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1. Introduction. The aim of this work is to present a new approach to the concept
of essential Fredholm complex of Banach spaces ([10], [2]; see also [11], [4], [6], [7] etc.
for further connections), by using non-linear homogeneous mappings. We obtain some
generalized homotopic properties of the class of essential Fredholm complexes, in our
sense, which are then applied to establish its relationship with similar concepts. We also
prove the stability of this class under small perturbations with respect to the gap topology.

Throughout this paper we shall work with linear spaces over the field K, which is
either the real field U or the complex one C. If X,Y are Banach spaces over IK, we denote
by Z£{X, Y) the space of all linear and continuous operators from X into Y. The subspace
of £{X, Y) consisting of all compact operators will be designated by 3V(X, Y). Let
%!(X, Y) be the space of all IK-homogeneous and continuous operators from X to Y, so
that T{Xx) = XT{x) but possibly T{x + y)=t T(x) + T(y). Endowed with the usual
operations and with the norm defined as in the case of linear operators, the space
ffl(X, Y) becomes a Banach space which contains !£{X, Y) as a closed subspace.
Moreover, if %'3€{X, Y) is the subspace of all compact operators from %(X, Y) (the
definition of a compact IK-homogeneous operator is the same as for a linear operator),
then dCSCiX, Y) is a closed subspace of 3t(X, Y) and it obviously contains 3C(X, Y) (see
[12], [13] or [15] for details).

Let BanK be the category whose objects are Banach spaces over IK and whose
morphisms are bounded IK-linear operators. In the present work a complex in the
category BanK is a sequence A = (Ap)p^0, where Ap e i£{Xp, Xp^), ApAp+1 = 0 and Xp is
a Banach space over IK for every integer p 3= 0, with Ar_1 = {0}, and therefore Ao = 0. In
addition, we assume that there exists an integer n ^ O (depending upon A) such that
Xp = {0} for all p 3= n + 1 (and therefore Ap = 0 if p 5= n + 1). In other words, we work
only with complexes of finite length. A complex A = (Ap)pS=0 can be represented in the
usual way, that is, as a sequence of the form

0 >Xn^Xn.^...^X0 >0.

Nevertheless, since the space Xp is determined by the operator Ap (and it will be called
in the sequel the domain of definition of Ap), we prefer the concentrated notation

For a given complex A = (Ap)pS:0, we shall denote by Hp(A) the quotient
N(Ap)/R(Ap+l), where N(Ap) is the null-space of Ap and R(Ap+l) is the range of Ap+1

(as a rule, we shall use the notation from [9]), that is, the homology of the complex A.
When HP{A) = {0} for all integers p^0, the complex A is said to be exact. More
generally, if dimKHp(A) <°° for all p 3=0, then the complex A is said to be Fredholm. In
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this case, one can define the index of A by the formula

which has some stability properties (see [4], [14], [1], [2] etc.).
An essential complex ([10], [2]) in the category Ban^ is a sequence A = (Ap)pS:0,

where Ap e Z£{XP, Xp_x), ApAp+l e 3£(XP+U Xp_x) and Xp is a Banach space over IK for
each integer p 5*0, with X_x = {0}. In addition, there exists an integer n 2=0 (depending
upon A) such that Xp = 0 for all p s* n +1. Obviously, every complex is an essential
complex.

A standard procedure to study essential complexes is to transform them into ordinary
ones by means of certain functors. We shall describe in the following three functors of this
type.

(1) The functor Az. Let Z be a fixed Banach space. For every Banach space X, we
denote by kz(X) the quotient Z£(Z, X)/5£(Z, X). Note that every linear operator
S e Z£(X, Y) induces, by left multiplication, a linear and continuous operator Az(5) from
kz(X) into AZ(Y). It is easily seen that the assignment Az defines a covariant functor from
the category BanK into itself. In addition, one has AZ(S) = 0 for every Banach space Z iff
5 e 3C(X, Y). This shows that if A = (Ap)pSs0 is an essential complex, then XZ(A) =
(kz(Ap))pS,0 is a complex.

The idea of studying classes of linear operators that are equivalent modulo compact
operators goes back to Calkin. In connection with essential complexes, the functor Az has
been used in [10].

(2) The functor %z. Let Z be again a fixed Banach space. For every Banach space X
we denote by Xz(X) the quotient %(Z, X)/XSI6(Z, X). If S e %{X, Y), then the left
multiplication by 5 induces a linear and continuous operator from Xz(X) into Xz(Y). It is
straightforward to see that Xz defines a covariant functor in the category Ban^. Moreover,
we have #Z(S) = 0 for all Banach spaces Z iff 5 is compact. Therefore the functor Xz a ' s o

maps the class of essential complexes into the class of ordinary ones. This functor is
seemingly new.

(3) The functor K. For every Banach space X let l°°(X) (resp. r(X)) be the Banach
space of all bounded (resp. totally bounded) sequences consisting of elements of X,
endowed with the natural linear structure and topology. Then we consider the quotient
K(X) = r(X)/r(X). Every operator S e SE{X, Y) induces a linear and continuous
operator K(S) from K{X) into K{Y) by its action on coordinates. We obtain again a
covariant functor in the category BanK, such that K(S) = 0 iff 5 is compact.

The functor K, which had been known for some time (see, for instance, [3]), was
used to study essential complexes in [6], [7], [2] etc.

The above functors are needed to define various concepts of essential Fredholm
complexes.

DEFINITION 1.1. Let A = (Ap)p^0 be an essential complex in the category BanK. We
say that A is
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(1) X-Fredholm if the complex XZ(A) = (Xz(Ap))pS,0 is exact for every Banach
space Z;

(2) x-Fredholm if the complex Xz(A) = (Xz(Ap))p&0 is exact for every Banach
space Z;

(3) K-Fredholm if the complex K(A) = {K{AP))P^Q is exact.

Let us mention that an essential A-Fredholm complex is called in [10] simply
Fredholm, and an essential «r-Fredholm complex is called in [2] essentially Fredholm.

The purpose of this paper is to introduce the class of essential ^-Fredholm
complexes, to establish its relationship with the other classes of essential Fredholm
complexes via some generalized homotopic properties, and to prove its stability under
small perturbations with respect to the gap topology. Unlike the class of essential
A-Fredholm complexes, the class of essential #-Fredholm complexes contains the family
of all Fredholm complexes (see Theorem 2.7). Nevertheless, some of the properties of
essential A-Fredholm complexes can be restated in the context of essential ^-Fredholm
complexes, as we shall see in the next section.

2. Generalized homotopic properties. Let A = {Ap)pls0 and B = (Bp)p^0 be two
essential complexes in the category Ban^. Let also Xp (resp. Yp) be the domain of
definition of Ap (resp. Bp) for every p 3= 0.

An essential morphism of A into B is a family of linear operators F = {Fp)p^0 such
that Fp e 2(XP, Yp) and Bp+lFp+1 - FpAp+, e X(XP+U Yp) for all p >0.

The families 1 = (lp)pS=0 and 0 = (0p)p3=0, where lp is the identity on Xp and 0p is
the zero map on Xp, are obviously essential morphisms of the essential complex
A = (Ap)pS,0 into itself.

REMARK 2.1. The essential morphism F = (FP)P^O of A = (Ap)pSc0 into B = (Bp)ps0

induces a linear map from Hp{xz(A)) into Hp{xz(B)) for each p 3=0 and every Banach
space Z. Indeed, if a e NixziAp)) a°d o0 e 3€(Z, Xp) is in the equivalence class o, then
ApoQ e XSKiZ.-Xp-i). Therefore BpFpo0 e X%(Z, Yp^), so that the coset of Fpo0 is in the
null-space of Xz(Bp). If, in addition, o e R(xz(Ap+i))> a similar argument shows that the
coset of Fpo0 is in R(xz(B

P+i))-

DEFINITION 2.2. Let A = (Ap)p^0 and B = (Bp)p^0 be two essential complexes and let
Xp (resp. Yp) be the domain of definition of Ap (resp. Bp). Let also F = (Fp)p^0 and
G = (Gp)pS,0 be two essential morphisms of A into B. We say that F and G are
X-homotopic if there exists a family of homogeneous operators 6 = (6p)p^0, where
dp e X(XP, Yp+1), such that

Fp-Gp- Bp+l6p - 6P^AP e XX(XP, Yp), p^O, (2.1)
with 0_i = 0.

Note that if 6' = (0P)P&O and 6" = (0P)P&O satisfy (2.1), then for every t e [0, 1] the
family 6{i) = (td'p + (1 - t)d'p)ps0 also satisfies (2.1).

If in Definition 2.2 we can choose the operators (0p)p5sO to be K-linear, then we say
that F and G are X-homotopic.
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PROPOSITION 2.3. Let A, B, F, G be as in Definition 2.2. If F and G are %-homotopic,
then they induce (by Remark 2.1) the same map from Hp(xz{A)) into Hp(xz{B)) for each
p^O and every Banach space Z.

Proof. Since F and G are ^-homotopic iff F -G = (FP — Gp)p^0 and zero are
^-homotopic, we may assume with no loss of generality that F and G = 0 are
^-homotopic. Then we shall show that the map induced by F from Hp(xz(A)) into
Hp(xz(B}) is equal to zero. Indeed, if ae N(xz(Ap)) and o0eo (as in Remark 2.1), then,
from (2.1), we infer *hat Fpo0 - Bp+ldpo0 e 3Sf̂ f(Z, Yp) (since Qp_xApaa is compact). This
shows that the coset of Fpo0 equals the coset of Bp+16po0, that is, it is in R(xz(Bp+1)).
Hence the action induced by F from Hp(xz(A)) into Hp(xz(B)) must be null.

If A = (Ap)p^0 is an essential ^-Fredholm complex and Xp is the domain of definition
of Ap, then there are linear operators Bp e Z£(XP, Xp+1) and Cp e 3£(Xp, Xp) such that
Ap+lBp + Bp-yAp = lp — Cp for all /? 3=0. The converse is also true (see [10, Proposition
2.3]). In other words, an essential complex is A-Fredholm iff the identity and the zero
morphism on it are A-homotopic. A similar result holds for essential ^-Fredholm
complexes.

THEOREM 2.4. An essential complex A = (Ap)p^0 is x~Fredholm if and only if the
identity on A is x-homotopic to zero.

Proof. If the identity of A is %-homotopic to zero, it follows from Proposition 2.3
that the identity on Hp(xz(A)) is zero for each integer/? s=0 and every Banach space Z.
This forces the spaces Hp(xz(A)) to be zero, that is, the essential complex A is
^-Fredholm.

Conversely, we shall use an inductive argument inspired by the proof of [10,
Proposition 2.3]. We assume that the complex Xz(A) is exact for every Banach space Z.
We shall show that there are operators dp e %(Xp, Xp+l) and vp e WdlC(Xp, Xp) such that

Ap+16p + dp^Ap = lp-vp, p^ 0, (2.2)

with (9_i = 0, where Xp is the domain of definition of Ap. We find the operators 6P and vp

by induction with respect to p .
If p = 0, then the exactness of the complex Xz{A) for Z = X0 shows that we can

choose an operator d0e %€{XQ, X^) such that Axd0 — \oejfC$((XQ, Xo). Hence we may
define vo = IO-A^Q.

Assume now that we have found the mappings 6q and vq for all q =£p. Note that

— vp —
= vpAp+l + dp_xApAp+1 e XX(Xp+l, Xp),

by (2.2). From the exactness of the complex Xz{A) with Z = Xp+l, we deduce the
existence of an operator 6p+l e %(XP+U Xp+2) with Ap+28P+1 = lp+l - 6pAp+l - vp+u

where vp+1eXX(Xp+l,Xp+1).
This shows that equations (2.2) have solutions for all p s= 0, that is, the identity on A

and zero are ^-homotopic.

https://doi.org/10.1017/S0017089500007576 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007576


HOMOGENEOUS OPERATORS 77

COROLLARY 2.5. Let A = (Ap)ps0 be an essential complex and let Xp be the domain of
definition of Ap. Then A is %-Fredholm if and only if the complex Xz(A) is exact for each Z
in the family (Xp)p»0.

Proof. It follows from the proof of Theorem 2.4 that equations (2.2) have solutions
when Xz{A) is exact only for those Z in the family (Xp)pls0.

COROLLARY 2.6. Let A = (Ap)pS,0 be an essential complex.
(1) If A is k-Fredholm, then A is %-Fredholm.
(2) If A is x-Fredholm, then A is K-Fredholm.

Proof. The assertion (1) follows from [10, Proposition 2.3] via Theorem 2.4.
Let us prove the assertion (2). Let us fix an integer p^O, let Xp be the domain of

definition of Ap and let {xk}k be a sequence in F(XP) such that {Apxk}k e x{Xp_x). If we
choose dp as in (2.2), we can see that {Ap+lyk -xk}k e r(Xp), where yk = 6p(xk), and
hence {yk}k er(Xp+1). In other words, the complex K(A) is exact, that is, A is
*c-Fredholm.

The class of essential %-Fredholm complexes contains the class of Fredholm
complexes, via Theorem 2.4. The next two results apply to complexes, not essential
complexes.

THEOREM 2.7. Let A = (Ap)p^0 be a complex in the category Ban^. Then A is
Fredholm iff the identity of A and zero are x-homotopic.

Proof. Assume first that A is a Fredholm complex, that is, dimK HP(A) < °o for every
p 3=0. In particular, the space R(Ap+l) is closed and of finite codimension in N(AP). Let
jthp be a linear projection of N(AP) onto R(Ap+l). Let also n2,p be a homogeneous
projection of Xp onto N(AP) (see, for instance, [15, Corollary 1.2]). Then np is a
homogeneous projection of Xp onto R(Ap+l), where np = nUpn2,p. Let Cp:Xp-^>
XpIN{Ap) be the canonical mapping and let pp :XPIN(AP)^>-Xp be the homogeneous
lifting associated with JT2,P [15], that is, ppCp = lp — n2p. We define a mapping
dp e X(Xp, Xp+i) in the following way. Let

Bp+l:Xp+l/N(Ap+1)->R(Ap+1)

be the bijective operator induced by Ap+1. Then (Bp+j)"1 is a bounded operator, by the
closed graph theorem. Set 6P = pp+l (BP+1)~

1JTP, which is a continuous and homogeneous
mapping from Xp into Xp+X for allp 3= 0. We shall show that the mappings dp satisfy (2.2).

Indeed, let x eXp, where p s* 0 is fixed. Note that

dp^(APx) = (pp{BpT
xnp^AP)<,x) = (pp{Bpy'){Apx) = pp(Cpx) = x - n2,p(x).

On the other hand, since np(x) e R(Ap+l), we can write JIP(X) = AP+1V for some
v e Xp+l. Hence

Ap+i6p(x) = (Ap+1pp+1(Bp+1)"1^p)(x)

= {Ap+xpp^{Bp+iy
l){Ap+lv) = (Ap+lpp+1Cp+1)(v)

= Ap+1(v - n2iP+x(v)) = Ap+1v = jcp(x).
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Consequently,

Ap+1Op(x) + Bp-xiApX) = x- vp(x), x e Xp,

and the homogeneous mapping

vp = ^2,P ~np = ( lp | N(AP) - JtUp)jt2tP

is compact, since the linear operator lp \ N(AP) - nlp is a finite rank projection.
Therefore the identity on the essential complex A is ^-homotopic to zero.

Conversely, let A be a complex such that its identity and zero are ^-homotopic. Then
we can find operators 6P e W(XP, Xp+X) and vp e %^€(XP, Xp) such that (2.2) is fulfilled.
By using (2.2), we shall derive that the complex A is Fredholm.

We first prove that R(AP) is a closed subspace of Xp^i for every p^O. If this were
not true for some p, then there would exist a sequence {yk}k a R(AP), yk = Ap{xk), such
that yk^>0 (k-*<*>) but dist(**, N(Ap)) = 1 for all k (where "dist" stands for distance).
The sequence {xk}k can obviously be assumed bounded. From the equality

Ap+1ep(xk) + op-x(yk)=xk- vp(xk),

which follows from (2.2), we infer that the sequence {xk — Ap+ldp(xk)}k contains a
convergent subsequence. Therefore, with no loss of generality, we may assume that

xk-Ap+xOp{xk)-*veXp (k^K*>).

Then

Ap(xk-Ap+16p(xk))=Apxk =yk^>0 (fc->°°),

so that v e N(AP). Hence

distfo, N(AP)) « ||** - Ap+Xdp{xk) - v\\->0 (k->c°),

which contradicts the choice of the sequence {yk}k. Therefore R(Ap) must be closed for
all p 5= 0.

We now prove that dimK HP(A) < o° for each p 5* 0. If this were not true for a certain
p, then in the Banach space N(Ap)/R(Ap+l) there would exist a bounded sequence {f;k}k

which wouldn't contain any convergent subsequence. Let xk e %k be chosen such that the
sequence {xk}k is bounded in N(Ap). Then we have

Ap+1dp(xk) - dp^ApXk) = Ap+xQp{xk) = xk- vp(xk),

as a consequence of (2.2). Since vp is compact, the sequence {vp(xk)}k contains a
convergent subsequence. Therefore

|* = xk + R(AP+1) = vp(xk) + R(Ap+l)

contains a convergent subsequence, which contradicts the choice of the sequence {%k}k.
Consequently the complex A is Fredholm.

We note that the "sufficiency" in Theorem 2.7 can also be obtained from the results
of [6] or [7].
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COROLLARY 2.8. Let A - (Ap)p^0 be a complex in the category BanK. The following
assertions are equivalent:

(1) A is Fredholm;
(2) A is x-Fredholm;
(3) A is K-Fredholm.

Proof. The equivalence (1)<=>(2) follows from Theorems 2.4 and 2.7 whereas the
equivalence (l)O(3) follows from [6] or [7].

REMARK 2.9. The class of Fredholm complexes is strictly larger than the class of
those complexes that are A-Fredholm. Indeed, let Xt be a Banach space which contains a
closed linear subspace X2 that is not complemented in Xx. Let also XO = XJX2. If
A2:X2—*Xl is the inclusion and Ax: Xx—*Xo is the canonical mapping, then the complex
A = (0, A2, AUQ) is Fredholm but not A-Fredholm, in virtue of [6, Theorem 2.7]. Hence
the complex Az(/1) fails to be exact for at least one Z € {Xo, Xx, X2} by [10, Proposition
2.3].

It is known that for every essential A-Fredholm complex one can define an index that
is stable under compact and small perturbations, and coincides with the natural one in
the case of Fredholm complexes (see [10] for details). Therefore, a natural question arises
in our context: is it possible to assign an index to every essential x-Fredholm complex? Of
course, such an index should be stable under small and compact perturbations and
coincide with the usual one in the case of Fredholm complexes. This problem, whose
answer is not known to the author of this text, is intimately connected with the Problem
5.1 from [1] as well as with the problem raised in [2, Remark 4.8(3)], which have received
so far only partial answers (see, for instance, [8]).

Finally, let us remark that Theorem 2.7 leads to a non-linear version of a well-known
characterization of Fredholm operators.

COROLLARY 2.10. Let Xlt Xo be Banach spaces. A linear operator At e Z£(XX, Xo) is
Fredholm if and only if there exists a homogeneous operator 0, e 3€(X0, Xi) such that
Al6l - l0 € %W(X0, Xo) and 6AA, - 1, e XW(X,, X,).

3. Stability under small perturbations. In this section we shall prove that the class
of essential ^-Fredholm complexes is stable under perturbations that are small with
respect to the gap topology (see [6], [7], [10], [2] etc. for similar results concerning the
other types of essential Fredholm complexes). We shall rely heavily upon some
perturbation results from [2].

Let % be a fixed Banach space over the field K. We denote by <S(#T) the family of all
closed linear subspaces of %. The space •£(#?) is endowed with the gap topology, which is
denned by means of the functions 6{X, y) = sup{dist(x, Y);x eX, \\x\\ = 1} and
S(X, Y) = max{6(X, Y), d(Y, X)}, where X,Ye %X) (see [9, IV.2.1]).

LEMMA 3.1. Let X,Y e%%) and let 8>d(X, Y). Then there exists an operator
x e %(X, Y) such that \\x - z(x)\\ « 6 \\x\\ for each xeX.
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Proof. Let S(X) be the unit sphere of X and let x e S(X). Then there exists a vector
yxeY such that ||JC —yx\\ < 5- Let Vx be an open neighbourhood of x in S(X) such that
||u-.y^H <<5 for all v e Vx. The family {VX}X€S(X) is an open cover of the metric (and
therefore paracompact) space S(X), so that we can choose a partition of unity
subordinated to this cover. In other words, there exists a family of continuous and
non-negative functions {fa}aeA on S(X) such that supp(/a) c VXa for every ae A, the
family of closed sets {supp(/a)}a6/1 is locally finite and E <*<=/»/*(*) = 1 f°r aU x e S(X). We
define a continuous Y-valued function by the formula

where yXa corresponds to the vector xa e VXa, as above. Obviously, ||JC - TO(JC)|| =S 8 for all
x e S(X). Since \\yxj\ «s <5 + \\xa\\ =£ 6 + 1, the function T0 is bounded.

We shall obtain from x0 a homogeneous operator by using a procedure inspired from
[16, Theorem 1.1]. We first extend the function T0 to the whole space X by setting
TX(JC) = ||*|| TOOC/H-KII) if x =£0 and Ti(0) = 0. Since ro is bounded, it is easily seen that rx is
continuous on X. Moreover, TX is positive-homogeneous. In addition, if x

and the final estimate also holds for x = 0.

We shall discuss two cases. If IK = IR, then we define

T(*) = 2 - 1 ( T 1 ( * ) - T 1 ( - * ) ) .

The function x is IR-homogeneous, Y-valued and continuous on X. Moreover,

for all x e X.
If IK = C, then we define

r2*
x(x) = (2JT)-1 e-"r1(e"*) dt, xeX.

Jo
It is easy to check that r is continuous, Y-valued and C-homogeneous. Furthermore,

IUo II Jo
and the proof of the lemma is complete.

LEMMA 3.2. Let X, Y e ^(#f). Then for every Banach space Z we have the estimates

, X), XX(Z, Y))« 8(X, Y).

Proof. Let 8 > 6(X, Y). By the previous lemma, we can choose x e %C{X, Y) such
that ||je-T(jc)||«sS||je|| for all xeX. Let oe%(Z,X) be arbitrary and let d = xoe
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X(Z, Y). Then

| |a-0 | | = sup \\o(x)-r(a(x))\\^6 sup \\o{x)\\ * 6 \\o\\.

Therefore 6(5if(Z, X), 3€(Z, Y))=£ 6. Since 6 > d(X, Y) is arbitrary, we infer easily the
first estimate from the statement.

To obtain the second estimate from the statement, we only note that if a e
3iT5if(Z, X), then 6 = roe %%C(Z, Y). A similar argument then leads to the desired
conclusion.

LEMMA 3.3. Let Xu Yu X2, Y2e <$(%), let S1e^(X1,Yl) and let S2e^£{X2,Y2).
Then

6(XUX2)^(1 + 115,11)6(5!, 5,).

In addition, if (1 + 115,11)6(52, 5,) < 1, then

H&H « ( 1 - (1 + 115,11)6(52, SOr ' t f l + l|5,||)6(52, 5,) + ||5,||).

This result is contained in [2, Lemma 4.6].

LEMMA 3.4. Let Xu Y,, X2, Y2 e <§{%), and let 5, e X{Xh Yj) (J = 1,2). We define the
operators M,: Sif(Z, X,)-* W(Z, Y/) by the equality MjO = Sj°o (a e 3if(Z, A})), where Z
is an arbitrary Banach space. Then we have the estimate 6{MX, M2) ^21/26(5,, 5 )̂.

Proof. We have, by definition (see [9]),

6(5,, 52) = 6(G(5,), G(52)),

where G(St) e %S£ X #f) is the graph of the operator 5; (/ = 1,2).
Let 6 > 6 ( 5 , , 52). By virtue of Lemma 3.1, there exists an operator

T e %(G{SX), G(52)) such that

\\{x,Sxx)-T{x,Slx)\\^6\\{x,Sxx)\\, xeXx. (3.1)

We fix an element a, e 9if(Z, Xt). Then the map

is continuous and K-homogeneous. Therefore it must be of the form

T(OI(Z), SIOI(Z)) = (o2(z), 52a2(z)), zeZ,

where a2 e $?(Z, X2). If we assume that the norm of S£x% is given by ||(x,,x2)||2 =
ll*ill2+ Itall2* from the estimate (3.1) we infer that

||a,(z) - o2(z)||2 + ||5,a,(z) - 52a2(z)||2

« «52(||a,(z)||2 + ||S,a,(z)||2)« <52(||a,||2

S O t h a t H a - a | | 2 « 5 2 ( | | a | | 2
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Hence
| | (a, (M,a,)-(a2,M2a2) | | 2«2d2( | |a , | | 2+| |M,a, | | 2) ,

which leads to the desired estimate.
To state the next lemma, we need a special notation from [2]. Let X, Xo, Y, Yoe

be such that XocX and Yoc Y, and let 5 e <e(X/X0, Y/Yo). Then we set

G0(S) = {(x,y)e%x%: S(x + Xo) = y + Yo}.

If X, Xo, Y, Yo e %%) have similar properties and 5 e %(X/X0, Y/Yo), then we define

<5O(S,S) = <5(GO(S),GO(S)),

ao(5, S) = max{<50(5, S), do(S, S)},

which are computed in %% x %).

LEMMA 3.5. Let XUYU X2, Y2 e %X) and let S, € 2(Xf, Y,) (j = 1,2). Then for every
Banach space Z we have the estimate

3(l + ||51||)max{«5(y1, Y2), 6{SU

Proo/. Let (50>«5(y1, Y2), let 6><5(51(S2) and let (a,, 0 , ) e G0Ofz(5,)). Then
6x-SxoxeJ{%{Z, 70- By Lemma 3.2, we can choose v2 e ^T5if(Z, Y2) such that

With the notation of Lemma 3.4, (CT,, 5,a,) e G(MX). Then, by this lemma, we can
find an element (cr2, S ^ ) e G{M2) such that

Iki-a2 | | 2+| |51a,-52a2 | | 2«2<52( | |a1 | | 2+| |51a, | | 2) .

If we set d2 = S2a2 + v2 e X(Z, Y2), then (a2, 02) e G0(^z(52)). In addition,

Iki - ^ll2 + 11^1" 02||2« lla, - a2||
2 + (||a, - 5,(7, - v2|| + ||5,a,

<9(1 + ||5,|| | | | | )

whence we obtain the claimed estimate.
Let C = (Cp)pS=0 be a complex such that the domain of definition of Cp is of the form

XplYp, where Xp, Yp e %%), Yp c Xp for all p ^ 0. Let also C = (Cp)p&0 be a complex of
the same type, that is, Cp is defined on Xp/Yp, with Xp, Yp e %%), Yp<zXp. Then [2] one
can define the quantity

S0(C, C) = sup 8O(CP, Cp), (3.3)

with SO(CP, Cp) given by (3.2). We also set

{C) My{Cp), (3.4)
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where y(Cp) = inf{||CpJc||; dist(x, N{CP)) = 1} is the reduced minimum modulus of Cp

([9]). If C is Fredholm, in particular if C is exact, then obviously y(C) > 0.

PROPOSITION 3.6. Let C and C be as above. If C is exact and
38O(C, C)(l + y{C)-2)m < 1, then C is also exact.

Proof. The assertion is a consequence of [2, Corollary 2.12]. Indeed, let us define
the numbers

r = y(Cyl 2* max{y(Cp)-\ y(Cp+iy
1},

60 = o0(C, C)3=max{<50(Cp, Cp), 60(Cp+l, Cp + 1)},

>max{(l + y(Cp)-
2)m80(Cp, Cp), (1

Then we have

6 + <50(l + <5)(1 + r2)1'2^6 + 26O(1 + r2)1*2 = 38O(C, C)(l + y(C)'2)1/2< 1,

which insures, by [2, Corollary 2.12], that R(Cp+l) = N(CP) for all p3=0, that is, the
exactness of the complex C.

We can now establish the exactness of the class of ^-Fredholm complexes under
small perturbations. We shall denote by de{3£) the family of those essential complexes
A = (Ap)ps0 such that Xp e ®(#f) for all p^O, where Xp is the domain of definition of Ap.

lfA = (Ap)p^0, B = (Bp)ps0 are members of de{3£), we set

S(A,B) = sup S(AP,BP), (3.5)

where 8(AP, Bp) = max{<5(,4p) Bp), 8{BP, Ap)} ([9]; see also Lemma 3.4).
Let also

pU^II ( p ) p { ) (3.6)
(130

THEOREM 3.7. Let A = (Ap)pS,oe de{%£) be %-Fredholm. Then there exists a positive
number 6A such that if B = (Bp)ps0 e de(ST) and h(A, B)<6A, then B is also x-Fredholm.

Proof. Let Xp be the domain of definition of Ap and let (6p)pS!0 be a fixed family of
homogeneous operators such that dp e %C{XP, Xp+1) and Ap+ldp + Qp-iAp - lp e
%ye{Xp, Xp) for all p 3=0 (which exists by Theorem 2.4). With no loss of generality we
may assume that 8(A, B) is small enough so that

B)^2-\ (3.7)

In particular, (1 + 11^11)6(5,,, Ap)^2~\ and hence

||BJ| « ( ! - ( ! + \\Ap\\)6(Bp, Ap))-\(1 + \\Ap\\)d(Bp, Ap) + \\AP\\)
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by Lemma 3.3. Therefore

(3.8)

Let Z be a fixed Banach space. With (0p)pS=o as above (note that 8P = 0 for all but a
finite family of indices), we have

(3.9)

where r = max{||0p|| :ps=0}. Indeed, let £ > 0 be given, let a e % z ( / l p ) ) for some p
and let a0 e a be such that ||ao|| =£(1 + e) \\o\\. Then, from (2.2),

Xz(Ap+l)(epo0 + %M{Z, Xp+X)) = o.

Moreover,

H0pao + xx(z,xp+l)\\^\\epo0\\*{i + e) \\ep\\ \\o\\.

Using the definition of Y(XZ(AP+1)), we deduce that

Since e > 0 is arbitrary, from the last estimate we derive easily (3.9).
Next we prove that

K(Xz(A), Xz{B)) « 12(1 + \\A\\)26(A, B). (3.10)

Indeed, by Lemma 3.3,

&{XP, y p ) « ( l + max{||>lp||; \\BP\\})8(AP, Bp)

where we have used (3.8). Therefore, Lemma 3.5 and the above calculation show that

Z \, \\BP\\}) x mzx{S(Xp_u yp_,), 8(AP, Bp)}

where Yp is the domain of definition of Bp, which obviously leads to (3.10).
To obtain the final conclusion, we intend to apply Proposition 3.6. Note that

tio(Xz(A), Xz(B))(l + Y(Xz(A))-2)m ^ 36(1 + ||^||)2(1 + r2)mh(A, B), (3.11)

by (3.9) and (3.10). Hence, if
112

B)<1, (3.12)

then, by Proposition 3.6, the complex Xz(B) is also exact. Since the coefficient of S(A, B)
in (3.12) does not depend on Z, the fulfillment of (3.12) (provided (3.7) is also fulfilled),
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implies the exactness of Xz(B) for every Banach space Z, that is, the essential complex B
is ^-Fredholm.

COROLLARY 3.8. The family of%-Fredholm complexes is open in de(ST).
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