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COUNTING CYCLIC AND SEPARABLE MATRICES
OVER A FINITE FIELD

G.E. WALL

To Bernhard Neumann on his ninetieth birthday
Australiam fato profugus Griffinaque venit litora, ...

A square matrix is called cyclic if its characteristic and minimum polynomials
coincide, separable if the characteristic polynomial has no repeated roots. Recent
results of P. Neumann and Praeger, and of Lehrer, about the numbers of such
matrices over a finite field are sharpened.

1. INTRODUCTION

Let M = M(n,q) denote the algebra of all n x n matrices over the finite field
¥q (q a prime-power) and G = GL(n,q) the corresponding general linear group.
By standard matrix theory, the characteristic and minimum polynomials, cx{t) and
mx{t), of an element X of M satisfy the relations

dx{t) | mx(t) | cx(i),

where dx{t) denotes the product of the distinct irreducible factors of cx{t). We call X
cyclic if cx{t) = mx(t), separable if cx(t) = dx{i). These are the regular and regular
semisimple elements of M in the sense of the theory of algebraic groups.

Denote by CM(n,q),cc(n,q) the proportions of cyclic elements in M,G respec-
tively and by SM{n,q),sc(n,q) the corresponding proportions of separable elements.
Several results about these ratios have been proved in two recent papers. P. Neumann
and Praeger [3], with applications to computational algorithms in mind, obtain numer-
ical bounds for CM(n,q) and SM(n,q). Lehrer [1], in the course of an investigation
into the variety of regular semisimple elements in an algebraic group, derives explicit
formulae for SM{n,q),so{n,q) and proves a "stability" result about their expansions
in powers of q~l. Here we shall prove somewhat sharper versions of these results. For
generalisations to other algebraic groups, which are not touched on here, see Lehrer [1]
and forthcoming papers by Neumann, Praeger and J.E. Fulman.
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254 G.E. Wall [2]

Two of the main results of [3] are that, for n ^ 2,

(1-1) - j / rr < 1 — CM(«)9) <

Thus, for every n ^ 2, the proportions of noncyclic and nonseparable elements in
M(n,q) are, to a first approximation, q~3 and q~* respectively. While these inequali-
ties accurately focus on the numerical values of CM(TI, q) and s\i(n, q) for large q, they
are less effective for small q. For example, when q = 2 the bounds in (1.1) are 1/12
and 1/3.

It is shown here that the four ratios CM(n,q), • • • tend to limits CM(oo,q), • • • as
n —> oo. These limits are evaluated explicitly and estimates are given of the rates at
which they are approached. Our results for the c ratios improve on those of Neumann
and Praeger and provide good estimates for small q. The results for the 5 ratios are
less satisfactory : our bounds, although of the right order of magnitude asymptotically,
give poor results for small n and q.

It is easily seen that all four ratios can be expanded as power series in q~l with
rational coefficients. It is therefore natural to expect that they have the same limiting
values in the sense of the formal power series norm || • ||, given by

(1.3)

where m is the least n for which an ^ 0. We show that this is indeed the case and
get detailed information about the rate of convergence in the sense of the new norm.
Lehrer [1] derives an explicit formula for SM{n,q) (his Kn(q)) and shows (Proposition
8.6) that

where [r] denotes the integral part of r. We show that

with equality if, and only if, n — 1 is a triangular number:

(1.6) n - l = im(m + l) (m = 0,1,2, • • •) .

As a by-product of these results, we verify Lehrer's conjecture (in Example 8.8) that
every coefficient in the expansion of SM(O°,<1) is 0,1 or —1.
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[3] Counting matrices over a finite field 255

We end this Introduction with a brief section by section survey of the paper. Of
central importance are two closely related generating functions

(1.7)
n=0

(1.8)
n=0

These are defined, and their relations to the four ratios explained, in Section 2. The
simple expressions for c\i{n,q), cc{n, q) in terms of the coefficients in (1.7), (1.8) suffice,
in Section 3, to prove the existence of the limits CM(oo,q),cc(oo,q) and to get quite
good estimates of the rates at which they are approached. The object of Section 4 is to
show that

(1.9) a(n,q) = ̂ ( g " 1 ) , a+(n,q) = A+(9"1) ,

where An(t), A+(t) are rational functions with rational coefficients. Since all the poles
of these rational functions are roots of unity, it follows that a(n,q),a+(n,q) can be
expanded as power series in q~1.

Replacing the indeterminate t by a complex variable z, we get a function P(q,z)

analytic for \z\ < 1. The main result of Section 5 is that P(q, z) — 1/(1 — z) is analytic
for \z\ < q, implying that

(1.10) lim (a{n,q)-l)rn =0
71 ^OO

whenever 0 ̂  r < q, and a fortiori that

(1.11) lim a(n,q) = 1 .
n • o o

The limit (1.11) is the key to the explicit evaluation of the four limits CM(°O, q), • • • in
Section 6. A modified version of (1.10) is used in the same section to estimate the rates
of convergence for the s ratios.

We turn in Section 7 to limits in the sense of the norm || • \\q, and here the consid-
erations are again purely formal. By carefully examining log((l — t)P(q,t)) , we show
that

(1.12)

with a certain 2-variable formal power series B(u,t). This result in fact implies (1.5),
the condition for equality following from the subsidiary result that

(1.13) B(0,t) -
m=0
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It would be interesting to know the precise domain of holomorphy of the function
B(w,z) of two complex variables w,z: it appears to contain the region \w\ + \z\ < 1.

The results of this paper could be substantially improved if more were known
about the coefficient of the powers of t in the numerators of the rational functions
An(t),A+(t). As briefly mentioned at the end of Section 4, Lehrer [1] has given a
very interesting interpretation of the formulae for these coefficients as sums of inner
products of certain generalised characters of the symmetric group Sn. Further relevant
information is given in the recent paper of Lehrer and Segal [2].

2. GENERATING FUNCTIONS

In this section we shall derive infinite product formulae for generating functions
CM(<7, 0 > ' ' ' associated with the four ratios CM(n,q), • • • . By convention, these ratios
have the value 1 when n = 0.

It is convenient to begin with

(2.1)
n=0

Let T denote the set of all cyclic elements of G = GL(n, q) and consider the conjugation
action of G on T. By standard matrix theory, two elements of F lie in the same orbit
if, and only if, they have the same characteristic polynomial : let F / denote the orbit
formed by the elements of F with characteristic polynomial / = f(t). If X 6 F / , the
elements of M — M(n,q) that commute with it form a subalgebra isomorphic to

and its stabiliser in G is isomorphic to the group of units, R*j, of Rj. Hence

It follows that

(2-2)

where summation ]£ + is over the monic f(t) of degree n in Fq[t] such that /(0) ^ 0.
We observe now that, if f(t),g(t) are relatively prime, then

Rfg =Rf@Rg
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[5] Counting matrices over a finite field 257

and so

It follows that

R)g=R)xR).

where / = J\ PX is the prime factor decomposition.

If p = p(t) is a monic irreducible polynomial of degree d, write

Then the above considerations show that

where the product J\ 1S taken over all monic irreducible polynomials p(t) except t.

Now, Fp(t) depends only on q and the degree d of p(t). For Rp\ is a local ring

of order qdx whose maximal ideal has order q'1^x~1^, so that

Therefore

A=l

N+(d,q) =N(d,

Define N+(d,q) by

where N(d,q) is the number of monic irreducible polynomials of degree d in Wp[t].
Putting together the results above, we conclude that

here

OO

(2.4) P+(q,u)=Y[(l+u

d=\

L-ru
d'f~d ,\\N+(-d*>

d=l
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The formula for Cc(q,t) can be simplified a little further. By its form, L+(q,u)
is the generating function for the number of monic polynomials f(t) in fp[t] of given
degree such that / (0) ^ 0. In other words,

A=l

Thus we have finally

(2-5) (l [ ] u = t / g

The explicit values of N(n,q) and N+(n,q) are well known : by counting the ele-
ments, and the nonzero elements, of F,» in two different ways, one gets the summation
formulae

(2.6)

(2.7)
d\n

whence, by the Mobius inversion formula,

(2.8) iV(n,
d\n

(2-9) ^
d\n

The calculation of

(2.10)
n=0

follows the same lines, except that only polynomials / with no repeated irreducible
factors are to be taken into account. Thus, Fp(t) is replaced by

and we find that

(2.11) SG(q,t)=P+(q,t).
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The formulae for CM(n,q) and SM{n,q) corresponding to (2.2) involve the extra
factor

q)\

For example, we have

cM{n,q) =u{n,

where summation 53 is now over all monic / of degree n. Accordingly, we introduce
the modified generating function

(2.13) CM(q,t) =
n=0

The previous arguments now carry through to give

CM(q,t)=[L{q,u)P(q,u)]u=t/t,

where

d=l

oo

The form of L(q, u) identifies it as the generating function for the number of monic
polynomials of given degree, so that

Hence finally

(2-15) (l-t)CM(q,t)=[P(q,u)]u=t/q.

For the modified generating function

(2.16) SM(q,t) =
n=0
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we find in the same way that

(2.17) SM(q,t) = P{q,t).

The following identities, implicit in the results above, are set down for reference:

(2.18) P(q,u)=(l+u/(q-l))P+(q,u),

(2.19) (l-qu)

Up to degree 4, we have

(220)

Tii) - ' + ( • - ;

3. IMMEDIATE ESTIMATES

Let

(3.1) ^
n=0

(3.2)
n=0

By (2.18),

(3.3) a(n,q) = a+(n,q) + a+

It is evident that a(n,q),a+(n,q) are rational functions of q with rational coefficients.
Their form will be examined in greater detciil in Section 4.

The expressions for the generating functions CM(? ,* ) , - - - in terms of P(q,u),
P+(q,u) derived in Section 2 translate into the following relations between their coef-
ficients:

(3.4) cM{n,q)/w{n,q) - cM(n - l,g)/w(n - l,q) = a(n,q)q~n ,

(3.5) cG(n, q) - cG{n - 1, q) = (a+(n, q) -a+(n- l,q))q-n ,

(3.6) sM(n,q)/u}(n,q) = a(n,q) ,

(3.7) sG{n,q)=a+(n,q).
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Our aim in the present section is to derive some more or less immediate consequences
of these relations.

The presence of the factor q~n in (3.4), (3.5) makes it much easier to estimate the
c ratios than the 5 ratios. Indeed, on the basis of (3.4) - (3.7) alone, we can prove the
existence of the limits

CM{oo,q)= lim cM(n,q), ca(oo,q) - lim co{n,q)
n—^oo ii—• oo

and give realistic estimates of the rates at which they are approached.

All four ratios CM(TI, q), • • • have the value 1 when n = 1. It is easily checked that,
when n ^ 2

(3.8) 0 < sM(n,q) < cM(n, q) < 1 ,

(3.9) 0<sG{n,q) <cG(n,q)<l .

LEMMA 3 . 1 . T i e sequence

(3.10) c M ( l , « ) , C M ( 2 , « ) , • • •

is strictly decreasing and so the limit c\f(oo,q) exists. If n ^ 3 , we have

(3.11) cM(n - l ,g) - cM(n,q) < q~n - g""" 3

PROOF: Multiplying (3.4) through by w(n, q) and using (3.6), we get

(3.12) (cM(n,q) - cM(n - l,q))(l - q~n) = (sM(n,q) - cM(n,q))q-n .

The first assertion of the Lemma now follows from (3.8).

Rearrangement of (3.12) gives

(3.13) cM{n,q)-cM{n-l,q)= {sM{n,q) - cM(n - l,q))q~n •

Assuming now that n ^ 3 , and using (3.8) and the first part of the Lemma, we deduce
from (3.13) that

ciu(n,q) - CM{TI -l,q)> -cM{n - l,q)q~"

> -cM(2,q)q-n

= - ( 1 - , - » ) , - ,

which is the second assertion of the Lemma. D
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By summation we get from (3.11) the inequalities
3

(3.14) 0<cM(d,q)-cM(n,q)<^2q-d-i (n > d ̂  2) ,

3

EXAMPLE. Let q = 2. The Neumann-Praeger inequalities give in this case

1/12 < 1 - CM(n, 2) < 1/3.

Calculating CA/(m,2) explicitly for m ^ 5 and using (3.14) with <i = 5, we get the
sharper bounds

i-G)
n+l

2) < + ^

Similar considerations hold for ca{n,q). The identity

(3.16) cG(n,q)u(n,q) - cG[n - l,q)u(n-l,q)

and its rearrangement

(3.17) cG(n,q)-cG(n-l,q)= (sG(n,q) - sG{n - l,q))q~n

yield the following companion to Lemma 3.1. (Observe that the sequence w ( l , g ) ,
oo

w(2. q), • • • has the nonzero limit u>(oo, q) = Yl (l — q~') •)
i=i

LEMMA 3 . 2 . The sequence

(3.18) C G ( l , t M U ) , c G (2 ,9)w(2 l 9 ) , •••

is strictly decreasing and so the limit cG(oo,q) exists. For n ̂  1, we have

(3.19) \cG(n,q)-cG(n-l,q)\4q-n .

By summation, we get

(3.20) \cG{n,q)-cG(d,q)\ ^ l/qd(q-l) (1 < d ̂  n < oo) .

REMARK. Unlike (3.10) and (3.18), the sequence

(3.21) c a { l , q ) , c G ( 2 , q ) , •••

is by no means monotonic. By (3.5) and (3.7), cG(n,q) — cG(n — l,q) has the same
sign as a+(n, q) — a+(n — l,q); but the consideration of the leading terms in Section 7
shows that the latter difference varies in sign in quite a complicated way as n increases.
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4. FORM OF THE COEFFICIENTS

In the present section we look more closely at the coefficients a(n,q),a+(n,q).
From (2.14) we derive the explicit formula

(4.1) a(n,q) =

where summation is over the partitions

(4.2) A = ( l r i 2 r 2 - - - )

of n, and where

Here, N^ is an abbreviation for N(k,q) and we shall later write Nf for N+(k,q).

The denominator in (4.3) is qngx(q~1), where

(4.4) g\(t) =
d

Using (2.8), we find that the numerator has the form qnf\(q~1)zx~
1, where

(4.5) fx(t) € Z[«], / A ( 0 ) = 1 ,

and

(4.6) zx

To be explicit, we have

where

(4.7) fd(t) =
S\d

and therefore

(4.8)

where
r - l

(4.9) fd
r)(t) = U(fd(t)-idtd)

i=0
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In conclusion,

(4.10) a(n,q)=An(q-1),

where

(4.11) An(t)
Xhn

By a similar argument,

(4.12)

where

(4.13)
Xhn

and fx(t) also has the properties (4.5). Indeed, /*(<) is defined in exactly the same way
as fx(t), except that / ] (<)(= 1) is to be replaced at every occurrence by f*(t) = 1 — t.
Thus, /+(*) = /(1,A)(t), where, if A = ( l r i2 r* •••) h n, then (1,A) = (in+i2-2 . . . ) h
n + 1 . Notice that, since (4.10), (4.12) holdfor all prime-powers q, the rational functions
An(t),A*(t) appearing in them are uniquely determined.

Since f\{0) = /jJ"(O) = g\(0) = 1 and since nlz^1 is the number of elements of the
symmetric group Sn of cycle type A, it follows that

(4.14) An(0) = A+(0) = 1 .

Thus, the series 1/(1 — u) = 53 u n is the common limiting form of the two series
n

P(q,u),P+(q,u) as q —>oo.

Let us now consider the denominator of An(t). Write

(4.15) nB(o

so that, in our earlier notation,

(4.16) u(m,q)=nn(q-1) .

LEMMA 4 . 1 . ilm(t)Qn(t) \ Slm+n(t).

PROOF: All the irreducible factors of fijt(t) in Q[<] are cyclotomic polynomials
$ r ( t ) . It is therefore sufficient to prove that $r(t) divides fim+n(<) to at least as high
a power as it divides Slm(t)Cln(t). But $r(t) divides ilk{t) precisely to the power [k/r],
and we have the simple inequality [(m + n)/r] ^ [m/r] + [n/r]. U
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[13] Counting matrices over a finite field 265

COROLLARY 4 . 2 . fin(<) is the ieast common multiple of the g\(t) with A h n .

PROOF: It follows easily from the Lemma that fln(') is a common multiple of the
g\{t). On the other hand, if r is any integer > 0 and a, b are the quotient and remainder
on dividing n by r , then $T(t)a \\ ftn(t) and $r(<)° | 9x{t), where A = (bra) \- n. D

The Corollary shows that the rational functions

(4.17) Kn(t) := An(t)nn(t) ,

(4.18) K+(t) :=

are in fact polynomials. Explicitly, we have by (4.11), (4.13),

(4.19) *„(*)
Xhn

(4.20) Jtf(0 = XX
Xhn

where

(4.21) hx(t) = n«{t)/gx(t) •

These considerations imply

PROPOSITION 4 . 3 . a(n,q)u>(n,q) and a+(n,q)uj(n,q),andhencealsosM{'n,q),
CM(n,q), SG(n,q)u>(n,q) and ca{n,q)u)(n,q), are polynomials in q~* with rational co-
efficients.

Lehrer [1] arrives at formulae equivalent to (4.11), (4.13) by a quite different
method. Interpreting the right hand sides of (4.19), (4.20) as inner products of gener-
alised characters of the symmetric group Sn (with coefficients in Z[<] rather then Z),
he deduces the more subtle result that the polynomials in Proposition 4.3 have integral

coefficients.

I am indebted to the referee for pointing out the following

COROLLARY 4 . 4 . The numbers of cyclic and separable elements in M(n,q) and
GL(n,q) are polynomials in q.

PROOF: These numbers are obtained by multiplying the ratios in Proposition 4.3

by |G.L(n,g)| — qn . However, as is easily checked, the ratios are polynomials in g"1

of degree at most n 2 . D

5. COMPLEX FUNCTIONS

In Section 3, using quite simple arguments, we proved the existence of the limits
CM(oo,q),cc(oo,q) and derived estimates of the rates at which they are approached.
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Proving corresponding results for the s ratios is harder. For this purpose, and in order
to evaluate all four limits explicitly, we need to look at P(q,z) as an analytic function
of a complex variable z.

The transition from formal power series to analytic functions is governed by stan-
dard general principles. Suppose we are given a formally convergent infinite product

d=\

where the Ud(t) are rational functions of t and the rrid positive integers, and that we
are required to show that the corresponding functional product

(5.2)
<f=i

is analytic in a given open disc

D(R) = {z | \z\ < R} ,

where R > 0. This comes to showing that (5.2) is uniformly absolutely convergent in
every closed disc

D(r) = {z\\z\Zr},

where r < R. The condition for this, obtained by applying Weierstrass' M-test to (5.2)
written out at length as a product of individual terms 1 + uj(z), is that there exist a
constant 6 = b(r) such that

(5.3) ^ m r f l u ^ l O for all z € D ( r ) .
d=0

When this condition is satisfied, (5.2) will be analytic in D(R) and the formal power
series expansion of (5.1) will be its Taylor series at 2 = 0.

It follows from these principles that the complex function P{q, z) corresponding
to the formal infinite P(q,t) is analytic for \z\ < 1. Indeed, the sum in (5.3) is

f ; N(d,q)\z\d/(qd - 1) = - 2 - M + f^N(d,q)\z\d/(qd - l) ,
d=l q d=2

and the inequality N(d,q) ^ qd — 1 (d ^ 2) shows that this is at most qr/(q — 1) +
r2/(l-r) when \z\ <r < 1.
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By a similar argument,

when \z\ < 1. Replacing z by q{z/q)m, where m is a positive integer, we get the
slightly more general result that

(5.5) 1 - q(z/q)m = f[ (l " z"">/g^f™
d=l

for \z\ < g1"1/"1 and a fortiori for \z\ < 1.

The central result of the present section is that, apart from a simple pole at z = 1,

P(q, z) can be continued analytically over the disc \z\ < q. This depends on two simple

identities:

PROPOSITION 5 . 1 . The function

is analytic in D(q) and equal to

(5.9) (\-z*lq)-\\-

in P( l ) .

PROOF: Let \z\ < qr < g. Then the sum (5.3) corresponding to T(g,z) is at most

q r -v^ r" q r r*

This proves the first statement.

Suppose now that |z| < 1. By (5.7),
<

P(q,z) = T(q,z)

Then, using (5.4) and (5.5), we get

(l-z)P(q,z) =
d=l

z2= T(q,z){l-z2/q),

which proves the second statement. D
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REMARK. The condition that the typical term in (5.8) be zero reduces to zd + qd — 1.
Accordingly, every point on the circle \z\ — q is a limit point of zeros of T(q,z), and
so this circle is a natural boundary for T(q, z).

P R O P O S I T I O N 5 . 2 . The function

(5.10) P(q,z) - 1/(1 - z) ,

analytic in D(l), can be continued analytically over D(q).

PROOF: By the Proposition above, the function S(q, z) — (l - z2/q)T(q, z) is
analytic in D(q) and equal to (1 — z)P(q,z) in D(l). Therefore the function R(q,z)
defined by

S(q,z)-S(q,l)

S'(q, 1) if z = 1,

is analytic in D(q) and equal to — (P(q,z) - S(q, 1)/(1 - z)) in D(l). Thus, we have
only to prove that

(5.11) 5(9,1) = 1.

Now, for z € £>(1),

" I N(d,q)

by (5.6). But (5.12) remains valid in D(qll2) because, by the usual arguments, the
right hand side represents an analytic function in that region. Putting z = 1 in (5.12),
we get the required result (5.11). D

COROLLARY 5 . 3 . IfO^r<q,

(5.13) l i m (a{n,q)-l)rn = 0 ,
n —^oo

and in particular

(5.14) lim a(n,q) = 1 .
n—>oo

oo
PROOF: The Taylor series £ (a(n,q)-l)tn of P{q,z)-l/{\ - z) at z = 0, being

n=O

also that of — R(q,z), has radius of convergence q. D
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The corresponding results for P+(q,z) are that

(5.15) P+{q,z)-(l-q~1)/{l-z)

can be continued analytically over D(q) and that

(5.16) lim a+(n,q) = 1 - q~l .
n ôo

One more result is required in order to evaluate the limits in the next section.

PROPOSITION 5.4. P(q,q~1) = (l -q~5)/(l - q " 1 ) ^ -g~ 2).

PROOF: Putting z = q-1 in (5.12) and using (5.5), we get

oo / _ , , / _-, , x \ "Id,,)

d = l

6. NUMERICAL LIMITS AND ESTIMATES

In Section 3, we proved the existence of the limits of the c ratios as n —> oo and

gave estimates of the rates at which they are approached. Here we do the same for the

s ratios. We also evaluate all four limits explicitly.

The limit of u>(n, q) as n —> oo is evidently

(6.1) u>{oo1q)

where

1 = 1

By Euler's pentagonal number theorem,

(6.3) n(<) = 1 + £ (-I)"
n=l
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The crucial results in determining the limits of the s ratios are (5.14) and (5.16).
These, together with (3.6) and (3.7), show immediately that the limits exist and have
the values

(6.4) sG(oo,q) = l-q~i ,

SM{oo,q) = u>(oo,q)

(6.5) = i _ 9 - i _ g - * + r 5 + r * _ 9 - i 2 _ 9 - i 5 + . . . .

Estimating the rates at which these limits are approached is more difficult. This
comes down to estimating |a(re,g) — l | and \a+(n,q) - 1 + g - 1 | . Now, by Proposition
5.2,

z)P{q,Z) =
t=0

whence, for all n,

(6.6) a(n, q) - I = - ] T (°(*. <?) " «(» ~ 1,«)) •
i-n+l

We shall make use of the resulting inequality

OO

(6.7) | a ( n , 9 ) - l | < £ \a(i,q) - a(i - l,q)\ .
i=n+l

The corresponding results for a+(n,q) are

OO

(6.8) a+(n,q)-l+q-1 = - ^ („+(», q) - a+(i - l,q)) ,

(6.9) l a + f n ^ J - H - , - 1 ! ^ £ \a+(i,q) - a+(i - l,q)\ .
i=n+l

NOTATION. For formal power series A(t) = ^ a n < " , B(t) - ^20nt
n with real coeffi-

cients. A(t) «; B(t) means that Qn ̂  (3n for all n.
We recall that

(6.10) fl(t)-1 = j>(n) t" ,
n=0

where p(n) is the number of partitions of n.
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P R O P O S I T I O N 6 . 1 . We have

(6.11)

Thus, for all n,

(6.12) \a(n,q) - a(n - l,q)\qn < ^ (n) + qp(n - 2) ,

n
where po(n) -) £

i=0
PROOF: The formal identity behind Proposition 5.1 is

(1 - qt)P(q,qt) = (l -

from which we get

(6.13)
n=0 d=l

where

Expanding each factor on the right of (6.13) in powers of t and then formally
multiplying all the factors together, we may express (a(n,q) — a(n — l ,g))gnt" as a
sum of terms of the form

<* •> • • •

Forming the corresponding sum of terms

we conclude that

g|a(n,9) - a(n - l,,)|,«t» « ( ^ |7m|t-)

It is easily verified that
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Also, since (l + (*/m)) ^ e< when m is a positive integer and since, by (2.7).
dN+(d, q) ^ qd - 1, we have

exp
td \ (\ td

) « {
Putting all these results together, we deduce finally that

( T ) (
n=0 ^ ' \rf=l m=l

-d

as required.

COROLLARY 6 . 2 . F o r a i i n ,

oo

(6.14) | a ( n , g ) - l | ^ ^ (?2(<0 + qp(d - 2))q
d=n+\

More convenient (but weaker) versions of (6.14) can be derived as follows. Given
c such that 1 < c < q, we may choose k so that p(n) ^ fcc" for all n. We have then
also

Using these inequalities in (6.14), we conclude that

(6.15) \a(n,q)-l\^K(q/c)-n ,

where

( 6 1 6 ) ^

EXAMPLES. Since p(n) < 2 " " 1 , we may take c = 2, fe = 1/2, getting

provided that q > 2. The choice c = 3/2, fc = 1 gives
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for all q.

The corresponding results for a+(n,q) are that

(6.19) l a + f o g j - l + g-1!^ £ (p2(d) + (q-2)p2(d-2))q-d

and

(6.20) \a+(n, q) - 1 + q'1 | < K+(q/Cyn ,

where

The above results already give estimates for | S G ( " , 9 ) — 50(00,9)1 — | a + ( " i 9 )
— 1 + q~l |. In the other case, we have, for example,

(6.22) \sM(n,q) - sM(oo,q)\ < \a(n,q) - l| + l/qn(q - 1) ,

as is easily checked.

REMARKS. The values of the first few a(n,q),a+(n,q) set down in Section 2, as well
as our later estimates in the sense of the formal norm || • \\q, indicate that the above
estimates fail to mirror the true situation. It is a deficiency of our method that it takes
no account of the many changes of sign of a(n,q) — a(n — l,q) as n increases (see
Section 7). The estimates in the sense of || • ||, probably give a truer picture.

We turn now to the limiting values of the c ratios. The crucial result here is
Proposition 5.4. It follows from (3.4), (3.5) that

CM(TI, q) = w(n, q) ^ a{i, q)q

i=0

i=0

whence

cM[oo,q) =u;(oo,q)P(q,q 2) ,

cG(cx>,q)=[(l-u)P+(q,u)]u=q_l
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Using Proposition 5.4 and simplifying, we get

CM(oo,9)=(l-9-
5) fl (I-?'*)

i=3

(6.23) = 1 - q~3 - <T4 - 2<T5 - q~6 + q~8 + 2q~9 + 2q~10 • • • ,

(6.24) = l - < r 3 - ? " 5 + q~6 + q~8 - q~9 • • • •

REMARKS.

(1) Although q~3 is a simple improvement on the Neumann-Praeger lower
bound for 1 — c\f(n,q) in (1.1), their upper bound, namely q~3 + q~A +
2q~5 +2q~6 • • • , is remarkably close to the limiting value given by (6.23).

(2) By inspection, sM(oo,q)/u(oo,q), c\f(°o,q)/u(oo,q), sG(oo,q) and
CG(OO, q) are polynomials in q~x, in strange contrast with Proposition
4.3.

In Section 3, we gave estimates of the rates at which the c ratios approach their
limiting values. The results just obtained shed further light on the matter. Indeed, by
(3-13),

lim (cM{n ~ l,q) - cM(n,q))qn+l

n—»oo
= q(cM{oo,q) - sM(oo,q))

(6.25) = i + <r l -<r 2 -<r 3 -3<r 4 - - - ,

and similarly, by (3.16),

lim (cG(n - 1, q) u> (n - 1, q) - CG(TI, q)u(n, q))qn

n—>oo

= W(OO,Q)CG(OO,<J)

(6.26) = l _ 9 - i _ g - 2 _ g - 3 + g - 4 . . .

7. FORMAL ESTIMATES

We have so far only considered limits in the sense of the ordinary absolute value
| • |. We turn now to limits in the sense of the formal norm || • | | , .

It was shown in Section 4 that a(n,q) — An[q~1) for all prime-powers q, where
An(t) is a uniquely determined rational function whose poles all lie on the unit circle.
Thus, there is a power series expansion

(7.1) An(z)-l= 2^ <*nmz
m=0

m
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valid for \z\ < 1. If anrz
r is the leading term (so that anr ^ 0 but anm — 0 for

m < r), then, by definition,

(7.2) \\a(n,q)-l\\q=q-r.

P R O P O S I T I O N 7 . 1 . \\a(n,q) - l\\q < q~n.

PROOF: The leading coefficient is given by

anr = lim (An(z) - l)z~r •

On the other hand, by (6.15) there is a constant e such that

for all prime-powers q. These results together show that r ^ n. u

The same argument gives

P R O P O S I T I O N 7 . 2 . \\a+(n,q) - 1 + q~1\\, < q~n.

These two results show that a(n,q), a+(n,q) tend formally to their numerical

limits 1, 1 — g"1 as n —> oo. The same applies to the c and s ratios: for, besides
a(n, q), a+ (n, q), the only other functions whose limits are involved are a>(n, g) and the
n"1 partial sum of P(q,q-1) ; and in these cases, the numerical limits are obviously the
formal ones as well.

Lehrer [1, Proposition (8.6)] proves the formal convergence of the sequence
•sM(lI9),5M(2,g), • • • by showing that

||sM(m,g) — SM(n,g)||? ^ g~'"'2'

whenever m ^ n. The results above show that the formal limit is SAf(oo,g) = a»(oo,g)
and that

EXAMPLE. Let mn — mn(q) = 1 — C M ( « , ? ) - It was shown in Section 4 that mn is a
polynomial in g"1 and in Section 6 that

lim mn = q~3 + q~4 + 2q~5 + q~e • • • ;
n — • o o

lim (mn — m n _ i ) g n + 1 = 1 + g"1 — q~2 — q~3 — 3g~4 • • • .
n—•oo

The formal versions of these limits are illustrated in the following table of values. The

entries in the row labelled mr — mr_] or mT are the coefficients of g~3, g~4, • • • , and

k' stands for —k. For example, m3 - m.2 = q~* + q~s — q~e — q~7.
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TTl2 — TTli 1

m 3 - m2 0 1 1 1' 1'

m4 - m3 0 0 1 1 1' 2' 2; 1 1 1

m 5 - m4 0 0 0 1 1 1' 1' 3' 1' 2 3 3 0 1' 2' 1'

mi = 0

m2 1

m3 1 1 1 1' 1'

m4 1 1 2 0 2' 2' 2' 1 1 1

m5 1 1 2 1 1' 3' 3' 2' 0 3 3 3 0 1' 2' 1'

Let us consider, for fixed n, the leading term anrq~r of a(n,q) — 1. Since

it gives a good approximation to, and in particular has the same sign as, a(n,q) — 1
for sufficiently large q. In what follows, we shall determine anrq~r explicitly for most
values of n. The results almost certainly give more accurate information about a(n, q) —
1 than the earlier numerical estimates. They suggest, for example, that (for fixed q) it
assumes both positive and negative values for infinitely many n. Similar results hold
for a+(n, q) — 1 + q~x, although these will be presented in less detail.

As before, (6.6) will be used to investigate a(n,q) — 1. Thus, we need to examine
the series

oo

(1 - t)P(q,t) = £(a(n,g) - a(n - l,q))tn .
n=0

Our consideration are purely formal and no questions of (numerical) convergence arise.

Taking logarithms in (2.14), we get

iog[(i - t)P(q, o] = - f; £ + f ; N(d, q) log
l f<f=l \ H

+

, .- . md
n=l d=l m=l

00

n = l
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where

iS<n

Thus, writing b'n = bnq~n, we get

(7.3) log [(1 — t)P(q, £)] =
n=l

where

(7-4) bn = — ^ -
q 6\d\n ^ - v - ;

<S<n

From (7.4), we may expand bn as a Laurent series in q"1. The coefficient of
qm. m > 0, is 0 unless m \ n and m < n , in which case it is —6(n/m), where 0(k) =

2j/i((i)( —1) . The Mobius inversion formula shows that 6 satisfies the summation
d\k

formula ^,0(d) = (—1) , from which one sees that
d\k

It follows that bn has the form

£&„*<?-* ("odd)
k=0
oo

~* (neven)

where

(7.6)
Jt=O 6\d\n

6<n
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We require here only the first two coefficients in (7.6). By inspection,

(7.7) &n0 = £ ( - l ) < i + 1 d = T ( n ) , say,
d\n

\ ( - i r f" ! 1 ) ("odd),
(7-8) nl { ) (

Let us now express (1 — t)P(q, t) and its logarithm in the form

(7.9) (l
r=0
oo

r=0

where Ar,Br are formal Q-linear combinations of terms q~r(t/q)m and A-,B- formal
Q-linear combinations of terms q'(t/q)m with s > 0. Then

(7.11) A.+
r=0 r=0

We wish to calculate A-, Ao and for this purpose need to know exp B-, exp Bo
and B\. First,

whence

(7.12) expB- =l-t2/q.

Next,

CO

_ m

°° d

L (-1) z . -('/«)
d=l r=l

f ) (-1)" log (1 -td/qd),

\«l<i)dr
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whence

(7.13) expSo =

where

By a well known theorem of Euler,

n=0

(7.15) = l + i + t 3 +

Finally,

n=l 3 m=l

(7.16) = 1 a(t/g) ,

where

(7.17) a(<)

Denoting equality modulo ^Z > r̂ by ~ , we have
r=l

r = l

and so

(7.18) A. = -(t2/q)*(t/q) ,

(7.19) Ao = (l - \(t2fq2
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Let T(m) denote the mth triangular number :

(7.20) T(m) = -m(m + 1) (m = 0,1,---)

Then, by (7.15) and (7.18), we have

n=0 V

where

j - 1 if n=T(m) + 2,
(_ 0 otherwise .

Thus, by (7.19),

(7.23) a(n, q) - a(n -l,q) = Kq-^-1* + 4>nq

where

(7.24)
n=0

PROPOSITION 7 . 3 . For n > 0, equaJity holds in Proposition 7.1 if, and only

if, n — 1 is a triangular number. In the case of equality, the leading term of a(n, q) — 1
isq-n.

PROOF: Using (7.23) and (6.6), we find that

(7.25) B ( n , q ) - i = - ^ i - ( ^ + ^ ) + . . . ,

The Proposition now follows from (7.22). D

COROLLARY 7 . 4 . Propositions 7.1 and 7.3remain true with SM(n, q)—SM(oo, q)
in place of a(n, q) — 1.

PROOF: By (3.6) and (6.5),

s\f(n:q) -sM(oo,q) = a(n,q)w(n,q) -u(oo,q) .

Using this and (7.25), we get

(7.26) sM(n,q)-sM{oo,q) = — + ,
from which the result follows as before. D

In order to investigate the leading terms in (7.23), (7.25) and (7.26) more closely, we
need to know the value of <f>n. Its determination is elementary but rather complicated.
We shall therefore omit the detailed working and merely set down the final result. But
before doing so we note a striking property of <j>n.
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LEMMA 7 . 5 . 4>n + 4>n+i e {0 ,1 , -1} for all n > 0.

PROOF: Although this can be deduced (with some labour) from the later tables,
we shall give an independent proof. In view of (7.24), what the Lemma asserts is that
the coefficient of t" in the power series expansion of

*)(i - I' = (*

is 0,1 or —1 whenever n ^ 2 (the series begins 1 + 2t + • • • ) .

Now, the coefficient of t" in ((1 - t 3 ) / ( l - t4)) #(i) is vn - wn, where vn, wn are
the numbers of T(m) ^ n and = n, n + 1 (mod 4) respectively. Suppose that

T(8r + a) ^ n< T(8r + s + 1) ,

where 0 s£ s < 7. If r' < r, then the values of T(8r'),T(8r' + 1), • • • ,T(8r' + 7)
modulo 4 are 0,1,3,2,2,3,1,0; these numbers therefore make no contribution to vn —
wn • So we need only consider T(8r), T(8r + 1), • • • , T(8r + s). It is straightforward to
check that, whatever the value of n modulo 4, these numbers contribute 0,1 or -1 to
vn — wn. For example, if s = 5 and n = 1 (mod 4), then the contributions to vn, tun are
respectively the numbers of l's, 2's in the sequence 0,1,3,2,2,3, so that vn — wn — — 1.

The coefficient of tn in the remaining part t^>(t) of (*) is 1 if n has the form
1 + T(m) and 0 otherwise. Thus, it remains only to check that, if n = T(8r + s) + l ^ 2,
then un — wn — 0 or —1. This is again straightforward, using the fact that n <
T(8r + 5+1) (this is where the assumption that n > 2 comes in). For example, if
s = 4, then n = 2 + 1 = 3 (mod 4) and so vn - wn is the number of 3's minus the
number of 0's in the sequence 0,1,3,2,2, namely 0. D

In order to describe the value of 4>n, we write n in the form

(7.27) n = T(8m + r) + 46 + t ,

where

(7.28) m ^ 0, 0 ^ r ^ 7, 0 < 6, 0 ^ t < 3, 46 + t ^ 8m + r .

(The final condition in (7.28) ensures that n < T(8m + r + 1).) In the table of values
of 4>n that follows, the 8 panels correspond to the values 0, • • • ,7 of r and the 4 rows
in each panel (reading down from the top) to the values 0,1,2,3 of i. When b = i = 0
(so that n — T(8m + r)) the value in the table has to be increased by 1 : the emended
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value is given in square brackets in the first row of each panel.

- 2(m - 6) [-2m +1] - 2m [-2m +1]

(r = 0) 2(m - 6) (r = 1) 2m

- 2(m - b) -2m-I

2(m - b) - 1 2m + 1

- 2(m - 6) - 1 [-2m] -2m-I [-2m]

(r = 2) 2 ( m - 6 ) + l (r = 3) 2m + 1

- 2(m - 6) - 2m - 1

2(m - b) - 1 2m + 1

- 2(m - 6) - 1 [-2m] - 2m - 1 [-2m]

(r = 4) 2(m - b) + 1 (r = 5) 2m + 1

- 2(m - 6) - 1 - 2m - 2

2(m - 6) 2m + 2

- 2(m - 6) - 2 [-2m - 1] - 2m - 2 [-2m - 1]

(r = 6) 2 ( m - 6 ) + 2 (r = 7) 2m + 2

- 2(m - 6) - 1 - 2m - 2

2(m - 6) 2m + 2

REMARKS.

(1) For n > 0, if <j>n,4>n+i are both nonzero, then they have opposite signs
(the case n = 0 is exceptional as <f>o = </>i = 1). This may be seen by
inspection or directly from Lemma 7.5.

(2) For fixed m and fixed odd r (but varying 6,i), |<£n| remains approxi-
1 /?

mately constant at the value 2m (which is roughly (n/8) since n is
roughly (8m)2/2). If m > 0, <j>n is never 0 or 1.

(3) For fixed m and fixed even r, \<j>n\ varies between approximately 0 and
2m. Except in the one case m = r — 0, <j>n always assumes the values 0
and 1.

Our results yield the following detailed information about a(n,q) — 1. We have

a(0, q) — 1 = 0 and now assume that n > 0.
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If n = T{n) + 1, that is, n = 1,2,4,7,11,16, • • • , then a{n, q) - 1 = q~n + • • • . In
all other cases, | | a ( n , g ) - l | | ^ g ~ ( n + 1 > .

If n - T(fi) (n > 1), that is, if n = 3,6,10,15, • • • , then a(n,q) - 1 = (1 - <t>n+\)
q-(n+l) 4 - . . . and 1 — 4>n+i is nonzero except when n = 3,6,10,15.

Finally, if n has neither of the forms above, then a(n, q) — 1 = —0n+i9~^"+1^ H
and <j>n+\ is nonzero if, and only if, n has none of the following forms:

5,9,14,

32m2 + 40m +12 (m > 0) ,

32m2 + 56m + (23,24 or 25) (m ^ 0) ,

32m2 + 8m + ( - 1 , 0 or 1) (m > 1) ,

32m2 + 24m + 4 (m ^ 1) .

Corresponding results can be proved for the differences

a+[n, q) - a+(n ~l,q)= SG(TI, q) - sG{n - l , q )

and thence also for sc{n,q) — sa(<x>,q) and cc(n,q) — CQ(TI — l,q) (see (3.5)). This
can be done by applying the method used above to (1 — t)P+(q,t) or, as we shall do
here, by referring back to the results for (1 — t)P(q,t) using the simple relation (3.3).
With the same kind of notation as before:

r=0
oo

one finds that

\ _ \+ I \+
An — An ' A n - 1

or, in solved form,
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As before, we have

(7.29) a+(n,q)-a+(n-l,q) = - ^ + %• + • • • ,

(7.30) a+(n,q)-l + q-1 = =±i-
" V">*' - ' •* ? n qn+l

The results that follow are set down without proof. The values of the A+ are a

little more complicated then those of the An in (7.22). We have

(7.31) A + = A + = 0 .

Suppose now that n ^ 2 and let

T(m) + 1 ^ n < T(m + 1) + 2 (m ^ 0) .

then

+ JO (modd) ,
{ ( -1) (meven) ,

where
k = n - T(m) - 2 .

PROPOSITION 7 . 6 . Equality holds in Proposition 7.2 if, and only if, T(m) +

1 < m < T(m + 1) + 1 for an even m > 0. In the case of equality, the leading term of

a+{n,q)- I + q'1 is ±q~n .

The final result may be compared with (3.19).

PROPOSITION 7 . 7 . \\cc(n,q)-CG(n-l,q)\\ ^ q~(2n~l) with equality if, and

only if, T{m) + 2 s$ n < T{m + 1) + 2 for an even m^O.
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