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Abstract. A comparison of several known dynamical indicators of chaos based on the numerical
integration of differential variational equations is performed. The comparison is implemented on
the examples of studying dynamics in the planar circular restricted three-body problem.
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1. Introduction

The classical method for distinguishing between regular and chaotic motions in dynam-
ical systems is the calculation of the maximal Lyapunov Characteristic Number (mLCN).
For a continuous dynamical system with n degrees of freedom the mLCN is defined as

mLCN =0 = tlim (Ind/t)

using the solution of the system of motion equations and variational equations:

x = f(x(t), &= %(X(t))é; x,0 € ™, teR (1.1)

Here, t is the independent variable (time), the vector x(t) sets a trajectory in the phase
space of the dynamical system; xqg = x(tg), to = 0 are the initial conditions for the
equations of motion, §(¢) is the tangent vector determining the evolution of initial unit
deviation vector relative to the trajectory x(t); 6 = ||d(¢)]|.

Usually the convergence of Ind/t to o is slow, therefore the reliable estimation of the
mLCN requires a long calculation time. It stimulated the emergence of so-called fast
Lyapunov indicators allowing to study the phase space on relatively short time intervals.

The aim of this research was to compare some often-used fast chaos indicators (here-
after CIs) on the examples of their working in the case of the dynamical system specified
by the equations of the planar circular restricted three-body problem (Szebehely 1967).

2. Numerical Experiments and Results

We selected the following chaos indicators: the Fast Lyapunov Indicator (FLI, Froeschlé
et al. 1997), the Orthogonal Fast Lyapunov Indicator (OFLI, Fouchard et al. 2002), the
Mean Exponential Growth factor of Nearby Orbits (MEGNO, Cincotta & Simo 2000),
the Smaller Alignment Index (SALI, Skokos 2001), and the Average Power Law Exponent
(APLE, Lukes-Gerakopoulos et al. 2008). Specific applications of some listed CIs to the
circular restricted three-body problem were discussed, for example, in (Fouchard et al.
2002; Frouard et al. 2008; Morais & Giuppone 2012).

We used also the Orthogonal Mean Exponential Growth factor of Nearby Orbits
(OMEGNO) introduced by us (Shefer & Koksin 2013). It is determined by

OMEGNO(t) = 2(6 — ¢)/t, (2.1)
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where 6 and ( are calculated by integrating the differential equations
0=Iné,, (=0/t (2.2)

simultaneously with the equations (1.1). We use §; = ||d. (¢)||, where d (t) is the vector
component of §(¢) orthogonal to the direction of the phase flow. The initial conditions
for (2.2) are as follows: 6(0) = 0, ((0) = 0. At ¢t = 0 the right-hand side of the second
equation of system (2.2) is taken equal to zero. OMEGNO(¢) — 0 with ¢ — oo for any
stable periodic orbit. Thus, this MEGNO’s modification gives the indicator, which makes
it possible to separate periodicity in the regular component of the phase space.

The problem considered in this work describes the motion of a massless body P per-
turbed by two massive bodies P, and P, (called primaries) with respective masses 1 —
and g (p < 0.5) moving around their barycenter O. The length unit is such that the
distance between the primaries is unity, and the time unit 7 is such that the orbital
period of the primaries equals 277.

In the rotating frame xQOy, in which P, and P, are located at points with coordinates
(—p,0) and (1 — p,0), respectively, the equations of motion of P are written in the form
i=2g+x—1—p)(e+p)/ri —ple—1+p)/r3, §=-20+y—1—-py/rl—py/r3,
where r? = (2 4+ p)? +y? and r = (x — 1 + p)? +9°.

We accepted that the primaries have equal masses (1 = 0.5), and the Jacobi integral
is equal to 4.

For the initial vector xq = (¢, %0, Y0, %) we took the set of 961 values, where (-
coordinate is uniformly distributed in the interval [—0.49, —0.01] with the step of size
0.0005, £y =0, yo = 0, and gy > 0 is determined from the Jacobi integral.

As a method of numerical integration of differential equations the Dormand—-Prince
algorithm of the 8(7)th order (Hairer et al. 1987) was chosen.

With above-mentioned initial conditions we have calculated the values of the ClIs. The
final values on the time ¢ = 100007 are represented graphically (Fig. 1).

In all the figures obtained the chaotic motion appears separated from the regular
resonant one as a whole. But the MEGNO and the OMEGNO separate these motions
most clearly because these indicators have the universal threshold value (= 2). The FLI,
the OFLI, and the SALI have not reference values clearly discriminating the regular
orbits from the weak chaotic ones.
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Figure 1. Final values of the CIs for an integration time of 100007: (a) FLI, (b) MEGNO,
(¢) SALL (d) OFLL, (e) OMEGNO, (f) APLE.
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There is a difference between the values of the FLI, the OFLI, the SALI, and the APLE
found for x in [—0.44, —0.40] and [—0.065, —0.015]. As both intervals correspond to the
same set of orbits, this difference can be explained only by the relative positions of the
initial vectors xy and &y (analogous conclusions were made by Fouchard et al. (2002)).

A comparison shows that on the curves of the OFLI and the OMEGNO are several
minima, which are not presented on the curves of the FLI and the MEGNQO. These minima,
refer to the presence of periodic orbits in the neighbourhood of the corresponding initial
conditions. The final values of the SALI and the APLE demonstrate minima in the regular
motion areas too, but some of them are not related with the periodic component of the
motion. By the final values of the FLI and the MEGNO it is not possible to identify a
fine structure of the regular component of the motion.

For effective study of large sets of initial conditions with the help of the CIs’ final
values it is important to know the reliability on the CIs’ thresholds that make a confident
distinction between chaotic and regular motions.

We took the same initial conditions as in the previous experiment and identified the
chaotic orbits by the Poincaré surface of section (there are found 263 chaotic orbits,
i.e. 27,4%). The indicators we chose have the theoretical estimations of their thresholds
(time-dependent or time-independent). We splitted the full time of integration (100007)
on 20 sub-intervals per 5007 for each. We have computed the number of chaotic orbits
in each sub-interval with each indicator on the basis of it threshold. We estimated the
reliability on the corresponding threshold by comparing this number with the true count
of chaotic orbits.

The thresholds associated with the FLI and the APLE define all 961 orbits as chaotic
ones for the complete time interval. The thresholds for the MEGNO and the SALI give
the number of chaotic orbits increased approximately 2.5 times. So they are inefficient
too.

The thresholds for the orthogonal indicators are very close to the values allowing to
achieve a stable fraction of the chaotic component, close to the true fraction.

Consequently, the thresholds’ estimations for the FLI, the APLE, the MEGNO, and
the SALI are not reliable and they need an empirical adjustment. The thresholds for the
OFLI and the OMEGNO practically do not require any corrections.

To trace the evolution of the CIs’ values with time for different types of motion, we con-
sidered four representative orbits with the following initial conditions for xy: —0.25065550
(01), —0.35 (O2), —0.28 (O3), —0.08 (Oy4). The values of z, yo, and ¥ are the same as in
the cited above set of initial conditions. The orbit O; is a periodic orbit, O; and O3 are
resonance orbits from the O;’s neighbourhood, O4 belongs to chaotic orbits. The initial
conditions for Oy, O3, and O4 were taken from (Fouchard et al. 2002). The variations of
the CIs’ values for four selected orbits in the time interval 100007 are showed graphically
in a logarithmic time scale (Fig.2).

In this numerical experiment all the Cls clearly separate the regular resonance motion
from the strong chaotic one.

In regard to separation of different levels of the regular motion, here the results of the
CIs’” working can be described as following.

The FLI, the MEGNO, and the APLE for the resonance libration orbits detect their
stable quasi-periodic nature very quickly and show a power of their proximity to O;. But
in this case we can not say uniquely that O; is a periodic orbit. The rest of the CIs not
only separate the quasi-periodic orbits between themselves, but they detect the periodic
orbit. As this takes place, the closer the quasi-periodic orbit to the periodic one the later
their essential distinction is detected.
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Figure 2. Evolution of the CIs with time for the four representative orbits O; (the red line),
O: (the light-blue line), O3 (the dark-blue line), and Oy (the purple line): (a) FLI, (b) MEGNO,
(c¢) SALI, (d) OFLI, (e) OMEGNO, (f) APLE.

For each quasi-periodic orbit the OFLI temporarily takes a constant value (the plateau
in figure) but later it grows linearly with the same slope. In this case the length of the
plateau increases with approaching the quasi-periodic orbit to the periodic one. Hence at
the end of the selected integration interval the OFLI’s value for the orbit more close to
the periodic one is less compared with the OFLI’s value for the more distant orbit.

The OMEGNO’s values for the quasi-periodic orbits in very short time confidently
go away from zero approaching the value 2 from below. The farther the quasi-periodic
orbit is from the periodic one the earlier the OMEGNOQ’s values fall into the nearest
neighbourhood of 2.

The APLE’s values for O1, Oy, and O3 approache unity from above with time. The
closer the quasi-periodic orbit to the periodic one the closer the APLE’s values to unity.

The function 1g(SALI) for the quasi-periodic orbits reaches different constant values.
Here, the closer is the quasi-periodic orbit to the periodic one the lower is the plateau
and the later is reached this plateau.

Thus, the OFLI, the OMEGNO, and the SALI allow to detect and locate periodic
orbits. But the OMEGNO is only CI from these having the universal reference value
(22 0) for periodic motion. The OFLI and the SALI give only relative results, which
require calibration with a known reference orbit.
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