecture Notes in Computer Science, vol. 5520. Berlin, Germany: Springer-

Verlag, pp. 57–99.

Brady, E., McBride, C. & McKinna, J. (2004) Inductive families need not store their indices.

In Types for Proofs and Programs, Stefano Berardi, Mario Coppo, and Ferruccio Damiani

(eds), Lecture Notes in Computer Science, vol. 3085. Berlin, Germany: Springer-Verlag, pp.

115–129.

Chapman, J., Dagand, P.-É., McBride, C. & Morris, P. (2010) The gentle art of levitation. In

Proceedings of International Conference on Functional Programming, Stephanie Weirich

(ed), ICFP’10. New York, NY, USA: ACM, pp. 3–14.

Cockx, J., Devriese, D. & Piessens, F. (2014) Pattern matching without K. In International

Conference on Functional Programming, Manuel M.T. Chakravarty (ed), ICFP’14. New

York, NY, USA: ACM, pp. 257–268.

Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R., Schürr, A. & Terwilliger, J. F.

(2009) Bidirectional transformations: A cross-discipline perspective. In Proceedings of

International Conference on Model Transformation, Richard F. Paige (ed), Lecture Notes

in Computer Science, vol. 5563. Berlin, Germany: Springer-Verlag, pp. 260–283.

Dagand, P.-É. & McBride, C. (2013) Elaborating Inductive Definitions. In Journées

Francophones des Langages Applicatifs, JFLA’13. Rocquencourt, France: INRIA.

Dagand, P.-É. & McBride, C. (2014) Transporting functions across ornaments. J. Funct.

Program. 24(2–3), 316–383.

Devriese, D. & Piessens, F. (2011) On the bright side of type classes: Instance arguments

in Agda. In Proceedings of International Conference on Functional Programming, Olivier

Danvy (ed), ICFP’11. New York, NY, USA: ACM, pp. 143–155.

Dybjer, P. (1994) Inductive families. Form. Asp. Comput. 6(4), 440–465.

Goguen, H., McBride, C. & McKinna, J. (2006) Eliminating dependent pattern matching.

In Algebra, Meaning, and Computation, Kokichi Futatsugi, Jean-Pierre Jouannaud, and

José Meseguer, (eds), Lecture Notes in Computer Science, vol. 4060. Berlin, Germany:

Springer-Verlag, pp. 521–540.

Ko, H.-S. (2014) Analysis and Synthesis of Inductive Families. DPhil Thesis, University of

Oxford.

Ko, H.-S. & Gibbons, J. (2013a) Modularising inductive families. Prog. Informat. 10, 65–88.

Ko, H.-S. & Gibbons, J. (2013b) Relational algebraic ornaments. In Dependently Typed

Programming, Stephanie Weirich (ed), DTP’13. New York, NY, USA: ACM, pp. 37–48.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

Programming with ornaments 43

Kopylov, A. (2003) Dependent intersection: A new way of defining records in type theory.

In Logic in Computer Science, Phokion G. Kolaitis (ed), LICS’03. Washington, DC, USA:

IEEE, pp. 86–95.

Martin-Löf, P. (1984) Intuitionistic Type Theory. Bibliopolis, Napoli.

McBride, C. (2011) Ornamental Algebras, Algebraic Ornaments. Unpublished manuscript.

McBride, C. (2014) How to keep your neighbours in order. In Proceedings of International

Conference on Functional Programming, Manuel M.T. Chakravarty (ed), ICFP’14. New

York, NY, USA: ACM, pp. 297–309.

McBride, C. & McKinna, J. (2004) The view from the left. J. Funct. Program. 14(1), 69–111.

Norell, U. (2007) Towards a Practical Programming Language Based on Dependent Type

Theory. PhD Thesis, Chalmers University of Technology.

Norell, U. (2009) Dependently typed programming in Agda. In Advanced Functional

Programming, Pieter Koopman, Rinus Plasmeijer, and Doaitse Swierstra (eds), Lecture

Notes in Computer Science, vol. 5832. Berlin, Germany: Springer-Verlag, pp. 230–266.

Okasaki, C. (1999) Purely Functional Data Structures. Cambridge University Press.

Sheard, T. & Linger, N. (2007) Programming in Ωmega. In Central European Functional

Programming School, Zoltán Horváth, Rinus Plasmeijer, Anna Soós, and Viktória Zsók

(eds), Lecture Notes in Computer Science, vol. 5161. Berlin, Germany: Springer-Verlag,

pp. 158–227.

Williams, T., Dagand, P.-É. & Rémy, D. (2014) Ornaments in practice. In Workshop on

Generic Programming, José Pedro Magalhäes and Tiark Rompf (eds), WGP’14. New York,

NY, USA: ACM, pp. 15–24.

https://doi.org/10.1017/S0956796816000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000307

	Introduction
	Descriptions: encoding index-first inductive families
	Index-first inductive families
	Universe construction
	Encoding datatypes as descriptions
	Functions on index-first datatypes

	Ornaments: relating structurally similar datatypes
	Understanding ornaments by examples
	Ornamental descriptions
	Ornamental promotion isomorphisms

	Promotions and upgrades: lifting ornaments for function types
	Promotions: axiomatising the ornamental relationship
	Towards promotions for function types
	Upgrades: lifting promotions for function types

	Case study: binomial heaps
	Binomial trees
	From binary numbers to binomial heaps
	Increment and insertion
	Decrement and extraction
	Minimum extraction

	Discussion
	References

